期刊文献+
共找到26篇文章
< 1 2 >
每页显示 20 50 100
Correction to DeepCNN:Spectro-temporal feature representation for speech emotion recognition
1
《CAAI Transactions on Intelligence Technology》 2025年第2期633-633,共1页
Saleem,N.,et al.:DeepCNN:Spectro-temporal feature representation for speech emotion recognition.CAAI Trans.Intell.Technol.8(2),401-417(2023).https://doi.org/10.1049/cit2.12233.The affiliation of Hafiz Tayyab Rauf shou... Saleem,N.,et al.:DeepCNN:Spectro-temporal feature representation for speech emotion recognition.CAAI Trans.Intell.Technol.8(2),401-417(2023).https://doi.org/10.1049/cit2.12233.The affiliation of Hafiz Tayyab Rauf should be[Independent Researcher,UK]. 展开更多
关键词 independent researcher speech emotion recognition deep cnn uk speech emotion recognitioncaai spectro temporal feature representation hafiz tayyab rauf
在线阅读 下载PDF
An adaptive dual-domain feature representation method for enhanced deep forgery detection
2
作者 Ming Li Yan Qin +1 位作者 Heng Zhang Zhiguo Shi 《Journal of Automation and Intelligence》 2025年第4期273-281,共9页
Deep forgery detection technologies are crucial for image and video recognition tasks,with their performance heavily reliant on the features extracted from both real and fake images.However,most existing methods prima... Deep forgery detection technologies are crucial for image and video recognition tasks,with their performance heavily reliant on the features extracted from both real and fake images.However,most existing methods primarily focus on spatial domain features,which limits their accuracy.To address this limitation,we propose an adaptive dual-domain feature representation method for enhanced deep forgery detection.Specifically,an adaptive region dynamic convolution module is established to efficiently extract facial features from the spatial domain.Then,we introduce an adaptive frequency dynamic filter to capture effective frequency domain features.By fusing both spatial and frequency domain features,our approach significantly improves the accuracy of classifying real and fake facial images.Finally,experimental results on three real-world datasets validate the effectiveness of our dual-domain feature representation method,which substantially improves classification precision. 展开更多
关键词 Dynamic convolution module Dynamic filter feature representation Facial images Deep forgery detection
在线阅读 下载PDF
Feature Representation for Facial Expression Recognition Based on FACS and LBP 被引量:9
3
作者 Li Wang Rui-Feng Li +1 位作者 Ke Wang Jian Chen 《International Journal of Automation and computing》 EI CSCD 2014年第5期459-468,共10页
In expression recognition, feature representation is critical for successful recognition since it contains distinctive information of expressions. In this paper, a new approach for representing facial expression featu... In expression recognition, feature representation is critical for successful recognition since it contains distinctive information of expressions. In this paper, a new approach for representing facial expression features is proposed with its objective to describe features in an effective and efficient way in order to improve the recognition performance. The method combines the facial action coding system(FACS) and 'uniform' local binary patterns(LBP) to represent facial expression features from coarse to fine. The facial feature regions are extracted by active shape models(ASM) based on FACS to obtain the gray-level texture. Then, LBP is used to represent expression features for enhancing the discriminant. A facial expression recognition system is developed based on this feature extraction method by using K nearest neighborhood(K-NN) classifier to recognize facial expressions. Finally, experiments are carried out to evaluate this feature extraction method. The significance of removing the unrelated facial regions and enhancing the discrimination ability of expression features in the recognition process is indicated by the results, in addition to its convenience. 展开更多
关键词 Local binary patterns (LBP) facial expression recognition active shape models (ASM) facial action coding system (FACS) feature representation
原文传递
Enhanced Deep Autoencoder Based Feature Representation Learning for Intelligent Intrusion Detection System 被引量:3
4
作者 Thavavel Vaiyapuri Adel Binbusayyis 《Computers, Materials & Continua》 SCIE EI 2021年第9期3271-3288,共18页
In the era of Big data,learning discriminant feature representation from network traffic is identified has as an invariably essential task for improving the detection ability of an intrusion detection system(IDS).Owin... In the era of Big data,learning discriminant feature representation from network traffic is identified has as an invariably essential task for improving the detection ability of an intrusion detection system(IDS).Owing to the lack of accurately labeled network traffic data,many unsupervised feature representation learning models have been proposed with state-of-theart performance.Yet,these models fail to consider the classification error while learning the feature representation.Intuitively,the learnt feature representation may degrade the performance of the classification task.For the first time in the field of intrusion detection,this paper proposes an unsupervised IDS model leveraging the benefits of deep autoencoder(DAE)for learning the robust feature representation and one-class support vector machine(OCSVM)for finding the more compact decision hyperplane for intrusion detection.Specially,the proposed model defines a new unified objective function to minimize the reconstruction and classification error simultaneously.This unique contribution not only enables the model to support joint learning for feature representation and classifier training but also guides to learn the robust feature representation which can improve the discrimination ability of the classifier for intrusion detection.Three set of evaluation experiments are conducted to demonstrate the potential of the proposed model.First,the ablation evaluation on benchmark dataset,NSL-KDD validates the design decision of the proposed model.Next,the performance evaluation on recent intrusion dataset,UNSW-NB15 signifies the stable performance of the proposed model.Finally,the comparative evaluation verifies the efficacy of the proposed model against recently published state-of-the-art methods. 展开更多
关键词 CYBERSECURITY network intrusion detection deep learning autoencoder stacked autoencoder feature representational learning joint learning one-class classifier OCSVM
在线阅读 下载PDF
Automatically extracting sheet-metal features from solid model 被引量:3
5
作者 刘志坚 李建军 +2 位作者 王义林 李材元 肖祥芷 《Journal of Zhejiang University Science》 EI CSCD 2004年第11期1456-1465,共10页
With the development of modern industry, sheet-metal parts in mass production have been widely applied in mechanical, communication, electronics, and light industries in recent decades; but the advances in sheet-metal... With the development of modern industry, sheet-metal parts in mass production have been widely applied in mechanical, communication, electronics, and light industries in recent decades; but the advances in sheet-metal part design and manufacturing remain too slow compared with the increasing importance of sheet-metal parts in modern industry. This paper proposes a method for automatically extracting features from an arbitrary solid model of sheet-metal parts; whose characteristics are used for classification and graph-based representation of the sheet-metal features to extract the features embodied in a sheet-metal part. The extracting feature process can be divided for valid checking of the model geometry, feature matching, and feature relationship. Since the extracted features include abundant geometry and engineering information, they will be effective for downstream application such as feature rebuilding and stamping process planning. 展开更多
关键词 Sheet-metal part feature extraction feature representation
在线阅读 下载PDF
Novel DDoS Feature Representation Model Combining Deep Belief Network and Canonical Correlation Analysis 被引量:2
6
作者 Chen Zhang Jieren Cheng +3 位作者 Xiangyan Tang Victor SSheng Zhe Dong Junqi Li 《Computers, Materials & Continua》 SCIE EI 2019年第8期657-675,共19页
Distributed denial of service(DDoS)attacks launch more and more frequently and are more destructive.Feature representation as an important part of DDoS defense technology directly affects the efficiency of defense.Mos... Distributed denial of service(DDoS)attacks launch more and more frequently and are more destructive.Feature representation as an important part of DDoS defense technology directly affects the efficiency of defense.Most DDoS feature extraction methods cannot fully utilize the information of the original data,resulting in the extracted features losing useful features.In this paper,a DDoS feature representation method based on deep belief network(DBN)is proposed.We quantify the original data by the size of the network flows,the distribution of IP addresses and ports,and the diversity of packet sizes of different protocols and train the DBN in an unsupervised manner by these quantified values.Two feedforward neural networks(FFNN)are initialized by the trained deep belief network,and one of the feedforward neural networks continues to be trained in a supervised manner.The canonical correlation analysis(CCA)method is used to fuse the features extracted by two feedforward neural networks per layer.Experiments show that compared with other methods,the proposed method can extract better features. 展开更多
关键词 Deep belief network DDoS feature representation canonical correlation analysis
在线阅读 下载PDF
HOG-VGG:VGG Network with HOG Feature Fusion for High-Precision PolSAR Terrain Classification 被引量:1
7
作者 Jiewen Li Zhicheng Zhao +2 位作者 Yanlan Wu Jiaqiu Ai Jun Shi 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第5期1-15,共15页
This article proposes a VGG network with histogram of oriented gradient(HOG) feature fusion(HOG-VGG) for polarization synthetic aperture radar(PolSAR) image terrain classification.VGG-Net has a strong ability of deep ... This article proposes a VGG network with histogram of oriented gradient(HOG) feature fusion(HOG-VGG) for polarization synthetic aperture radar(PolSAR) image terrain classification.VGG-Net has a strong ability of deep feature extraction,which can fully extract the global deep features of different terrains in PolSAR images,so it is widely used in PolSAR terrain classification.However,VGG-Net ignores the local edge & shape features,resulting in incomplete feature representation of the PolSAR terrains,as a consequence,the terrain classification accuracy is not promising.In fact,edge and shape features play an important role in PolSAR terrain classification.To solve this problem,a new VGG network with HOG feature fusion was specifically proposed for high-precision PolSAR terrain classification.HOG-VGG extracts both the global deep semantic features and the local edge & shape features of the PolSAR terrains,so the terrain feature representation completeness is greatly elevated.Moreover,HOG-VGG optimally fuses the global deep features and the local edge & shape features to achieve the best classification results.The superiority of HOG-VGG is verified on the Flevoland,San Francisco and Oberpfaffenhofen datasets.Experiments show that the proposed HOG-VGG achieves much better PolSAR terrain classification performance,with overall accuracies of 97.54%,94.63%,and 96.07%,respectively. 展开更多
关键词 PolSAR terrain classification high⁃precision HOG⁃VGG feature representation completeness elevation multi⁃level feature fusion
在线阅读 下载PDF
A feature representation method for biomedical scientific data based on composite text description
8
作者 SUN Wei 《Chinese Journal of Library and Information Science》 2009年第4期43-53,共11页
Feature representation is one of the key issues in data clustering. The existing feature representation of scientific data is not sufficient, which to some extent affects the result of scientific data clustering. Ther... Feature representation is one of the key issues in data clustering. The existing feature representation of scientific data is not sufficient, which to some extent affects the result of scientific data clustering. Therefore, the paper proposes a concept of composite text description(CTD) and a CTD-based feature representation method for biomedical scientific data. The method mainly uses different feature weight algorisms to represent candidate features based on two types of data sources respectively, combines and finally strengthens the two feature sets. Experiments show that comparing with traditional methods, the feature representation method is more effective than traditional methods and can significantly improve the performance of biomedcial data clustering. 展开更多
关键词 Composite text description Scientific data feature representation Weight algorism
原文传递
The 3D Face Recognition Algorithm Fusing Multi-geometry Features
9
作者 SUN Yan-Feng TANG Heng-Liang YIN Bao-Cai 《自动化学报》 EI CSCD 北大核心 2008年第12期1483-1489,共7页
The 3D face recognition attracts more and more attention because of its insensitivity to the variance of illumination and pose.There are many crucial problems to be solved in this topic,such as 3D face representation ... The 3D face recognition attracts more and more attention because of its insensitivity to the variance of illumination and pose.There are many crucial problems to be solved in this topic,such as 3D face representation and effective multi-feature fusion.In this paper,a novel 3D face recognition algorithm is proposed and its performance is demonstrated on BJUT-3D face database.This algorithm chooses face surface property and the principle component of relative relation matrix as the face representation features.The similarity metric measure for each feature is defined.A feature fusion strategy is proposed.It is a linear weighted strategy based on Fisher linear discriminant analysis.Finally,the presented algorithm is tested on the BJUT-3D face database.It is concluded that the performance of the algorithm and fusion strategy is satisfying. 展开更多
关键词 3D face recognition feature representation feature fusion
在线阅读 下载PDF
FDTs:A Feature Disentangled Transformer for Interpretable Squamous Cell Carcinoma Grading
10
作者 Pan Huang Xin Luo 《IEEE/CAA Journal of Automatica Sinica》 2025年第11期2365-2367,共3页
Dear Editor,This letter proposes an end-to-end feature disentangled Transformer(FDTs)for entanglement-free and semantic feature representation to enable accurate and trustworthy pathology grading of squamous cell carc... Dear Editor,This letter proposes an end-to-end feature disentangled Transformer(FDTs)for entanglement-free and semantic feature representation to enable accurate and trustworthy pathology grading of squamous cell carcinoma(SCC).Existing vision transformers(ViTs)can implement representation learning for SCC grading,however,they all adopt the class-patch token fuzzy mapping for pattern prediction probability or window down-sampling to enhance the representation to contextual information. 展开更多
关键词 pathology grading feature disentangled transformer feature representation representation learning vision transformers vits can feature disentangled transformer fdts interpretable squamous cell carcinoma grading squamous cell carcinoma scc existing
在线阅读 下载PDF
DiscoStyle:Multi-level Logistic Ranking for Personalized Image Style Preference Inference 被引量:3
11
作者 Zhen-Wei He Lei Zhang Fang-Yi Liu 《International Journal of Automation and computing》 EI CSCD 2020年第5期637-651,共15页
Learning based on facial features for detection and recognition of people′s identities,emotions and image aesthetics has been widely explored in computer vision and biometrics.However,automatic discovery of users′pr... Learning based on facial features for detection and recognition of people′s identities,emotions and image aesthetics has been widely explored in computer vision and biometrics.However,automatic discovery of users′preferences to certain of faces(i.e.,style),to the best of our knowledge,has never been studied,due to the subjective,implicative,and uncertain characteristic of psychological preference.Therefore,in this paper,we contribute to an answer to whether users′psychological preference can be modeled and computed after observing several faces.To this end,we first propose an efficient approach for discovering the personality preference related facial features from only a very few anchors selected by each user,and make accurate predictions and recommendations for users.Specifically,we propose to discover the style of faces(DiscoStyle)for human′s psychological preference inference towards personalized face recommendation system/application.There are four merits of our DiscoStyle:1)Transfer learning is exploited from identity related facial feature representation to personality preference related facial feature.2)Appearance and geometric landmark feature are exploited for preference related feature augmentation.3)A multi-level logistic ranking model with on-line negative sample selection is proposed for on-line modeling and score prediction,which reflects the users′preference degree to gallery faces.4)A large dataset with different facial styles for human′s psychological preference inference is developed for the first time.Experiments show that our proposed DiscoStyle can well achieve users′preference reasoning and recommendation of preferred facial styles in different genders and races. 展开更多
关键词 Facial preference feature representation logistic regression face recommendation transfer learning
原文传递
GroupNet:Learning to group corner for object detection in remote sensing imagery 被引量:1
12
作者 Lei NI Chunlei HUO +2 位作者 Xin ZHANG Peng WANG Zhixin ZHOU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第6期273-284,共12页
Due to the attractive potential in avoiding the elaborate definition of anchor attributes,anchor-free-based deep learning approaches are promising for object detection in remote sensing imagery.Corner Net is one of th... Due to the attractive potential in avoiding the elaborate definition of anchor attributes,anchor-free-based deep learning approaches are promising for object detection in remote sensing imagery.Corner Net is one of the most representative methods in anchor-free-based deep learning approaches.However,it can be observed distinctly from the visual inspection that the Corner Net is limited in grouping keypoints,which significantly impacts the detection performance.To address the above problem,a novel and effective approach,called Group Net,is presented in this paper,which adaptively groups corner specific to the objects based on corner embedding vector and corner grouping network.Compared with the Corner Net,the proposed approach is more effective in learning the semantic relationship between corners and improving remarkably the detection performance.On NWPU dataset,experiments demonstrate that our Group Net not only outperforms the Corner Net with an AP of 12.8%,but also achieves comparable performance to considerable approaches with 83.4%AP. 展开更多
关键词 CornerNet feature representation Multi-dimension embedding Object detection Remote sensing
原文传递
Remaining Time Prediction for Business Processes with Concurrency Based on Log Representation 被引量:1
13
作者 Rui Cao Weijian Ni +3 位作者 Qingtian Zeng Faming Lu Cong Liu Hua Duan 《China Communications》 SCIE CSCD 2021年第11期76-91,共16页
Remaining time prediction of business processes plays an important role in resource scheduling and plan making.The structural features of single process instance and the concurrent running of multiple process instance... Remaining time prediction of business processes plays an important role in resource scheduling and plan making.The structural features of single process instance and the concurrent running of multiple process instances are the main factors that affect the accuracy of the remaining time prediction.Existing prediction methods does not take full advantage of these two aspects into consideration.To address this issue,a new prediction method based on trace representation is proposed.More specifically,we first associate the prefix set generated by the event log to different states of the transition system,and encode the structural features of the prefixes in the state.Then,an annotation containing the feature representation for the prefix and the corresponding remaining time are added to each state to obtain an extended transition system.Next,states in the extended transition system are partitioned by the different lengths of the states,which considers concurrency among multiple process instances.Finally,the long short-term memory(LSTM)deep recurrent neural networks are applied to each partition for predicting the remaining time of new running instances.By extensive experimental evaluation using synthetic event logs and reallife event logs,we show that the proposed method outperforms existing baseline methods. 展开更多
关键词 business process monitoring remaining time prediction LSTM feature representation CONCURRENCY
在线阅读 下载PDF
An improved algorithm for weighting keywords in web documents 被引量:1
14
作者 孙双 贺樑 +1 位作者 杨静 顾君忠 《Journal of Shanghai University(English Edition)》 CAS 2008年第3期235-239,共5页
In this paper, an improved algorithm, web-based keyword weight algorithm (WKWA), is presented to weight keywords in web documents. WKWA takes into account representation features of web documents and advantages of t... In this paper, an improved algorithm, web-based keyword weight algorithm (WKWA), is presented to weight keywords in web documents. WKWA takes into account representation features of web documents and advantages of the TF*IDF, TFC and ITC algorithms in order to make it more appropriate for web documents. Meanwhile, the presented algorithm is applied to improved vector space model (IVSM). A real system has been implemented for calculating semantic similarities of web documents. Four experiments have been carried out. They are keyword weight calculation, feature item selection, semantic similarity calculation, and WKWA time performance. The results demonstrate accuracy of keyword weight, and semantic similarity is improved. 展开更多
关键词 improved vector space model (IVSM) representation feature feature item keyword weight semantic similarity
在线阅读 下载PDF
Feature Representation in the Biclustering of Symptom-Herb Relationship in Chinese Medicine
15
作者 Josiah Poon 罗哲 张润顺 《Chinese Journal of Integrative Medicine》 SCIE CAS 2011年第9期663-668,共6页
Objective:To find an appropriate feature representation in the biclustering of symptom-herb relationship in Chinese medicine(CM).Methods: Four different representation schemes were tested in identifying the comple... Objective:To find an appropriate feature representation in the biclustering of symptom-herb relationship in Chinese medicine(CM).Methods: Four different representation schemes were tested in identifying the complex relationship between symptoms and herbs using a biclustering algorithm on an insomnia data set.These representation schemes were effective count,binary value,relative success ratio,or modified relative success ratio.The comparison of the schemes was made on the number and size of biclusters with respect to different threshold values.Results and Conclusions:The modified relative success ratio scheme was the most appropriate feature representation among the four tested.Some of the biclusters selected from this representation scheme were known to follow the therapeutic principles of CM,while others may offer clues for further clinical investigations. 展开更多
关键词 feature representation BICLUSTERING Chinese medicine symptom-herb relationship
原文传递
The admittance feature representation and impact sound feature extraction in the material identification of ribbed plates
16
作者 TIAN Xuhua CHEN Ke’an +2 位作者 LI Han YANG Lixue LIU Yang 《Chinese Journal of Acoustics》 CSCD 2018年第3期275-290,共16页
The admittance features representing the physical attributes are used as the in termediates to extract the materialattributesrelated impact sound features of ribbed plates. Firstly, the admittance feature representati... The admittance features representing the physical attributes are used as the in termediates to extract the materialattributesrelated impact sound features of ribbed plates. Firstly, the admittance feature representations of metal ribbed plates attributes are obtained and the relationship between the admittance features and the impact sound features are established via correlation analysis method. Then, materialattributesrelated impact sound features are obtained indirectly. Finally, the performances of different sound features for the material recognition of ribbedmetal plates are verified through the Support Vector Machine classifier. The results indicate that the obtained four sets of features can effectively identify the materials of the metal ribbed plates, while the accuracy of a single feature depends on the separable degree of the corresponding material attribute. And the features extracted based on admittance functions have higher average accuracy than that of timbre features. Therefore, the proposed sound feature extraction method based on admittance features is valid, and the extracted sound features can effectively reflect the physical attributes. 展开更多
关键词 The admittance feature representation and impact sound feature extraction in the material identification of ribbed plates
原文传递
AI4Skeletons:bringing in a new era of the digital intelligent skeleton with artificial intelligence
17
作者 Ling Wang Wenhui Wang +3 位作者 Yandong Liu Claus-C.Glüer Yi Zhang Yajun Liu 《Science Bulletin》 2025年第13期2031-2034,共4页
Motivated by the advancement of large language models,multiagent technology,and digital twins,digital skeletons are bringing new development opportunities in orthopedics.Data-driven deep learning(DL)network models can... Motivated by the advancement of large language models,multiagent technology,and digital twins,digital skeletons are bringing new development opportunities in orthopedics.Data-driven deep learning(DL)network models can effectively learn medical feature representations from multimodal and cross-scale datasets to accurately identify orthopedic diseases,making the most of the vast amount of medical imaging data and records collected over the years.Digital skeleton technology can be boosted by artificial intelligence(AI)to quickly and accurately identify common diseases and investigate the most difficult problems as researchers continue to integrate a wide range of DL techniques into orthopedic applications. 展开更多
关键词 multimodaldata learn medical feature representations digital twinsdigital skeletons large language modelsmultiagent digitaltwins identify orthopedic diseasesmaking ARTIFICIALINTELLIGENCE artificial intellige
原文传递
Towards Federated Learning Driving Technology for Privacy-Preserving Micro-Expression Recognition
18
作者 Mingpei Wang Ling Zhou +1 位作者 Xiaohua Huang Wenming Zheng 《Tsinghua Science and Technology》 2025年第5期2169-2183,共15页
As mobile devices and sensor technology advance,their role in communication becomes increasingly indispensable.Micro-expression recognition,an invaluable non-verbal communication method,has been extensively studied in... As mobile devices and sensor technology advance,their role in communication becomes increasingly indispensable.Micro-expression recognition,an invaluable non-verbal communication method,has been extensively studied in human-computer interaction,sentiment analysis,and security fields.However,the sensitivity and privacy implications of micro-expression data pose significant challenges for centralized machine learning methods,raising concerns about serious privacy leakage and data sharing.To address these limitations,we investigate a federated learning scheme tailored specifically for this task.Our approach prioritizes user privacy by employing federated optimization techniques,enabling the aggregation of clients’knowledge in an encrypted space without compromising data privacy.By integrating established micro-expression recognition methods into our framework,we demonstrate that our approach not only ensures robust data protection but also maintains high recognition performance comparable to non-privacy-preserving mechanisms.To our knowledge,this marks the first application of federated learning to the micro-expression recognition task. 展开更多
关键词 Micro-Expression Recognition(MER) Federated Learning(FL) privacy protection deep learning feature Representation Learning(FRL)
原文传递
Two-Stream Temporal Convolutional Networks for Skeleton-Based Human Action Recognition 被引量:3
19
作者 Jin-Gong Jia Yuan-Feng Zhou +3 位作者 Xing-Wei Hao Feng Li Christian Desrosiers Cai-Ming Zhang 《Journal of Computer Science & Technology》 SCIE EI CSCD 2020年第3期538-550,共13页
With the growing popularity of somatosensory interaction devices,human action recognition is becoming attractive in many application scenarios.Skeleton-based action recognition is effective because the skeleton can re... With the growing popularity of somatosensory interaction devices,human action recognition is becoming attractive in many application scenarios.Skeleton-based action recognition is effective because the skeleton can represent the position and the structure of key points of the human body.In this paper,we leverage spatiotemporal vectors between skeleton sequences as input feature representation of the network,which is more sensitive to changes of the human skeleton compared with representations based on distance and angle features.In addition,we redesign residual blocks that have different strides in the depth of the network to improve the processing ability of the temporal convolutional networks(TCNs)for long time dependent actions.In this work,we propose the two-stream temporal convolutional networks(TSTCNs)that take full advantage of the inter-frame vector feature and the intra-frame vector feature of skeleton sequences in the spatiotemporal representations.The framework can integrate different feature representations of skeleton sequences so that the two feature representations can make up for each other’s shortcomings.The fusion loss function is used to supervise the training parameters of the two branch networks.Experiments on public datasets show that our network achieves superior performance and attains an improvement of 1.2%over the recent GCN-based(BGC-LSTM)method on the NTU RGB+D dataset. 展开更多
关键词 SKELETON action recognition temporal convolutional network(TCN) vector feature representation neural network
原文传递
Multiresolution Free Form Object Modeling with PointSampled Geometry 被引量:3
20
作者 Yong-JinLiu KaiTang Ming-FaiYuen 《Journal of Computer Science & Technology》 SCIE EI CSCD 2004年第5期607-617,共11页
In this paper an efficient framework for the creation of 3D digital contentwith point sampled ge-ometry is proposed. A new hierarchy of shape representations with three levelsis adopted in this framework. Based on thi... In this paper an efficient framework for the creation of 3D digital contentwith point sampled ge-ometry is proposed. A new hierarchy of shape representations with three levelsis adopted in this framework. Based on this new hierarchical shape representation, the proposedframework offers concise integration of various volumetric- and surface-based modeling techniques,such as Boolean operation, offset, blending, free-form defor-mation, parameterization and texturemapping, and thus simplifies the complete modeling process. Previously to achieve the same goal,several separated algorithms had to be used independently with inconsistent volumetric and surfacerepresentations of the free-form object. Both graphics and industrial applications are presented todemonstrate the effectiveness and efficiency of the proposed framework. 展开更多
关键词 object hierarchy and geometric transformation feature representation three-dimensional graphics and realism system and information processing
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部