针对光伏功率预测中特征因素太多、关键特征与功率间映射关系难以有效挖掘和预测精度不高的问题,提出一种基于随机森林RF(random forest)算法特征选择和灰狼优化算法GWO(grey wolf optimizer)优化高斯过程回归GPR(Gaussian process regr...针对光伏功率预测中特征因素太多、关键特征与功率间映射关系难以有效挖掘和预测精度不高的问题,提出一种基于随机森林RF(random forest)算法特征选择和灰狼优化算法GWO(grey wolf optimizer)优化高斯过程回归GPR(Gaussian process regression)模型相结合的组合预测模型。首先,采用皮尔逊和斯皮尔曼相关系数对特征进行相关性分析,并进行初步筛选;接着,基于随机森林算法对特征进行重要性评价,并选取最优特征子集;然后,采用灰狼优化算法对高斯过程回归模型进行优化;最后,将最优特征子集输入到组合预测模型RFGWO-GPR中进行短期光伏功率预测。应用某光伏电站实测数据的仿真实验结果表明,提出的模型在不同天气条件下可以对特征进行有效选择,与未进行特征选择的单一模型相比,预测精度显著提高,并且明显优于其他优化算法与GPR模型组成的组合预测模型。展开更多
森林优化算法是一种基于森林中树木播种思想的演化算法,其具有良好的特征空间搜索能力,且实现难度低。但该算法在森林整体的收敛速度和寻优能力上仍存在提升空间,而且对高维数据集的适应度较差。本文针对上述问题提出了基于重复度分析...森林优化算法是一种基于森林中树木播种思想的演化算法,其具有良好的特征空间搜索能力,且实现难度低。但该算法在森林整体的收敛速度和寻优能力上仍存在提升空间,而且对高维数据集的适应度较差。本文针对上述问题提出了基于重复度分析的森林优化特征选择算法(feature selection using forest optimization algorithm based on duplication analysis, DAFSFOA)。该算法提出了基于信息增益的自适应初始化策略、森林重复度分析机制、森林重启机制、候选最优树生成策略、综合考虑特征选择数量和分类正确率的适应度函数。实验结果表明,DAFSFOA在大部分数据集上达到了最高的分类准确率。同时,对于高维数据集SRBCT,在维度缩减率和分类准确率方面,DAFSFOA对比森林优化特征选择算法(feature selection using forest optimization algorithm,FSFOA)都有较大提升。DAFSFOA比FSFOA具有更强的特征空间探索能力,而且能够适应不同维度的数据集。展开更多
文摘针对光伏功率预测中特征因素太多、关键特征与功率间映射关系难以有效挖掘和预测精度不高的问题,提出一种基于随机森林RF(random forest)算法特征选择和灰狼优化算法GWO(grey wolf optimizer)优化高斯过程回归GPR(Gaussian process regression)模型相结合的组合预测模型。首先,采用皮尔逊和斯皮尔曼相关系数对特征进行相关性分析,并进行初步筛选;接着,基于随机森林算法对特征进行重要性评价,并选取最优特征子集;然后,采用灰狼优化算法对高斯过程回归模型进行优化;最后,将最优特征子集输入到组合预测模型RFGWO-GPR中进行短期光伏功率预测。应用某光伏电站实测数据的仿真实验结果表明,提出的模型在不同天气条件下可以对特征进行有效选择,与未进行特征选择的单一模型相比,预测精度显著提高,并且明显优于其他优化算法与GPR模型组成的组合预测模型。
文摘森林优化算法是一种基于森林中树木播种思想的演化算法,其具有良好的特征空间搜索能力,且实现难度低。但该算法在森林整体的收敛速度和寻优能力上仍存在提升空间,而且对高维数据集的适应度较差。本文针对上述问题提出了基于重复度分析的森林优化特征选择算法(feature selection using forest optimization algorithm based on duplication analysis, DAFSFOA)。该算法提出了基于信息增益的自适应初始化策略、森林重复度分析机制、森林重启机制、候选最优树生成策略、综合考虑特征选择数量和分类正确率的适应度函数。实验结果表明,DAFSFOA在大部分数据集上达到了最高的分类准确率。同时,对于高维数据集SRBCT,在维度缩减率和分类准确率方面,DAFSFOA对比森林优化特征选择算法(feature selection using forest optimization algorithm,FSFOA)都有较大提升。DAFSFOA比FSFOA具有更强的特征空间探索能力,而且能够适应不同维度的数据集。