期刊文献+
共找到394篇文章
< 1 2 20 >
每页显示 20 50 100
FedCW: Client Selection with Adaptive Weight in Heterogeneous Federated Learning
1
作者 Haotian Wu Jiaming Pei Jinhai Li 《Computers, Materials & Continua》 2026年第1期1551-1570,共20页
With the increasing complexity of vehicular networks and the proliferation of connected vehicles,Federated Learning(FL)has emerged as a critical framework for decentralized model training while preserving data privacy... With the increasing complexity of vehicular networks and the proliferation of connected vehicles,Federated Learning(FL)has emerged as a critical framework for decentralized model training while preserving data privacy.However,efficient client selection and adaptive weight allocation in heterogeneous and non-IID environments remain challenging.To address these issues,we propose Federated Learning with Client Selection and Adaptive Weighting(FedCW),a novel algorithm that leverages adaptive client selection and dynamic weight allocation for optimizing model convergence in real-time vehicular networks.FedCW selects clients based on their Euclidean distance from the global model and dynamically adjusts aggregation weights to optimize both data diversity and model convergence.Experimental results show that FedCW significantly outperforms existing FL algorithms such as FedAvg,FedProx,and SCAFFOLD,particularly in non-IID settings,achieving faster convergence,higher accuracy,and reduced communication overhead.These findings demonstrate that FedCW provides an effective solution for enhancing the performance of FL in heterogeneous,edge-based computing environments. 展开更多
关键词 Federated learning non-IID client selection weight allocation vehicular networks
在线阅读 下载PDF
Towards Decentralized IoT Security: Optimized Detection of Zero-Day Multi-Class Cyber-Attacks Using Deep Federated Learning
2
作者 Misbah Anwer Ghufran Ahmed +3 位作者 Maha Abdelhaq Raed Alsaqour Shahid Hussain Adnan Akhunzada 《Computers, Materials & Continua》 2026年第1期744-758,共15页
The exponential growth of the Internet of Things(IoT)has introduced significant security challenges,with zero-day attacks emerging as one of the most critical and challenging threats.Traditional Machine Learning(ML)an... The exponential growth of the Internet of Things(IoT)has introduced significant security challenges,with zero-day attacks emerging as one of the most critical and challenging threats.Traditional Machine Learning(ML)and Deep Learning(DL)techniques have demonstrated promising early detection capabilities.However,their effectiveness is limited when handling the vast volumes of IoT-generated data due to scalability constraints,high computational costs,and the costly time-intensive process of data labeling.To address these challenges,this study proposes a Federated Learning(FL)framework that leverages collaborative and hybrid supervised learning to enhance cyber threat detection in IoT networks.By employing Deep Neural Networks(DNNs)and decentralized model training,the approach reduces computational complexity while improving detection accuracy.The proposed model demonstrates robust performance,achieving accuracies of 94.34%,99.95%,and 87.94%on the publicly available kitsune,Bot-IoT,and UNSW-NB15 datasets,respectively.Furthermore,its ability to detect zero-day attacks is validated through evaluations on two additional benchmark datasets,TON-IoT and IoT-23,using a Deep Federated Learning(DFL)framework,underscoring the generalization and effectiveness of the model in heterogeneous and decentralized IoT environments.Experimental results demonstrate superior performance over existing methods,establishing the proposed framework as an efficient and scalable solution for IoT security. 展开更多
关键词 Cyber-attack intrusion detection system(IDS) deep federated learning(DFL) zero-day attack distributed denial of services(DDoS) MULTI-CLASS Internet of Things(IoT)
在线阅读 下载PDF
GFL-SAR: Graph Federated Collaborative Learning Framework Based on Structural Amplification and Attention Refinement
3
作者 Hefei Wang Ruichun Gu +2 位作者 Jingyu Wang Xiaolin Zhang Hui Wei 《Computers, Materials & Continua》 2026年第1期1683-1702,共20页
Graph Federated Learning(GFL)has shown great potential in privacy protection and distributed intelligence through distributed collaborative training of graph-structured data without sharing raw information.However,exi... Graph Federated Learning(GFL)has shown great potential in privacy protection and distributed intelligence through distributed collaborative training of graph-structured data without sharing raw information.However,existing GFL approaches often lack the capability for comprehensive feature extraction and adaptive optimization,particularly in non-independent and identically distributed(NON-IID)scenarios where balancing global structural understanding and local node-level detail remains a challenge.To this end,this paper proposes a novel framework called GFL-SAR(Graph Federated Collaborative Learning Framework Based on Structural Amplification and Attention Refinement),which enhances the representation learning capability of graph data through a dual-branch collaborative design.Specifically,we propose the Structural Insight Amplifier(SIA),which utilizes an improved Graph Convolutional Network(GCN)to strengthen structural awareness and improve modeling of topological patterns.In parallel,we propose the Attentive Relational Refiner(ARR),which employs an enhanced Graph Attention Network(GAT)to perform fine-grained modeling of node relationships and neighborhood features,thereby improving the expressiveness of local interactions and preserving critical contextual information.GFL-SAR effectively integrates multi-scale features from every branch via feature fusion and federated optimization,thereby addressing existing GFL limitations in structural modeling and feature representation.Experiments on standard benchmark datasets including Cora,Citeseer,Polblogs,and Cora_ML demonstrate that GFL-SAR achieves superior performance in classification accuracy,convergence speed,and robustness compared to existing methods,confirming its effectiveness and generalizability in GFL tasks. 展开更多
关键词 Graph federated learning GCN GNNs attention mechanism
在线阅读 下载PDF
A Comprehensive Survey on Federated Learning Applications in Computational Mental Healthcare 被引量:1
4
作者 Vajratiya Vajrobol Geetika Jain Saxena +6 位作者 Amit Pundir Sanjeev Singh Akshat Gaurav Savi Bansal Razaz Waheeb Attar Mosiur Rahman Brij B.Gupta 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期49-90,共42页
Mental health is a significant issue worldwide,and the utilization of technology to assist mental health has seen a growing trend.This aims to alleviate the workload on healthcare professionals and aid individuals.Num... Mental health is a significant issue worldwide,and the utilization of technology to assist mental health has seen a growing trend.This aims to alleviate the workload on healthcare professionals and aid individuals.Numerous applications have been developed to support the challenges in intelligent healthcare systems.However,because mental health data is sensitive,privacy concerns have emerged.Federated learning has gotten some attention.This research reviews the studies on federated learning and mental health related to solving the issue of intelligent healthcare systems.It explores various dimensions of federated learning in mental health,such as datasets(their types and sources),applications categorized based on mental health symptoms,federated mental health frameworks,federated machine learning,federated deep learning,and the benefits of federated learning in mental health applications.This research conducts surveys to evaluate the current state of mental health applications,mainly focusing on the role of Federated Learning(FL)and related privacy and data security concerns.The survey provides valuable insights into how these applications are emerging and evolving,specifically emphasizing FL’s impact. 展开更多
关键词 DEPRESSION emotional recognition intelligent healthcare systems mental health federated learning stress detection sleep behaviour
在线阅读 下载PDF
The Internet of Things under Federated Learning:A Review of the Latest Advances and Applications 被引量:1
5
作者 Jinlong Wang Zhenyu Liu +2 位作者 Xingtao Yang Min Li Zhihan Lyu 《Computers, Materials & Continua》 SCIE EI 2025年第1期1-39,共39页
With the rapid development of artificial intelligence,the Internet of Things(IoT)can deploy various machine learning algorithms for network and application management.In the IoT environment,many sensors and devices ge... With the rapid development of artificial intelligence,the Internet of Things(IoT)can deploy various machine learning algorithms for network and application management.In the IoT environment,many sensors and devices generatemassive data,but data security and privacy protection have become a serious challenge.Federated learning(FL)can achieve many intelligent IoT applications by training models on local devices and allowing AI training on distributed IoT devices without data sharing.This review aims to deeply explore the combination of FL and the IoT,and analyze the application of federated learning in the IoT from the aspects of security and privacy protection.In this paper,we first describe the potential advantages of FL and the challenges faced by current IoT systems in the fields of network burden and privacy security.Next,we focus on exploring and analyzing the advantages of the combination of FL on the Internet,including privacy security,attack detection,efficient communication of the IoT,and enhanced learning quality.We also list various application scenarios of FL on the IoT.Finally,we propose several open research challenges and possible solutions. 展开更多
关键词 Federated learning Internet of Things SENSORS machine learning privacy security
在线阅读 下载PDF
SensFL:Privacy-Preserving Vertical Federated Learning with Sensitive Regularization 被引量:1
6
作者 Chongzhen Zhang Zhichen Liu +4 位作者 Xiangrui Xu Fuqiang Hu Jiao Dai Baigen Cai Wei Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期385-404,共20页
In the realm of Intelligent Railway Transportation Systems,effective multi-party collaboration is crucial due to concerns over privacy and data silos.Vertical Federated Learning(VFL)has emerged as a promising approach... In the realm of Intelligent Railway Transportation Systems,effective multi-party collaboration is crucial due to concerns over privacy and data silos.Vertical Federated Learning(VFL)has emerged as a promising approach to facilitate such collaboration,allowing diverse entities to collectively enhance machine learning models without the need to share sensitive training data.However,existing works have highlighted VFL’s susceptibility to privacy inference attacks,where an honest but curious server could potentially reconstruct a client’s raw data from embeddings uploaded by the client.This vulnerability poses a significant threat to VFL-based intelligent railway transportation systems.In this paper,we introduce SensFL,a novel privacy-enhancing method to against privacy inference attacks in VFL.Specifically,SensFL integrates regularization of the sensitivity of embeddings to the original data into the model training process,effectively limiting the information contained in shared embeddings.By reducing the sensitivity of embeddings to the original data,SensFL can effectively resist reverse privacy attacks and prevent the reconstruction of the original data from the embeddings.Extensive experiments were conducted on four distinct datasets and three different models to demonstrate the efficacy of SensFL.Experiment results show that SensFL can effectively mitigate privacy inference attacks while maintaining the accuracy of the primary learning task.These results underscore SensFL’s potential to advance privacy protection technologies within VFL-based intelligent railway systems,addressing critical security concerns in collaborative learning environments. 展开更多
关键词 Vertical federated learning PRIVACY DEFENSES
在线阅读 下载PDF
Beyond the Cloud: Federated Learning and Edge AI for the Next Decade 被引量:1
7
作者 Sooraj George Thomas Praveen Kumar Myakala 《Journal of Computer and Communications》 2025年第2期37-50,共14页
As AI systems scale, the limitations of cloud-based architectures, including latency, bandwidth, and privacy concerns, demand decentralized alternatives. Federated learning (FL) and Edge AI provide a paradigm shift by... As AI systems scale, the limitations of cloud-based architectures, including latency, bandwidth, and privacy concerns, demand decentralized alternatives. Federated learning (FL) and Edge AI provide a paradigm shift by combining privacy preserving training with efficient, on device computation. This paper introduces a cutting-edge FL-edge integration framework, achieving a 10% to 15% increase in model accuracy and reducing communication costs by 25% in heterogeneous environments. Blockchain based secure aggregation ensures robust and tamper-proof model updates, while exploratory quantum AI techniques enhance computational efficiency. By addressing key challenges such as device variability and non-IID data, this work sets the stage for the next generation of adaptive, privacy-first AI systems, with applications in IoT, healthcare, and autonomous systems. 展开更多
关键词 Federated learning Edge AI Decentralized Computing Privacy-Preserving AI Blockchain Quantum AI
在线阅读 下载PDF
FedCPS:A Dual Optimization Model for Federated Learning Based on Clustering and Personalization Strategy 被引量:1
8
作者 Zhen Yang Yifan Liu +2 位作者 Fan Feng Yi Liu Zhenpeng Liu 《Computers, Materials & Continua》 2025年第4期357-380,共24页
Federated learning is a machine learning framework designed to protect privacy by keeping training data on clients’devices without sharing private data.It trains a global model through collaboration between clients a... Federated learning is a machine learning framework designed to protect privacy by keeping training data on clients’devices without sharing private data.It trains a global model through collaboration between clients and the server.However,the presence of data heterogeneity can lead to inefficient model training and even reduce the final model’s accuracy and generalization capability.Meanwhile,data scarcity can result in suboptimal cluster distributions for few-shot clients in centralized clustering tasks,and standalone personalization tasks may cause severe overfitting issues.To address these limitations,we introduce a federated learning dual optimization model based on clustering and personalization strategy(FedCPS).FedCPS adopts a decentralized approach,where clients identify their cluster membership locally without relying on a centralized clustering algorithm.Building on this,FedCPS introduces personalized training tasks locally,adding a regularization term to control deviations between local and cluster models.This improves the generalization ability of the final model while mitigating overfitting.The use of weight-sharing techniques also reduces the computational cost of central machines.Experimental results on MNIST,FMNIST,CIFAR10,and CIFAR100 datasets demonstrate that our method achieves better personalization effects compared to other personalized federated learning methods,with an average test accuracy improvement of 0.81%–2.96%.Meanwhile,we adjusted the proportion of few-shot clients to evaluate the impact on accuracy across different methods.The experiments show that FedCPS reduces accuracy by only 0.2%–3.7%,compared to 2.1%–10%for existing methods.Our method demonstrates its advantages across diverse data environments. 展开更多
关键词 Federated learning CLUSTER PERSONALIZATION OVERFITTING
在线阅读 下载PDF
CMBA-FL: Communication-mitigated and blockchain-assisted federated learning for traffic flow predictions 被引量:1
9
作者 Kaiyin Zhu Mingming Lu +2 位作者 Haifeng Li Neal NXiong Wenyong He 《Digital Communications and Networks》 2025年第3期724-733,共10页
As an effective strategy to address urban traffic congestion,traffic flow prediction has gained attention from Federated-Learning(FL)researchers due FL’s ability to preserving data privacy.However,existing methods fa... As an effective strategy to address urban traffic congestion,traffic flow prediction has gained attention from Federated-Learning(FL)researchers due FL’s ability to preserving data privacy.However,existing methods face challenges:some are too simplistic to capture complex traffic patterns effectively,and others are overly complex,leading to excessive communication overhead between cloud and edge devices.Moreover,the problem of single point failure limits their robustness and reliability in real-world applications.To tackle these challenges,this paper proposes a new method,CMBA-FL,a Communication-Mitigated and Blockchain-Assisted Federated Learning model.First,CMBA-FL improves the client model’s ability to capture temporal traffic patterns by employing the Encoder-Decoder framework for each edge device.Second,to reduce the communication overhead during federated learning,we introduce a verification method based on parameter update consistency,avoiding unnecessary parameter updates.Third,to mitigate the risk of a single point of failure,we integrate consensus mechanisms from blockchain technology.To validate the effectiveness of CMBA-FL,we assess its performance on two widely used traffic datasets.Our experimental results show that CMBA-FL reduces prediction error by 11.46%,significantly lowers communication overhead,and improves security. 展开更多
关键词 Blockchain Communication mitigating Federated learning Traffic flow prediction
在线阅读 下载PDF
A hierarchical blockchain-enabled distributed federated learning system with model contribution based rewarding 被引量:1
10
作者 Haibo Wang Hongwei Gao +2 位作者 Teng Ma Chong Li Tao Jing 《Digital Communications and Networks》 2025年第1期35-42,共8页
Distributed Federated Learning(DFL)technology enables participants to cooperatively train a shared model while preserving the privacy of their local datasets,making it a desirable solution for decentralized and privac... Distributed Federated Learning(DFL)technology enables participants to cooperatively train a shared model while preserving the privacy of their local datasets,making it a desirable solution for decentralized and privacy-preserving Web3 scenarios.However,DFL faces incentive and security challenges in the decentralized framework.To address these issues,this paper presents a Hierarchical Blockchain-enabled DFL(HBDFL)system,which provides a generic solution framework for the DFL-related applications.The proposed system consists of four major components,including a model contribution-based reward mechanism,a Proof of Elapsed Time and Accuracy(PoETA)consensus algorithm,a Distributed Reputation-based Verification Mechanism(DRTM)and an Accuracy-Dependent Throughput Management(ADTM)mechanism.The model contribution-based rewarding mechanism incentivizes network nodes to train models with their local datasets,while the PoETA consensus algorithm optimizes the tradeoff between the shared model accuracy and system throughput.The DRTM improves the system efficiency in consensus,and the ADTM mechanism guarantees that the throughput performance remains within a predefined range while improving the shared model accuracy.The performance of the proposed HBDFL system is evaluated by numerical simulations,with the results showing that the system improves the accuracy of the shared model while maintaining high throughput and ensuring security. 展开更多
关键词 Blockchain Federated learning Consensus scheme Accuracy dependent throughput management
在线阅读 下载PDF
Personalized Generative AI Services Through Federated Learning in 6G Edge Networks 被引量:1
11
作者 Li Zeshen Chen Zihan +1 位作者 Hu Xinyi Howard H.Yang 《China Communications》 2025年第7期1-13,共13页
Network architectures assisted by Generative Artificial Intelligence(GAI)are envisioned as foundational elements of sixth-generation(6G)communication system.To deliver ubiquitous intelligent services and meet diverse ... Network architectures assisted by Generative Artificial Intelligence(GAI)are envisioned as foundational elements of sixth-generation(6G)communication system.To deliver ubiquitous intelligent services and meet diverse service requirements,6G network architecture should offer personalized services to various mobile devices.Federated learning(FL)with personalized local training,as a privacypreserving machine learning(ML)approach,can be applied to address these challenges.In this paper,we propose a meta-learning-based personalized FL(PFL)method that improves both communication and computation efficiency by utilizing over-the-air computations.Its“pretraining-and-fine-tuning”principle makes it particularly suitable for enabling edge nodes to access personalized GAI services while preserving local privacy.Experiment results demonstrate the outperformance and efficacy of the proposed algorithm,and notably indicate enhanced communication efficiency without compromising accuracy. 展开更多
关键词 generative artificial intelligence personalized federated learning 6G networks
在线阅读 下载PDF
Federated Learning’s Role in Next-Gen TV Ad Optimization
12
作者 Gabriela Dobrita Simona-Vasilica Oprea Adela Bâra 《Computers, Materials & Continua》 SCIE EI 2025年第1期675-712,共38页
In the rapidly evolving landscape of television advertising,optimizing ad schedules to maximize viewer engagement and revenue has become significant.Traditional methods often operate in silos,limiting the potential in... In the rapidly evolving landscape of television advertising,optimizing ad schedules to maximize viewer engagement and revenue has become significant.Traditional methods often operate in silos,limiting the potential insights gained from broader data analysis due to concerns over privacy and data sharing.This article introduces a novel approach that leverages Federated Learning(FL)to enhance TV ad schedule optimization,combining the strengths of local optimization techniques with the power of global Machine Learning(ML)models to uncover actionable insights without compromising data privacy.It combines linear programming for initial ads scheduling optimization with ML—specifically,a K-Nearest Neighbors(KNN)model—for predicting ad spot positions.Taking into account the diversity and the difficulty of the ad-scheduling problem,we propose a prescriptivepredictive approach in which first the position of the ads is optimized(using Google’s OR-Tools CP-SAT)and then the scheduled position of all ads will be the result of the optimization problem.Second,this output becomes the target of a predictive task that predicts the position of new entries based on their characteristics ensuring the implementation of the scheduling at large scale(using KNN,Light Gradient Boosting Machine and Random Forest).Furthermore,we explore the integration of FL to enhance predictive accuracy and strategic insight across different broadcasting networks while preserving data privacy.The FL approach resulted in 8750 ads being precisely matched to their optimal category placements,showcasing an alignment with the intended diversity objectives.Additionally,there was a minimal deviation observed,with 1133 ads positioned within a one-category variance from their ideal placement in the original dataset. 展开更多
关键词 Ad scheduling prescriptive-predictive approach federated learning KNN
在线阅读 下载PDF
Secure Malicious Node Detection in Decentralized Healthcare Networks Using Cloud and Edge Computing with Blockchain-Enabled Federated Learning
13
作者 Raj Sonani Reham Alhejaili +2 位作者 Pushpalika Chatterjee Khalid Hamad Alnafisah Jehad Ali 《Computer Modeling in Engineering & Sciences》 2025年第9期3169-3189,共21页
Healthcare networks are transitioning from manual records to electronic health records,but this shift introduces vulnerabilities such as secure communication issues,privacy concerns,and the presence of malicious nodes... Healthcare networks are transitioning from manual records to electronic health records,but this shift introduces vulnerabilities such as secure communication issues,privacy concerns,and the presence of malicious nodes.Existing machine and deep learning-based anomalies detection methods often rely on centralized training,leading to reduced accuracy and potential privacy breaches.Therefore,this study proposes a Blockchain-based-Federated Learning architecture for Malicious Node Detection(BFL-MND)model.It trains models locally within healthcare clusters,sharing only model updates instead of patient data,preserving privacy and improving accuracy.Cloud and edge computing enhance the model’s scalability,while blockchain ensures secure,tamper-proof access to health data.Using the PhysioNet dataset,the proposed model achieves an accuracy of 0.95,F1 score of 0.93,precision of 0.94,and recall of 0.96,outperforming baseline models like random forest(0.88),adaptive boosting(0.90),logistic regression(0.86),perceptron(0.83),and deep neural networks(0.92). 展开更多
关键词 Authentication blockchain deep learning federated learning healthcare network machine learning wearable sensor nodes
在线阅读 下载PDF
Federated Learning and Blockchain Framework for Scalable and Secure IoT Access Control
14
作者 Ammar Odeh Anas Abu Taleb 《Computers, Materials & Continua》 2025年第7期447-461,共15页
The increasing deployment of Internet of Things(IoT)devices has introduced significant security chal-lenges,including identity spoofing,unauthorized access,and data integrity breaches.Traditional security mechanisms r... The increasing deployment of Internet of Things(IoT)devices has introduced significant security chal-lenges,including identity spoofing,unauthorized access,and data integrity breaches.Traditional security mechanisms rely on centralized frameworks that suffer from single points of failure,scalability issues,and inefficiencies in real-time security enforcement.To address these limitations,this study proposes the Blockchain-Enhanced Trust and Access Control for IoT Security(BETAC-IoT)model,which integrates blockchain technology,smart contracts,federated learning,and Merkle tree-based integrity verification to enhance IoT security.The proposed model eliminates reliance on centralized authentication by employing decentralized identity management,ensuring tamper-proof data storage,and automating access control through smart contracts.Experimental evaluation using a synthetic IoT dataset shows that the BETAC-IoT model improves access control enforcement accuracy by 92%,reduces device authentication time by 52%(from 2.5 to 1.2 s),and enhances threat detection efficiency by 7%(from 85%to 92%)using federated learning.Additionally,the hybrid blockchain architecture achieves a 300%increase in transaction throughput when comparing private blockchain performance(1200 TPS)to public chains(300 TPS).Access control enforcement accuracy was quantified through confusion matrix analysis,with high precision and minimal false positives observed across access decision categories.Although the model presents advantages in security and scalability,challenges such as computational overhead,blockchain storage constraints,and interoperability with existing IoT systems remain areas for future research.This study contributes to advancing decentralized security frameworks for IoT,providing a resilient and scalable solution for securing connected environments. 展开更多
关键词 Blockchain IoT security access control federated learning merkle tree decentralized identity manage-ment threat detection
在线阅读 下载PDF
AI-Powered Threat Detection in Online Communities: A Multi-Modal Deep Learning Approach
15
作者 Ravi Teja Potla 《Journal of Computer and Communications》 2025年第2期155-171,共17页
The fast increase of online communities has brought about an increase in cyber threats inclusive of cyberbullying, hate speech, misinformation, and online harassment, making content moderation a pressing necessity. Tr... The fast increase of online communities has brought about an increase in cyber threats inclusive of cyberbullying, hate speech, misinformation, and online harassment, making content moderation a pressing necessity. Traditional single-modal AI-based detection systems, which analyze both text, photos, or movies in isolation, have established useless at taking pictures multi-modal threats, in which malicious actors spread dangerous content throughout a couple of formats. To cope with these demanding situations, we advise a multi-modal deep mastering framework that integrates Natural Language Processing (NLP), Convolutional Neural Networks (CNNs), and Long Short-Term Memory (LSTM) networks to become aware of and mitigate online threats effectively. Our proposed model combines BERT for text class, ResNet50 for photograph processing, and a hybrid LSTM-3-d CNN community for video content material analysis. We constructed a large-scale dataset comprising 500,000 textual posts, 200,000 offensive images, and 50,000 annotated motion pictures from more than one platform, which includes Twitter, Reddit, YouTube, and online gaming forums. The system became carefully evaluated using trendy gadget mastering metrics which include accuracy, precision, remember, F1-score, and ROC-AUC curves. Experimental outcomes demonstrate that our multi-modal method extensively outperforms single-modal AI classifiers, achieving an accuracy of 92.3%, precision of 91.2%, do not forget of 90.1%, and an AUC rating of 0.95. The findings validate the necessity of integrating multi-modal AI for actual-time, high-accuracy online chance detection and moderation. Future paintings will have consciousness on improving hostile robustness, enhancing scalability for real-world deployment, and addressing ethical worries associated with AI-driven content moderation. 展开更多
关键词 Multi-Model AI Deep learning Natural Language Processing (NLP) Explainable AI (XI) Federated learning Cyber Threat Detection LSTM CNNS
在线阅读 下载PDF
A Federated Learning Incentive Mechanism for Dynamic Client Participation:Unbiased Deep Learning Models
16
作者 Jianfeng Lu Tao Huang +2 位作者 Yuanai Xie Shuqin Cao Bing Li 《Computers, Materials & Continua》 2025年第4期619-634,共16页
The proliferation of deep learning(DL)has amplified the demand for processing large and complex datasets for tasks such as modeling,classification,and identification.However,traditional DL methods compromise client pr... The proliferation of deep learning(DL)has amplified the demand for processing large and complex datasets for tasks such as modeling,classification,and identification.However,traditional DL methods compromise client privacy by collecting sensitive data,underscoring the necessity for privacy-preserving solutions like Federated Learning(FL).FL effectively addresses escalating privacy concerns by facilitating collaborative model training without necessitating the sharing of raw data.Given that FL clients autonomously manage training data,encouraging client engagement is pivotal for successful model training.To overcome challenges like unreliable communication and budget constraints,we present ENTIRE,a contract-based dynamic participation incentive mechanism for FL.ENTIRE ensures impartial model training by tailoring participation levels and payments to accommodate diverse client preferences.Our approach involves several key steps.Initially,we examine how random client participation impacts FL convergence in non-convex scenarios,establishing the correlation between client participation levels and model performance.Subsequently,we reframe model performance optimization as an optimal contract design challenge to guide the distribution of rewards among clients with varying participation costs.By balancing budget considerations with model effectiveness,we craft optimal contracts for different budgetary constraints,prompting clients to disclose their participation preferences and select suitable contracts for contributing to model training.Finally,we conduct a comprehensive experimental evaluation of ENTIRE using three real datasets.The results demonstrate a significant 12.9%enhancement in model performance,validating its adherence to anticipated economic properties. 展开更多
关键词 Federated learning deep learning non-IID data dynamic client participation non-convex optimization CONTRACT
在线阅读 下载PDF
FedStrag:Straggler-aware federated learning for low resource devices
17
作者 Aditya Kumar Satish Narayana Srirama 《Digital Communications and Networks》 2025年第4期1213-1223,共11页
Federated Learning(FL)has become a popular training paradigm in recent years.However,stragglers are critical bottlenecks in an Internet of Things(IoT)network while training.These nodes produce stale updates to the ser... Federated Learning(FL)has become a popular training paradigm in recent years.However,stragglers are critical bottlenecks in an Internet of Things(IoT)network while training.These nodes produce stale updates to the server,which slow down the convergence.In this paper,we studied the impact of the stale updates on the global model,which is observed to be significant.To address this,we propose a weighted averaging scheme,FedStrag,that optimizes the training with stale updates.The work is focused on training a model in an IoT network that has multiple challenges,such as resource constraints,stragglers,network issues,device heterogeneity,etc.To this end,we developed a time-bounded asynchronous FL paradigm that can train a model on the continuous iflow of data in the edge-fog-cloud continuum.To test the FedStrag approach,a model is trained with multiple stragglers scenarios on both Independent and Identically Distributed(IID)and non-IID datasets on Raspberry Pis.The experiment results suggest that the FedStrag outperforms the baseline FedAvg in all possible cases. 展开更多
关键词 Internet of things Decentralized training Fog computing Federated learning Distributed computing Straggler
在线阅读 下载PDF
Federated Learning for Vision-Based Applications in 6G Networks: A Simulation-Based Performance Study
18
作者 Manuel J.C.S.Reis Nishu Gupta 《Computer Modeling in Engineering & Sciences》 2025年第12期4225-4243,共19页
The forthcoming sixth generation(6G)of mobile communication networks is envisioned to be AInative,supporting intelligent services and pervasive computing at unprecedented scale.Among the key paradigms enabling this vi... The forthcoming sixth generation(6G)of mobile communication networks is envisioned to be AInative,supporting intelligent services and pervasive computing at unprecedented scale.Among the key paradigms enabling this vision,Federated Learning(FL)has gained prominence as a distributed machine learning framework that allows multiple devices to collaboratively train models without sharing raw data,thereby preserving privacy and reducing the need for centralized storage.This capability is particularly attractive for vision-based applications,where image and video data are both sensitive and bandwidth-intensive.However,the integration of FL with 6G networks presents unique challenges,including communication bottlenecks,device heterogeneity,and trade-offs between model accuracy,latency,and energy consumption.In this paper,we developed a simulation-based framework to investigate the performance of FL in representative vision tasks under 6G-like environments.We formalize the system model,incorporating both the federated averaging(FedAvg)training process and a simplified communication costmodel that captures bandwidth constraints,packet loss,and variable latency across edge devices.Using standard image datasets(e.g.,MNIST,CIFAR-10)as benchmarks,we analyze how factors such as the number of participating clients,degree of data heterogeneity,and communication frequency influence convergence speed and model accuracy.Additionally,we evaluate the effectiveness of lightweight communication-efficient strategies,including local update tuning and gradient compression,in mitigating network overhead.The experimental results reveal several key insights:(i)communication limitations can significantly degrade FL convergence in vision tasks if not properly addressed;(ii)judicious tuning of local training epochs and client participation levels enables notable improvements in both efficiency and accuracy;and(iii)communication-efficient FL strategies provide a promising pathway to balance performance with the stringent latency and reliability requirements expected in 6G.These findings highlight the synergistic role of AI and nextgeneration networks in enabling privacy-preserving,real-time vision applications,and they provide concrete design guidelines for researchers and practitioners working at the intersection of FL and 6G. 展开更多
关键词 Federated learning 6G networks edge intelligence vision-based applications communication-efficient learning privacy-preserving AI
在线阅读 下载PDF
Decentralized Federated Graph Learning via Surrogate Model
19
作者 Bolin Zhang Ruichun Gu Haiying Liu 《Computers, Materials & Continua》 2025年第2期2521-2535,共15页
Federated Graph Learning (FGL) enables model training without requiring each client to share local graph data, effectively breaking data silos by aggregating the training parameters from each terminal while safeguardi... Federated Graph Learning (FGL) enables model training without requiring each client to share local graph data, effectively breaking data silos by aggregating the training parameters from each terminal while safeguarding data privacy. Traditional FGL relies on a centralized server for model aggregation;however, this central server presents challenges such as a single point of failure and high communication overhead. Additionally, efficiently training a robust personalized local model for each client remains a significant objective in federated graph learning. To address these issues, we propose a decentralized Federated Graph Learning framework with efficient communication, termed Decentralized Federated Graph Learning via Surrogate Model (SD_FGL). In SD_FGL, each client is required to maintain two models: a private model and a surrogate model. The surrogate model is publicly shared and can exchange and update information directly with any client, eliminating the need for a central server and reducing communication overhead. The private model is independently trained by each client, allowing it to calculate similarity with other clients based on local data as well as information shared through the surrogate model. This enables the private model to better adjust its training strategy and selectively update its parameters. Additionally, local differential privacy is incorporated into the surrogate model training process to enhance privacy protection. Testing on three real-world graph datasets demonstrates that the proposed framework improves accuracy while achieving decentralized Federated Graph Learning with lower communication overhead and stronger privacy safeguards. 展开更多
关键词 Federated learning federated graph learning DECENTRALIZED graph neural network privacy preservation
在线阅读 下载PDF
Cybertwin driven resource allocation using optimized proximal policy based federated learning in 6G enabled edge environment
20
作者 Sowmya Madhavan M.G.Aruna +2 位作者 G.P.Ramesh Abdul Lateef Haroon Phulara Shaik Dhulipalla Ramya Krishna 《Digital Communications and Networks》 2025年第6期1809-1821,共13页
Sixth-generation(6G)communication system promises unprecedented data density and transformative applications over different industries.However,managing heterogeneous data with different distributions in 6G-enabled mul... Sixth-generation(6G)communication system promises unprecedented data density and transformative applications over different industries.However,managing heterogeneous data with different distributions in 6G-enabled multi-access edge cloud networks presents challenges for efficient Machine Learning(ML)training and aggregation,often leading to increased energy consumption and reduced model generalization.To solve this problem,this research proposes a Weighted Proximal Policy-based Federated Learning approach integrated with Res Net50 and Scaled Exponential Linear Unit activation function(WPPFL-RS).The proposed method optimizes resource allocation such as CPU and memory,through enhancing the Cyber-twin technology to estimate the computing capacities of edge clouds.The proposed WPPFL-RS approach significantly minimizes the latency and energy consumption,solving complex challenges in 6G-enabled edge computing.This makes sure that efficient resource utilization and enhanced performance in heterogeneous edge networks.The proposed WPPFL-RS achieves a minimum latency of 8.20 s on 100 tasks,a significant improvement over the baseline Deep Reinforcement Learning(DRL),which recorded 11.39 s.This approach highlights its potential to enhance resource utilization and performance in 6G edge networks. 展开更多
关键词 Cybertwin Federated learning ResNet50 Resource allocation Scaled exponential linear unit Weighted proximal policy
在线阅读 下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部