In this paper, we study the decentralized federated learning problem, which involves the collaborative training of a global model among multiple devices while ensuring data privacy.In classical federated learning, the...In this paper, we study the decentralized federated learning problem, which involves the collaborative training of a global model among multiple devices while ensuring data privacy.In classical federated learning, the communication channel between the devices poses a potential risk of compromising private information. To reduce the risk of adversary eavesdropping in the communication channel, we propose TRADE(transmit difference weight) concept. This concept replaces the decentralized federated learning algorithm's transmitted weight parameters with differential weight parameters, enhancing the privacy data against eavesdropping. Subsequently, by integrating the TRADE concept with the primal-dual stochastic gradient descent(SGD)algorithm, we propose a decentralized TRADE primal-dual SGD algorithm. We demonstrate that our proposed algorithm's convergence properties are the same as those of the primal-dual SGD algorithm while providing enhanced privacy protection. We validate the algorithm's performance on fault diagnosis task using the Case Western Reserve University dataset, and image classification tasks using the CIFAR-10 and CIFAR-100 datasets,revealing model accuracy comparable to centralized federated learning. Additionally, the experiments confirm the algorithm's privacy protection capability.展开更多
As a mature distributed machine learning paradigm,federated learning enables wireless edge devices to collaboratively train a shared AI-model by stochastic gradient descent(SGD).However,devices need to upload high-dim...As a mature distributed machine learning paradigm,federated learning enables wireless edge devices to collaboratively train a shared AI-model by stochastic gradient descent(SGD).However,devices need to upload high-dimensional stochastic gradients to edge server in training,which cause severe communication bottleneck.To address this problem,we compress the communication by sparsifying and quantizing the stochastic gradients of edge devices.We first derive a closed form of the communication compression in terms of sparsification and quantization factors.Then,the convergence rate of this communicationcompressed system is analyzed and several insights are obtained.Finally,we formulate and deal with the quantization resource allocation problem for the goal of minimizing the convergence upper bound,under the constraint of multiple-access channel capacity.Simulations show that the proposed scheme outperforms the benchmarks.展开更多
Federated learning ensures data privacy and security by sharing models among multiple computing nodes instead of plaintext data.However,there is still a potential risk of privacy leakage,for example,attackers can obta...Federated learning ensures data privacy and security by sharing models among multiple computing nodes instead of plaintext data.However,there is still a potential risk of privacy leakage,for example,attackers can obtain the original data through model inference attacks.Therefore,safeguarding the privacy of model parameters becomes crucial.One proposed solution involves incorporating homomorphic encryption algorithms into the federated learning process.However,the existing federated learning privacy protection scheme based on homomorphic encryption will greatly reduce the efficiency and robustness when there are performance differences between parties or abnormal nodes.To solve the above problems,this paper proposes a privacy protection scheme named Federated Learning-Elastic Averaging Stochastic Gradient Descent(FL-EASGD)based on a fully homomorphic encryption algorithm.First,this paper introduces the homomorphic encryption algorithm into the FL-EASGD scheme to preventmodel plaintext leakage and realize privacy security in the process ofmodel aggregation.Second,this paper designs a robust model aggregation algorithm by adding time variables and constraint coefficients,which ensures the accuracy of model prediction while solving performance differences such as computation speed and node anomalies such as downtime of each participant.In addition,the scheme in this paper preserves the independent exploration of the local model by the nodes of each party,making the model more applicable to the local data distribution.Finally,experimental analysis shows that when there are abnormalities in the participants,the efficiency and accuracy of the whole protocol are not significantly affected.展开更多
As an emerging joint learning model,federated learning is a promising way to combine model parameters of different users for training and inference without collecting users’original data.However,a practical and effic...As an emerging joint learning model,federated learning is a promising way to combine model parameters of different users for training and inference without collecting users’original data.However,a practical and efficient solution has not been established in previous work due to the absence of efficient matrix computation and cryptography schemes in the privacy-preserving federated learning model,especially in partially homomorphic cryptosystems.In this paper,we propose a Practical and Efficient Privacy-preserving Federated Learning(PEPFL)framework.First,we present a lifted distributed ElGamal cryptosystem for federated learning,which can solve the multi-key problem in federated learning.Secondly,we develop a Practical Partially Single Instruction Multiple Data(PSIMD)parallelism scheme that can encode a plaintext matrix into single plaintext for encryption,improving the encryption efficiency and reducing the communication cost in partially homomorphic cryptosystem.In addition,based on the Convolutional Neural Network(CNN)and the designed cryptosystem,a novel privacy-preserving federated learning framework is designed by using Momentum Gradient Descent(MGD).Finally,we evaluate the security and performance of PEPFL.The experiment results demonstrate that the scheme is practicable,effective,and secure with low communication and computation costs.展开更多
To realize data sharing,and to fully use the data value,breaking the data island between institutions to realize data collaboration has become a new sharing mode.This paper proposed a distributed data security sharing...To realize data sharing,and to fully use the data value,breaking the data island between institutions to realize data collaboration has become a new sharing mode.This paper proposed a distributed data security sharing scheme based on C/S communication mode,and constructed a federated learning architecture that uses differential privacy technology to protect training parameters.Clients do not need to share local data,and they only need to upload the trained model parameters to achieve data sharing.In the process of training,a distributed parameter update mechanism is introduced.The server is mainly responsible for issuing training commands and parameters,and aggregating the local model parameters uploaded by the clients.The client mainly uses the stochastic gradient descent algorithm for gradient trimming,updates,and transmits the trained model parameters back to the server after differential processing.To test the performance of the scheme,in the application scenario where many medical institutions jointly train the disease detection system,the model is tested from multiple perspectives by taking medical data as an example.From the testing results,we can know that for this specific test dataset,when the parameters are properly configured,the lowest prediction accuracy rate is 90.261%and the highest accuracy rate is up to 94.352.It shows that the performance of the model is good.The results also show that this scheme realizes data sharing while protecting data privacy,completes accurate prediction of diseases,and has a good effect.展开更多
In current federated learning frameworks,a central server randomly selects a small number of clients to train local models at the beginning of each global iteration.Since clients’local data are non-dependent and iden...In current federated learning frameworks,a central server randomly selects a small number of clients to train local models at the beginning of each global iteration.Since clients’local data are non-dependent and identically distributed,partial local models are not consistent with the global model.Existing studies employ model cleaning methods to find inconsistent local models.Model cleaning methods measure the cosine similarity between local models and the global model.The inconsistent local model is cleaned out and will not be aggregated for the next global model.However,model cleaning methods incur negative effects such as large computation overheads and limited updates.In this paper,we propose a data distribution optimization method,called federated distribution optimization(FedDO),aiming to overcome the shortcomings of model cleaning methods.FedDO calculates the gradient of the Jensen-Shannon divergence to decrease the discrepancy between selected clients’data distribution and the overall data distribution.We test our method on the multi-classification regression model,the multi-layer perceptron,and the convolutional neural network model on a handwritten digital image dataset.Compared with model cleaning methods,FedDO improves the training accuracy by 1.8%,2.6%,and 5.6%,respectively.展开更多
差分隐私被广泛应用于联邦学习中,以保障模型参数的安全,但不够合理的加噪方式会限制模型准确度进一步提高。为此,提出一种能够自适应分配隐私预算和计算学习率的联邦学习方案(differential privacyfederated learning adaptive gradien...差分隐私被广泛应用于联邦学习中,以保障模型参数的安全,但不够合理的加噪方式会限制模型准确度进一步提高。为此,提出一种能够自适应分配隐私预算和计算学习率的联邦学习方案(differential privacyfederated learning adaptive gradient descent,DP-FLAGD),通过自适应分配隐私预算找到梯度的正确下降方向,并计算合适的学习率以达到最小的损失。同时,DP-FLAGD方案能够为不同隐私需求的用户提供不同的隐私预算,以满足其需求。为评估DP-FLAGD的有效性,在广泛使用的2个数据集MNIST(modiffe national institute of standard and technology)和CIFAR-10上进行相关实验,实验结果表明,DP-FLAGD方案在保证模型参数安全的同时,能够进一步提高模型的准确率。展开更多
基金supported by the National Key Research and Development Program of China(2022YFB3305904)the National Natural Science Foundation of China(62133003,61991403,61991400)+4 种基金the Open Project of State Key Laboratory of Synthetical Automation for Process Industries(SAPI-2024-KFKT-05,SAPI-2024-KFKT-08)China Academy of Engineering Institute of Land Cooperation Consulting Project(2023-DFZD-60-02,N2424004)the Fundamental Research Funds for the Central UniversitiesShanghai Municipal Science and Technology Major Project(2021SHZDZX0100)the Key Research and Development Program of Liaoning Province(2023JH26/10200011)
文摘In this paper, we study the decentralized federated learning problem, which involves the collaborative training of a global model among multiple devices while ensuring data privacy.In classical federated learning, the communication channel between the devices poses a potential risk of compromising private information. To reduce the risk of adversary eavesdropping in the communication channel, we propose TRADE(transmit difference weight) concept. This concept replaces the decentralized federated learning algorithm's transmitted weight parameters with differential weight parameters, enhancing the privacy data against eavesdropping. Subsequently, by integrating the TRADE concept with the primal-dual stochastic gradient descent(SGD)algorithm, we propose a decentralized TRADE primal-dual SGD algorithm. We demonstrate that our proposed algorithm's convergence properties are the same as those of the primal-dual SGD algorithm while providing enhanced privacy protection. We validate the algorithm's performance on fault diagnosis task using the Case Western Reserve University dataset, and image classification tasks using the CIFAR-10 and CIFAR-100 datasets,revealing model accuracy comparable to centralized federated learning. Additionally, the experiments confirm the algorithm's privacy protection capability.
基金supported in part by the National Key Research and Development Program of China under Grant 2020YFB1807700in part by the National Science Foundation of China under Grant U200120122
文摘As a mature distributed machine learning paradigm,federated learning enables wireless edge devices to collaboratively train a shared AI-model by stochastic gradient descent(SGD).However,devices need to upload high-dimensional stochastic gradients to edge server in training,which cause severe communication bottleneck.To address this problem,we compress the communication by sparsifying and quantizing the stochastic gradients of edge devices.We first derive a closed form of the communication compression in terms of sparsification and quantization factors.Then,the convergence rate of this communicationcompressed system is analyzed and several insights are obtained.Finally,we formulate and deal with the quantization resource allocation problem for the goal of minimizing the convergence upper bound,under the constraint of multiple-access channel capacity.Simulations show that the proposed scheme outperforms the benchmarks.
文摘Federated learning ensures data privacy and security by sharing models among multiple computing nodes instead of plaintext data.However,there is still a potential risk of privacy leakage,for example,attackers can obtain the original data through model inference attacks.Therefore,safeguarding the privacy of model parameters becomes crucial.One proposed solution involves incorporating homomorphic encryption algorithms into the federated learning process.However,the existing federated learning privacy protection scheme based on homomorphic encryption will greatly reduce the efficiency and robustness when there are performance differences between parties or abnormal nodes.To solve the above problems,this paper proposes a privacy protection scheme named Federated Learning-Elastic Averaging Stochastic Gradient Descent(FL-EASGD)based on a fully homomorphic encryption algorithm.First,this paper introduces the homomorphic encryption algorithm into the FL-EASGD scheme to preventmodel plaintext leakage and realize privacy security in the process ofmodel aggregation.Second,this paper designs a robust model aggregation algorithm by adding time variables and constraint coefficients,which ensures the accuracy of model prediction while solving performance differences such as computation speed and node anomalies such as downtime of each participant.In addition,the scheme in this paper preserves the independent exploration of the local model by the nodes of each party,making the model more applicable to the local data distribution.Finally,experimental analysis shows that when there are abnormalities in the participants,the efficiency and accuracy of the whole protocol are not significantly affected.
基金supported by the National Natural Science Foundation of China under Grant No.U19B2021the Key Research and Development Program of Shaanxi under Grant No.2020ZDLGY08-04+1 种基金the Key Technologies R&D Program of He’nan Province under Grant No.212102210084the Innovation Scientists and Technicians Troop Construction Projects of Henan Province.
文摘As an emerging joint learning model,federated learning is a promising way to combine model parameters of different users for training and inference without collecting users’original data.However,a practical and efficient solution has not been established in previous work due to the absence of efficient matrix computation and cryptography schemes in the privacy-preserving federated learning model,especially in partially homomorphic cryptosystems.In this paper,we propose a Practical and Efficient Privacy-preserving Federated Learning(PEPFL)framework.First,we present a lifted distributed ElGamal cryptosystem for federated learning,which can solve the multi-key problem in federated learning.Secondly,we develop a Practical Partially Single Instruction Multiple Data(PSIMD)parallelism scheme that can encode a plaintext matrix into single plaintext for encryption,improving the encryption efficiency and reducing the communication cost in partially homomorphic cryptosystem.In addition,based on the Convolutional Neural Network(CNN)and the designed cryptosystem,a novel privacy-preserving federated learning framework is designed by using Momentum Gradient Descent(MGD).Finally,we evaluate the security and performance of PEPFL.The experiment results demonstrate that the scheme is practicable,effective,and secure with low communication and computation costs.
基金This work was supported by Funding of the Nanjing Institute of Technology(No.KE21-451).
文摘To realize data sharing,and to fully use the data value,breaking the data island between institutions to realize data collaboration has become a new sharing mode.This paper proposed a distributed data security sharing scheme based on C/S communication mode,and constructed a federated learning architecture that uses differential privacy technology to protect training parameters.Clients do not need to share local data,and they only need to upload the trained model parameters to achieve data sharing.In the process of training,a distributed parameter update mechanism is introduced.The server is mainly responsible for issuing training commands and parameters,and aggregating the local model parameters uploaded by the clients.The client mainly uses the stochastic gradient descent algorithm for gradient trimming,updates,and transmits the trained model parameters back to the server after differential processing.To test the performance of the scheme,in the application scenario where many medical institutions jointly train the disease detection system,the model is tested from multiple perspectives by taking medical data as an example.From the testing results,we can know that for this specific test dataset,when the parameters are properly configured,the lowest prediction accuracy rate is 90.261%and the highest accuracy rate is up to 94.352.It shows that the performance of the model is good.The results also show that this scheme realizes data sharing while protecting data privacy,completes accurate prediction of diseases,and has a good effect.
基金supported in part by the National Key R&D Program of China(No.2018YFB2101100)National Natural Science Foundation of China(Nos.62402519,61932001,and 61872376).
文摘In current federated learning frameworks,a central server randomly selects a small number of clients to train local models at the beginning of each global iteration.Since clients’local data are non-dependent and identically distributed,partial local models are not consistent with the global model.Existing studies employ model cleaning methods to find inconsistent local models.Model cleaning methods measure the cosine similarity between local models and the global model.The inconsistent local model is cleaned out and will not be aggregated for the next global model.However,model cleaning methods incur negative effects such as large computation overheads and limited updates.In this paper,we propose a data distribution optimization method,called federated distribution optimization(FedDO),aiming to overcome the shortcomings of model cleaning methods.FedDO calculates the gradient of the Jensen-Shannon divergence to decrease the discrepancy between selected clients’data distribution and the overall data distribution.We test our method on the multi-classification regression model,the multi-layer perceptron,and the convolutional neural network model on a handwritten digital image dataset.Compared with model cleaning methods,FedDO improves the training accuracy by 1.8%,2.6%,and 5.6%,respectively.
文摘差分隐私被广泛应用于联邦学习中,以保障模型参数的安全,但不够合理的加噪方式会限制模型准确度进一步提高。为此,提出一种能够自适应分配隐私预算和计算学习率的联邦学习方案(differential privacyfederated learning adaptive gradient descent,DP-FLAGD),通过自适应分配隐私预算找到梯度的正确下降方向,并计算合适的学习率以达到最小的损失。同时,DP-FLAGD方案能够为不同隐私需求的用户提供不同的隐私预算,以满足其需求。为评估DP-FLAGD的有效性,在广泛使用的2个数据集MNIST(modiffe national institute of standard and technology)和CIFAR-10上进行相关实验,实验结果表明,DP-FLAGD方案在保证模型参数安全的同时,能够进一步提高模型的准确率。