期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
基于随机森林特征选择与POA-LSTM组合的参考作物腾发量预测方法 被引量:1
1
作者 李越 岳春芳 陈大春 《节水灌溉》 北大核心 2025年第1期120-128,共9页
为了更好地捕捉参考作物腾发量(ET_(0))数据的非线性特点及有效影响因素,实现对气象资料缺乏时的ET_(0)精准预测,基于融合建模思想提出了一种随机森林特征选择与鹈鹕优化算法(POA)优化长短期记忆神经网络(LSTM)组合的ET_(0)预测方法。首... 为了更好地捕捉参考作物腾发量(ET_(0))数据的非线性特点及有效影响因素,实现对气象资料缺乏时的ET_(0)精准预测,基于融合建模思想提出了一种随机森林特征选择与鹈鹕优化算法(POA)优化长短期记忆神经网络(LSTM)组合的ET_(0)预测方法。首先,采用随机森林特征选择方法筛选出有效气象因子作为模型输入;随后,通过POA搜索最优超参数组合用于优化LSTM模型;最后,基于最优超参数下的LSTM模型进行ET_(0)预测。结果表明,POA-LSTM模型整体优于其余模型,其中POA-LSTM1(u_(2)、N、R_(H)、T_(mean))预测精度最高,测试集R^(2)、RMSE和MAE分别为0.927、0.778和0.400 mm/d;POA-LSTM4(u_(2)、N)也能较好地适应少量气象参数估算ET_(0),测试集R^(2)、RMSE和MAE分别为0.881、0.995和0.510 mm/d,相较于其他方法,具有更高的预测精度和稳定性。 展开更多
关键词 参考作物腾发量 长短期记忆神经网络 随机森林 特征选择 鹈鹕优化算法
在线阅读 下载PDF
基于评分机制的类贪心森林优化特征选择算法 被引量:1
2
作者 王霞 张珊 +1 位作者 王勇 王卓然 《控制与决策》 北大核心 2025年第2期517-527,共11页
森林优化特征选择算法(FSFOA)具有良好的分类性能和维度缩减能力,但其初始化森林的质量参差不齐,局部播种和全局播种的随机性较大,且适应度评估代价较高导致计算效率较低.针对上述问题,提出一种基于评分机制的类贪心森林优化特征选择算... 森林优化特征选择算法(FSFOA)具有良好的分类性能和维度缩减能力,但其初始化森林的质量参差不齐,局部播种和全局播种的随机性较大,且适应度评估代价较高导致计算效率较低.针对上述问题,提出一种基于评分机制的类贪心森林优化特征选择算法(FSGLFOA-SM).首先,以每维决策变量的分类精度为其得分构建评分机制,提出类贪心初始化策略以生成较优质的初始化森林;其次,提出基于评分比较的类贪心局部播种策略,使评分相对较高的决策变量获得更大的局部播种概率;然后,在全局播种阶段提出类贪心遗传算子播种策略,对候选森林择优重建并进行遗传、类贪心交叉和变异操作,以保留评分较高的特征维度,有利于提高全局播种阶段的分类准确率;最后,为解决昂贵适应度评估带来的计算效率低下问题,建立历史数据库,在适应度评估前先进行库内查找,减少了重复解个体的计算量.实验结果表明,相比9个对比算法,FSGLFOA-SM在16个UCI数据集上的分类精度和维度缩减率更加优越. 展开更多
关键词 特征选择森林优化算法 评分机制 类贪心 初始化 播种策略 计算效率
原文传递
基于特征选择的NGO-RF热轧H型钢水平辊轧制力预测 被引量:2
3
作者 臧德宇 吴龙 +1 位作者 林太阳 潘建洲 《锻压技术》 北大核心 2025年第1期122-133,共12页
为了得到较为精确的水平辊轧制力,收集福建罗源闽光钢铁轧钢厂的实际轧制参数,并进行相关参数计算与预处理,构建包含多输入特征及多规格的H型钢水平辊轧制力数据集。为有效预测H型钢的水平辊轧制力,首先,运用孤立森林算法和树模型进行... 为了得到较为精确的水平辊轧制力,收集福建罗源闽光钢铁轧钢厂的实际轧制参数,并进行相关参数计算与预处理,构建包含多输入特征及多规格的H型钢水平辊轧制力数据集。为有效预测H型钢的水平辊轧制力,首先,运用孤立森林算法和树模型进行离群点检测与特征选择;其次,划分数据集并采用随机森林模型作为基础模型进行训练与验证;再次,应用北方苍鹰优化算法优化随机森林模型;最后,输入处理后的H型钢水平辊轧制力测试集数据,输出轧制力预测值。将所建模型(NGO-RF)与未经优化的随机森林模型、支持向量机模型、多层感知神经网络模型、卷积神经网络模型,以及经过北方苍鹰优化算法优化的支持向量机模型和多层感知神经网络模型对比,结果显示,所建模型在预测性能上优于上述所有模型,具有较高的准确性与适用性。此外,利用所建模型对H型钢588 mm×300 mm×12 mm×20 mm新规格产品的轧制力进行预测,对比模型预测值与实测值,平均误差仅为6.05%,进一步证实了所建模型能够较好地实现对H型钢水平辊轧制力的预测。 展开更多
关键词 H型钢 水平辊轧制力 随机森林 北方苍鹰优化算法 特征选择
原文传递
PCA+GWO集成特征选择和模型堆叠的客户流失预测
4
作者 刘梅 郑立君 +1 位作者 段永良 段红秀 《计算机工程与应用》 北大核心 2025年第15期329-342,共14页
客户的长期稳定对酒店营收和提高竞争力具有重要意义。在客户流失预测研究中,生产环境采集的数据存在数据量大、维度高、噪点多等问题,导致机器模型的准确率、稳定性和泛化能力下降。针对此类问题,设计了基于PCA+GWO的集成特征选择方法... 客户的长期稳定对酒店营收和提高竞争力具有重要意义。在客户流失预测研究中,生产环境采集的数据存在数据量大、维度高、噪点多等问题,导致机器模型的准确率、稳定性和泛化能力下降。针对此类问题,设计了基于PCA+GWO的集成特征选择方法,并用模型堆叠构建了客户流失预测模型。提出了利用Pearson系数和随机森林(RF)的特征重要性来确定需要降维特征组的方法。改进了灰狼优化算法(GWO)中的灰狼位置更新机制和收敛条件,并将其应用于选择最佳特征子集的过程中。选取了10种不同的机器学习模型进行训练,挑选出F1-score表现最优的模型作为基模型,进行元模型训练。实验结果表明,使用某酒店客户信息数据集时,改进后的GWO算法收敛速度显著提升,且预测模型的F1-score达到了97.9%,该模型具有较强的泛化能力。 展开更多
关键词 特征选择 随机森林(RF) 主成分分析(PCA) 灰狼优化(GWO)算法 模型堆叠
在线阅读 下载PDF
基于改进型随机森林算法的页岩岩性识别——以准噶尔盆地芦草沟组为例 被引量:6
5
作者 秦志军 操应长 冯程 《新疆石油地质》 CAS CSCD 北大核心 2024年第5期595-603,共9页
在储集层岩性识别的应用中,特别是对页岩等非均质性较强的非常规储集层的岩性识别,机器学习算法的高效性、准确性和有效信息整合能力已经得到了充分验证。考虑到岩性识别的特征参数优选问题,优选自然伽马、T2几何平均值、结构指数、骨... 在储集层岩性识别的应用中,特别是对页岩等非均质性较强的非常规储集层的岩性识别,机器学习算法的高效性、准确性和有效信息整合能力已经得到了充分验证。考虑到岩性识别的特征参数优选问题,优选自然伽马、T2几何平均值、结构指数、骨架密度指数、密度和深侧向电阻率,采用结合递归特征消除的随机森林算法,对准噶尔盆地中二叠统芦草沟组页岩储集层的主要岩性进行识别;利用传统的随机森林算法和支持向量机法,对同一套资料进行岩性预测,并与岩石薄片鉴定结果对比。结合递归特征消除的随机森林算法只需选择一半的测井参数,便能够达到更好的效果,而且通过优选特征参数,缩短了算法的运行时间。因此,结合递归特征消除的随机森林算法能够实现测井特征参数的优选,提高页岩岩性识别的准确率,缩短运行时间,为复杂岩性识别和多参数选择提供了新的思路。 展开更多
关键词 随机森林算法 递归特征消除 特征选择 中二叠统 芦草沟组 页岩储集层 岩性识别
在线阅读 下载PDF
基于大数据平台的SO_(2)排放GWO-N-BEATS预测算法 被引量:3
6
作者 曾庆华 冉鹏 +1 位作者 董坤 刘旭 《热能动力工程》 CAS CSCD 北大核心 2024年第3期125-131,共7页
为了更精确地预测SO_(2)排放质量浓度,解决非线性随机预测问题,提出了一种基于随机森林特征选择的GWO-N-BEATS算法。通过随机森林算法筛选输入参数的特征,使用灰狼优化算法对N-BEATS算法的超参数进行优化;与长短期记忆网络(Long Short-T... 为了更精确地预测SO_(2)排放质量浓度,解决非线性随机预测问题,提出了一种基于随机森林特征选择的GWO-N-BEATS算法。通过随机森林算法筛选输入参数的特征,使用灰狼优化算法对N-BEATS算法的超参数进行优化;与长短期记忆网络(Long Short-Term Memory, LSTM)、门控循环神经网络(Gated Recurrent Unit, GRU)以及N-BEATS算法对比分析,验证了GWO-N-BEATS算法的有效性。将本算法应用于某大型电网公司大数据平台,探索了复杂智能算法在大数据平台上开展污染物排放预测的可行性。研究结果表明,相较于长短期记忆网络、门控循环神经网络和N-BEATS方法,GWO-N-BEATS算法预测误差更小,其中平均绝对百分比误差MAPE为1.50%,相对均方误差RMSE为0.42,平均绝对误差MAE为0.33,决定系数R^(2)为0.97。 展开更多
关键词 随机森林 特征选择 灰狼优化算法 大数据平台 N-BEATS SO2预测
原文传递
考虑特征选择的短期光伏功率组合预测模型 被引量:5
7
作者 张赟宁 魏广军 《电力系统及其自动化学报》 CSCD 北大核心 2024年第8期122-132,共11页
针对光伏功率预测中特征因素太多、关键特征与功率间映射关系难以有效挖掘和预测精度不高的问题,提出一种基于随机森林RF(random forest)算法特征选择和灰狼优化算法GWO(grey wolf optimizer)优化高斯过程回归GPR(Gaussian process regr... 针对光伏功率预测中特征因素太多、关键特征与功率间映射关系难以有效挖掘和预测精度不高的问题,提出一种基于随机森林RF(random forest)算法特征选择和灰狼优化算法GWO(grey wolf optimizer)优化高斯过程回归GPR(Gaussian process regression)模型相结合的组合预测模型。首先,采用皮尔逊和斯皮尔曼相关系数对特征进行相关性分析,并进行初步筛选;接着,基于随机森林算法对特征进行重要性评价,并选取最优特征子集;然后,采用灰狼优化算法对高斯过程回归模型进行优化;最后,将最优特征子集输入到组合预测模型RFGWO-GPR中进行短期光伏功率预测。应用某光伏电站实测数据的仿真实验结果表明,提出的模型在不同天气条件下可以对特征进行有效选择,与未进行特征选择的单一模型相比,预测精度显著提高,并且明显优于其他优化算法与GPR模型组成的组合预测模型。 展开更多
关键词 光伏功率预测 特征选择 随机森林算法 灰狼优化算法 高斯过程回归
在线阅读 下载PDF
森林优化特征选择算法的增强与扩展 被引量:10
8
作者 刘兆赓 李占山 +2 位作者 王丽 王涛 于海鸿 《软件学报》 EI CSCD 北大核心 2020年第5期1511-1524,共14页
特征选择作为一种重要的数据预处理方法,不但能解决维数灾难问题,还能提高算法的泛化能力.各种各样的方法已被应用于解决特征选择问题,其中,基于演化计算的特征选择算法近年来获得了更多的关注并取得了一些成功.近期研究结果表明,森林... 特征选择作为一种重要的数据预处理方法,不但能解决维数灾难问题,还能提高算法的泛化能力.各种各样的方法已被应用于解决特征选择问题,其中,基于演化计算的特征选择算法近年来获得了更多的关注并取得了一些成功.近期研究结果表明,森林优化特征选择算法具有更好的分类性能及维度缩减能力.然而,初始化阶段的随机性、全局播种阶段的人为参数设定,影响了该算法的准确率和维度缩减能力;同时,算法本身存在着高维数据处理能力不足的本质缺陷.从信息增益率的角度给出了一种初始化策略,在全局播种阶段,借用模拟退火控温函数的思想自动生成参数,并结合维度缩减率给出了适应度函数;同时,针对形成的优质森林采取贪心算法,形成一种特征选择算法EFSFOA(enhanced feature selection using forest optimization algorithm).此外,在面对高维数据的处理时,采用集成特征选择的方案形成了一个适用于EFSFOA的集成特征选择框架,使其能够有效处理高维数据特征选择问题.通过设计对比实验,验证了EFSFOA与FSFOA相比在分类准确率和维度缩减率上均有明显的提高,高维数据处理能力更是提高到了100 000维.将EFSFOA与近年来提出的比较高效的基于演化计算的特征选择方法进行对比,EFSFOA仍具有很强的竞争力. 展开更多
关键词 enhanced feature selection using forest optimization algorithm(Efsfoa) 高维 特征选择 演化计算
在线阅读 下载PDF
基于自适应森林优化算法的特征选择算法 被引量:4
9
作者 黄君策 石林 +3 位作者 顾玉宛 李宁 庄丽华 徐守坤 《计算机工程与设计》 北大核心 2023年第2期425-431,共7页
森林优化特征选择算法(FSFOA)表现出色,但初始化方法的盲目性以及更新机制的局限性限制了该算法的性能。对FSFOA不足之处加以改进,提出自适应森林优化特征选择算法(AFSFOA)。在初始化过程中,加入特征权重评估算法;在更新机制上,使用自... 森林优化特征选择算法(FSFOA)表现出色,但初始化方法的盲目性以及更新机制的局限性限制了该算法的性能。对FSFOA不足之处加以改进,提出自适应森林优化特征选择算法(AFSFOA)。在初始化过程中,加入特征权重评估算法;在更新机制上,使用自适应参数选择策略以及贪心搜索策略替代原始的更新机制。在不同维度的数据集上进行实验,对比实验结果表明,与FSFOA算法以及近年来提出的较高效的特征选择算法进行对比,在准确率以及维度约简上,AFSFOA算法有很强的竞争力。 展开更多
关键词 数据挖掘 特征选择 初始化策略 特征权重评估算法 更新机制 贪心算法 森林优化算法
在线阅读 下载PDF
改进的森林优化特征选择算法在信用评估中的应用 被引量:5
10
作者 黄宇航 宋友 王宝会 《计算机科学》 CSCD 北大核心 2023年第S01期521-526,共6页
信用评估是金融领域的一个关键问题,它可以预测出一个用户是否存在拖欠风险,从而减少坏账损失。信用评估的关键挑战之一就是数据集存在着大量无效或冗余特征。为了解决该问题,提出了一种改进的森林优化特征选择算法(Improved Feature Se... 信用评估是金融领域的一个关键问题,它可以预测出一个用户是否存在拖欠风险,从而减少坏账损失。信用评估的关键挑战之一就是数据集存在着大量无效或冗余特征。为了解决该问题,提出了一种改进的森林优化特征选择算法(Improved Feature Selection using Forest Optimization Algorithm,IFSFOA)。该算法针对原始算法FSFOA的不足,在初始化阶段使用基于卡方校验的初始化策略代替随机化初始,提升算法寻优的能力;在局部播种阶段利用多层级变异策略,优化局部搜索能力,解决FSFOA的搜索空间受限和局部性问题;在更新候选森林时,使用贪婪选取策略挑选优质树,淘汰劣质树,收敛搜索发散过程。最后在涵盖了低维、中维和高维的公开信用评估数据集上设置对比实验,结果表明IFSFOA在分类和维度缩减方面的能力的综合表现均优于FSFOA和近年提出的较为高效的特征选择算法,验证了IFSFOA的有效性。 展开更多
关键词 森林优化算法 特征选择 信用评估 演化计算 包裹式方法
在线阅读 下载PDF
基于新的森林优化算法的特征选择算法 被引量:3
11
作者 谢琪 徐旭 +1 位作者 程耕国 陈和平 《计算机应用》 CSCD 北大核心 2020年第5期1266-1271,共6页
针对传统的基于森林优化算法的特征选择算法在初始化阶段、候选森林生成阶段和更新阶段存在的问题,提出了一种新的基于森林优化算法的特征选择算法。该算法在初始化阶段采用皮尔森相关系数和L1正则化方法代替随机初始化策略;在候选森林... 针对传统的基于森林优化算法的特征选择算法在初始化阶段、候选森林生成阶段和更新阶段存在的问题,提出了一种新的基于森林优化算法的特征选择算法。该算法在初始化阶段采用皮尔森相关系数和L1正则化方法代替随机初始化策略;在候选森林生成阶段,采用优劣树分开和差额补足的方法解决优劣树不完备问题;在更新阶段,将与最优树精度相同但维度不同的树木添加到森林中。在实验中,所提算法采用与传统的基于森林优化算法的特征选择算法相同的实验数据和实验参数,分别测试了小维度、中维度和大维度数据。实验结果表明,在2个大维度数据和2个中维度数据上,所提算法的分类精度和维度缩减能力均高于传统的基于森林优化算法的特征选择算法。实验结果验证了所提算法在处理特征选择问题的有效性。 展开更多
关键词 特征选择 L1正则化 候选森林 更新机制 森林优化算法
在线阅读 下载PDF
一种混合粒子群优化遗传算法的高分影像特征优化方法 被引量:3
12
作者 唐晓娜 张和生 《遥感信息》 CSCD 北大核心 2019年第6期113-118,共6页
针对高分遥感影像分类过程中面临的特征维数高、数据冗杂度严重问题,从机器学习的角度提出了混合粒子群优化遗传算法的特征优化方法。此方法发挥2种机器学习算法优势,以Relief F算法进行初步特征筛选,再利用新二进制粒子群优化遗传算法... 针对高分遥感影像分类过程中面临的特征维数高、数据冗杂度严重问题,从机器学习的角度提出了混合粒子群优化遗传算法的特征优化方法。此方法发挥2种机器学习算法优势,以Relief F算法进行初步特征筛选,再利用新二进制粒子群优化遗传算法确定优化特征集用于随机森林分类器进行城市用地信息的提取。通过与全特征、Relief F算法、GABPSO算法3种特征提取方法进行比较,验证此方法的优越性。结果表明,基于Relief F和GANBPSO算法的混合特征选择方法能够在提取较少特征变量的情况下获得较高的精度,总精度和Kappa系数分别为91.17%和0.874,与传统方法相比具有更好的分类效果。 展开更多
关键词 高分遥感影像 随机森林 RELIEF F算法 粒子群优化遗传算法 特征选择
在线阅读 下载PDF
基于重复度分析的森林优化特征选择算法 被引量:2
13
作者 冀若含 董红斌 《智能系统学报》 CSCD 北大核心 2022年第6期1113-1122,共10页
森林优化算法是一种基于森林中树木播种思想的演化算法,其具有良好的特征空间搜索能力,且实现难度低。但该算法在森林整体的收敛速度和寻优能力上仍存在提升空间,而且对高维数据集的适应度较差。本文针对上述问题提出了基于重复度分析... 森林优化算法是一种基于森林中树木播种思想的演化算法,其具有良好的特征空间搜索能力,且实现难度低。但该算法在森林整体的收敛速度和寻优能力上仍存在提升空间,而且对高维数据集的适应度较差。本文针对上述问题提出了基于重复度分析的森林优化特征选择算法(feature selection using forest optimization algorithm based on duplication analysis, DAFSFOA)。该算法提出了基于信息增益的自适应初始化策略、森林重复度分析机制、森林重启机制、候选最优树生成策略、综合考虑特征选择数量和分类正确率的适应度函数。实验结果表明,DAFSFOA在大部分数据集上达到了最高的分类准确率。同时,对于高维数据集SRBCT,在维度缩减率和分类准确率方面,DAFSFOA对比森林优化特征选择算法(feature selection using forest optimization algorithm,FSFOA)都有较大提升。DAFSFOA比FSFOA具有更强的特征空间探索能力,而且能够适应不同维度的数据集。 展开更多
关键词 特征选择 演化算法 重复度分析 信息熵 信息增益 重启机制 森林优化算法 维度缩减
在线阅读 下载PDF
基于LSO-RF模型的阶跃型滑坡位移速率预测方法 被引量:2
14
作者 黄智杰 简文彬 +2 位作者 夏昌 赖增荣 林立鹏 《福州大学学报(自然科学版)》 CAS 北大核心 2023年第6期872-878,共7页
针对阶跃型滑坡在预测其位移速率时存在精度不高的问题,以泉州市安溪县尧山村阶跃型滑坡为例开展相应研究.首先,基于斯皮尔曼相关系数和灰色关联度综合分析,选取预测模型的输入特征;其次搭建结合扩展窗口法的狮群优化(LSO)-随机森林(RF... 针对阶跃型滑坡在预测其位移速率时存在精度不高的问题,以泉州市安溪县尧山村阶跃型滑坡为例开展相应研究.首先,基于斯皮尔曼相关系数和灰色关联度综合分析,选取预测模型的输入特征;其次搭建结合扩展窗口法的狮群优化(LSO)-随机森林(RF)模型,提出一种适用于阶跃型滑坡位移速率预测的新方法.结果表明:综合斯皮尔曼相关系数和灰色关联度结果的特征选择方法,能弥补各自的局限性,选出最适合预测模型的输入特征组合;经过对比分析,LSO-RF模型预测阶跃型滑坡位移速率精度较高,能解决常见模型在预测阶跃型滑坡位移速率上的不足,可为阶跃型滑坡位移速率的预测提供参考. 展开更多
关键词 阶跃型滑坡 位移速率预测 狮群优化算法 随机森林模型 特征选择
在线阅读 下载PDF
基于RF-GWO-LSSVM的煤矿地表下沉系数预测 被引量:2
15
作者 栾洲 张西步 王义昌 《北京测绘》 2022年第7期946-950,共5页
为提高煤矿开采地表下沉系数预测精度,将随机森林(RF)、灰狼算法(GWO)和最小二乘支持向量机(LSSVM)模型相结合,建立RF-GWO-LSSVM模型。利用RF算法计算每个特征的重要性,通过特征选择筛选出重要性高的特征作为特征子集。LSSVM模型在处理... 为提高煤矿开采地表下沉系数预测精度,将随机森林(RF)、灰狼算法(GWO)和最小二乘支持向量机(LSSVM)模型相结合,建立RF-GWO-LSSVM模型。利用RF算法计算每个特征的重要性,通过特征选择筛选出重要性高的特征作为特征子集。LSSVM模型在处理小样本,非线性数据方面具有很大的优势,但LSSVM模型泛化能力非常容易受到内部参数的影响,采用GWO算法寻求最优的惩罚因子c和核函数参数σ。将优化后的模型对地表下沉系数进行预测,并与GWO-LSSVM模型、PSO-LSSVM模型精度对比。结果表明:RF-GWO-LSSVM模型预测精度最高,预测结果决定系数为0.996,可为预测地表下沉系数研究提供一定的参考价值。 展开更多
关键词 地表下沉系数 随机森林 灰狼优化算法 特征选择
在线阅读 下载PDF
K-means聚类算法在加油站运营业务诊断中的应用研究
16
作者 高鲁营 戴辰鸣 《车用能源储运销技术》 2024年第6期25-29,34,共6页
聚类算法作为一种关键的数据分析技术,已在加油站运营业务的诊断与优化中展现出重要作用。本研究通过使用K-means聚类算法,对不同加油站站点的进站诊断、站内油品体验、站内非油体验、客户离站诊断等一系列指标特征进行分类聚合,优化加... 聚类算法作为一种关键的数据分析技术,已在加油站运营业务的诊断与优化中展现出重要作用。本研究通过使用K-means聚类算法,对不同加油站站点的进站诊断、站内油品体验、站内非油体验、客户离站诊断等一系列指标特征进行分类聚合,优化加油站的布局和管理策略;通过使用随机森林算法的特征选择进一步筛选了关键指标,实现了自动将具有相似特性的加油站划分为不同类别的效果,从而揭示加油站分布和运营的内在规律。本研究不仅为加油站布局优化提供了科学依据,还支持商圈特征、品牌效应、软硬件配置、业务种类等多维度的精细化管理,帮助加油站运营与管理者更准确地把握各类站点的共性和特性,从而制定更具针对性和有效性的优化策略。 展开更多
关键词 聚类算法 加油站优化 运营诊断 K-MEANS 随机森林 特征选择
在线阅读 下载PDF
基于海鸥算法优化随机森林的土壤硒含量高光谱反演 被引量:6
17
作者 谢鹏 王正海 +1 位作者 肖蓓 田雨欣 《激光与光电子学进展》 CSCD 北大核心 2023年第17期360-369,共10页
针对土壤硒含量光谱数据冗余、模型复杂度较高等问题,本研究系统采集含硒土壤若干份,并获取样本硒含量和光谱信息,对原始光谱进行平滑多元散射校正一阶微分(SG-MSC-FD)光谱增强处理,利用稳定性竞争自适应重加权采样(sCARS)等特征提取算... 针对土壤硒含量光谱数据冗余、模型复杂度较高等问题,本研究系统采集含硒土壤若干份,并获取样本硒含量和光谱信息,对原始光谱进行平滑多元散射校正一阶微分(SG-MSC-FD)光谱增强处理,利用稳定性竞争自适应重加权采样(sCARS)等特征提取算法筛选特征波长,建立土壤硒含量的偏最小二乘(PLSR)、支持向量机(SVM)、随机森林(RF)、海鸥优化随机森林(SOA-RF)预测模型,通过对比不同特征筛选下模型的决定系数(R2)、均方根误差(RMSE)和相对分析误差(RPD),寻找最佳的组合模型。结果表明:不同特征筛选下的模型精度均有较大提升,其中变量组合集群分析法结合遗传算法(VCPA-GA)精度最高,sCARS算法提取的变量数最少,仅占全波段的0.49%;RF较SVM和PLSR模型有更好的鲁棒性,SOA-RF模型的参数最佳,极大地提升了模型的反演精度。综上,经VCPA-GA特征提取下的SOA-RF模型是最佳的预测模型(R2=0.92、RMSE为0.08、RPD为2.911),该模型能够实现对土壤硒含量快速、高效反演。 展开更多
关键词 土壤硒 高光谱 特征筛选 海鸥优化算法 随机森林
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部