The finite element modeling of three dimensional structures is important for researchers especially in the field of antennas and other domains of electromagnetic waves. This paper presents a finite element calculation...The finite element modeling of three dimensional structures is important for researchers especially in the field of antennas and other domains of electromagnetic waves. This paper presents a finite element calculations and numerical analysis for the microstrip patch antennas. In this paper, two different designs have been modelled and analyzed and both designs are based on the rectangular patches. The feeding point of one design is inside the patch while the other design contains feeding point outside the patch is T shaped. The computational analysis showed some interesting results for radiation pattern and far field domain. For these designs, the characteristic impedance taken is 50 Ω and the operating frequency domain is 1.4 to 1.7 GHz. The microstrip patch antennas are encapsulated in the inert spherical atmosphere of 20 mm thickness containing air inside it.展开更多
This paper represents the performance analysis of the different shapes of antenna balun and feeding techniques for step constant tapered slot antenna. This work also addresses the benefits of antenna balun (circular a...This paper represents the performance analysis of the different shapes of antenna balun and feeding techniques for step constant tapered slot antenna. This work also addresses the benefits of antenna balun (circular and rectangular) along with two types of feeding techniques (Microstrip line L-shape and Microstrip line I-shape). The performance of the antenna for each technique is thoroughly investigated using Computer Simulation Technology (CST) Microwave Studio software simulation under the resonant frequency of 5.9 GHz. Results demonstrate that the proposed model is an effective tool for improving antenna performance. Moreover, an extensive comparison has been carried out between the two different shapes, with and without antenna balun and between two feeding techniques focusing on return losses, gain, directivity, and voltage standing wave ratio (VSWR).展开更多
文摘The finite element modeling of three dimensional structures is important for researchers especially in the field of antennas and other domains of electromagnetic waves. This paper presents a finite element calculations and numerical analysis for the microstrip patch antennas. In this paper, two different designs have been modelled and analyzed and both designs are based on the rectangular patches. The feeding point of one design is inside the patch while the other design contains feeding point outside the patch is T shaped. The computational analysis showed some interesting results for radiation pattern and far field domain. For these designs, the characteristic impedance taken is 50 Ω and the operating frequency domain is 1.4 to 1.7 GHz. The microstrip patch antennas are encapsulated in the inert spherical atmosphere of 20 mm thickness containing air inside it.
文摘This paper represents the performance analysis of the different shapes of antenna balun and feeding techniques for step constant tapered slot antenna. This work also addresses the benefits of antenna balun (circular and rectangular) along with two types of feeding techniques (Microstrip line L-shape and Microstrip line I-shape). The performance of the antenna for each technique is thoroughly investigated using Computer Simulation Technology (CST) Microwave Studio software simulation under the resonant frequency of 5.9 GHz. Results demonstrate that the proposed model is an effective tool for improving antenna performance. Moreover, an extensive comparison has been carried out between the two different shapes, with and without antenna balun and between two feeding techniques focusing on return losses, gain, directivity, and voltage standing wave ratio (VSWR).