At present, salient object detection (SOD) has achieved considerable progress. However, the methods that perform well still face the issue of inadequate detection accuracy. For example, sometimes there are problems of...At present, salient object detection (SOD) has achieved considerable progress. However, the methods that perform well still face the issue of inadequate detection accuracy. For example, sometimes there are problems of missed and false detections. Effectively optimizing features to capture key information and better integrating different levels of features to enhance their complementarity are two significant challenges in the domain of SOD. In response to these challenges, this study proposes a novel SOD method based on multi-strategy feature optimization. We propose the multi-size feature extraction module (MSFEM), which uses the attention mechanism, the multi-level feature fusion, and the residual block to obtain finer features. This module provides robust support for the subsequent accurate detection of the salient object. In addition, we use two rounds of feature fusion and the feedback mechanism to optimize the features obtained by the MSFEM to improve detection accuracy. The first round of feature fusion is applied to integrate the features extracted by the MSFEM to obtain more refined features. Subsequently, the feedback mechanism and the second round of feature fusion are applied to refine the features, thereby providing a stronger foundation for accurately detecting salient objects. To improve the fusion effect, we propose the feature enhancement module (FEM) and the feature optimization module (FOM). The FEM integrates the upper and lower features with the optimized features obtained by the FOM to enhance feature complementarity. The FOM uses different receptive fields, the attention mechanism, and the residual block to more effectively capture key information. Experimental results demonstrate that our method outperforms 10 state-of-the-art SOD methods.展开更多
Conventional machine learning(CML)methods have been successfully applied for gas reservoir prediction.Their prediction accuracy largely depends on the quality of the sample data;therefore,feature optimization of the i...Conventional machine learning(CML)methods have been successfully applied for gas reservoir prediction.Their prediction accuracy largely depends on the quality of the sample data;therefore,feature optimization of the input samples is particularly important.Commonly used feature optimization methods increase the interpretability of gas reservoirs;however,their steps are cumbersome,and the selected features cannot sufficiently guide CML models to mine the intrinsic features of sample data efficiently.In contrast to CML methods,deep learning(DL)methods can directly extract the important features of targets from raw data.Therefore,this study proposes a feature optimization and gas-bearing prediction method based on a hybrid fusion model that combines a convolutional neural network(CNN)and an adaptive particle swarm optimization-least squares support vector machine(APSO-LSSVM).This model adopts an end-to-end algorithm structure to directly extract features from sensitive multicomponent seismic attributes,considerably simplifying the feature optimization.A CNN was used for feature optimization to highlight sensitive gas reservoir information.APSO-LSSVM was used to fully learn the relationship between the features extracted by the CNN to obtain the prediction results.The constructed hybrid fusion model improves gas-bearing prediction accuracy through two processes of feature optimization and intelligent prediction,giving full play to the advantages of DL and CML methods.The prediction results obtained are better than those of a single CNN model or APSO-LSSVM model.In the feature optimization process of multicomponent seismic attribute data,CNN has demonstrated better gas reservoir feature extraction capabilities than commonly used attribute optimization methods.In the prediction process,the APSO-LSSVM model can learn the gas reservoir characteristics better than the LSSVM model and has a higher prediction accuracy.The constructed CNN-APSO-LSSVM model had lower errors and a better fit on the test dataset than the other individual models.This method proves the effectiveness of DL technology for the feature extraction of gas reservoirs and provides a feasible way to combine DL and CML technologies to predict gas reservoirs.展开更多
Feature optimization is important to agricultural text mining. Usually, the vector space model is used to represent text documents. However, this basic approach still suffers from two drawbacks: thecurse of dimension ...Feature optimization is important to agricultural text mining. Usually, the vector space model is used to represent text documents. However, this basic approach still suffers from two drawbacks: thecurse of dimension and the lack of semantic information. In this paper, a novel ontology-based feature optimization method for agricultural text was proposed. First, terms of vector space model were mapped into concepts of agricultural ontology, which concept frequency weights are computed statistically by term frequency weights; second, weights of concept similarity were assigned to the concept features according to the structure of the agricultural ontology. By combining feature frequency weights and feature similarity weights based on the agricultural ontology, the dimensionality of feature space can be reduced drastically. Moreover, the semantic information can be incorporated into this method. The results showed that this method yields a significant improvement on agricultural text clustering by the feature optimization.展开更多
Image feature optimization is an important means to deal with high-dimensional image data in image semantic understanding and its applications. We formulate image feature optimization as the establishment of a mapping...Image feature optimization is an important means to deal with high-dimensional image data in image semantic understanding and its applications. We formulate image feature optimization as the establishment of a mapping between highand low-dimensional space via a five-tuple model. Nonlinear dimensionality reduction based on manifold learning provides a feasible way for solving such a problem. We propose a novel globular neighborhood based locally linear embedding (GNLLE) algorithm using neighborhood update and an incremental neighbor search scheme, which not only can handle sparse datasets but also has strong anti-noise capability and good topological stability. Given that the distance measure adopted in nonlinear dimensionality reduction is usually based on pairwise similarity calculation, we also present a globular neighborhood and path clustering based locally linear embedding (GNPCLLE) algorithm based on path-based clustering. Due to its full consideration of correlations between image data, GNPCLLE can eliminate the distortion of the overall topological structure within the dataset on the manifold. Experimental results on two image sets show the effectiveness and efficiency of the proposed algorithms.展开更多
Biometric characteristics are playing a vital role in security for the last few years.Human gait classification in video sequences is an important biometrics attribute and is used for security purposes.A new framework...Biometric characteristics are playing a vital role in security for the last few years.Human gait classification in video sequences is an important biometrics attribute and is used for security purposes.A new framework for human gait classification in video sequences using deep learning(DL)fusion assisted and posterior probability-based moth flames optimization(MFO)is proposed.In the first step,the video frames are resized and finetuned by two pre-trained lightweight DL models,EfficientNetB0 and MobileNetV2.Both models are selected based on the top-5 accuracy and less number of parameters.Later,both models are trained through deep transfer learning and extracted deep features fused using a voting scheme.In the last step,the authors develop a posterior probabilitybased MFO feature selection algorithm to select the best features.The selected features are classified using several supervised learning methods.The CASIA-B publicly available dataset has been employed for the experimental process.On this dataset,the authors selected six angles such as 0°,18°,90°,108°,162°,and 180°and obtained an average accuracy of 96.9%,95.7%,86.8%,90.0%,95.1%,and 99.7%.Results demonstrate comparable improvement in accuracy and significantly minimize the computational time with recent state-of-the-art techniques.展开更多
Gesture recognition plays an increasingly important role as the requirements of intelligent systems for human-computer interaction methods increase.To improve the accuracy of the millimeter-wave radar gesture detectio...Gesture recognition plays an increasingly important role as the requirements of intelligent systems for human-computer interaction methods increase.To improve the accuracy of the millimeter-wave radar gesture detection algorithm with limited computational resources,this study improves the detection performance in terms of optimized features and interference filtering.The accuracy of the algorithm is improved by refining the combination of gesture features using a self-constructed dataset,and biometric filtering is introduced to reduce the interference of inanimate object motion.Finally,experiments demonstrate the effectiveness of the proposed algorithm in both mitigating interference from inanimate objects and accurately recognizing gestures.Results show a notable 93.29%average reduction in false detections achieved through the integration of biometric filtering into the algorithm’s interpretation of target movements.Additionally,the algorithm adeptly identifies the six gestures with an average accuracy of 96.84%on embedded systems.展开更多
In the area of medical image processing,stomach cancer is one of the most important cancers which need to be diagnose at the early stage.In this paper,an optimized deep learning method is presented for multiple stomac...In the area of medical image processing,stomach cancer is one of the most important cancers which need to be diagnose at the early stage.In this paper,an optimized deep learning method is presented for multiple stomach disease classication.The proposed method work in few important steps—preprocessing using the fusion of ltering images along with Ant Colony Optimization(ACO),deep transfer learning-based features extraction,optimization of deep extracted features using nature-inspired algorithms,and nally fusion of optimal vectors and classication using Multi-Layered Perceptron Neural Network(MLNN).In the feature extraction step,pretrained Inception V3 is utilized and retrained on selected stomach infection classes using the deep transfer learning step.Later on,the activation function is applied to Global Average Pool(GAP)for feature extraction.However,the extracted features are optimized through two different nature-inspired algorithms—Particle Swarm Optimization(PSO)with dynamic tness function and Crow Search Algorithm(CSA).Hence,both methods’output is fused by a maximal value approach and classied the fused feature vector by MLNN.Two datasets are used to evaluate the proposed method—CUI WahStomach Diseases and Combined dataset and achieved an average accuracy of 99.5%.The comparison with existing techniques,it is shown that the proposed method shows signicant performance.展开更多
Considering that the surface defects of cold rolled strips are hard to be recognized by human eyes under high-speed circumstances, an automatic recognition technique was discussed. Spectrum images of defects can be go...Considering that the surface defects of cold rolled strips are hard to be recognized by human eyes under high-speed circumstances, an automatic recognition technique was discussed. Spectrum images of defects can be got by fast Fourier transform (FFF) and sum of valid pixels (SVP), and its optimized center region, which concentrates nearly all energies, are extracted as an original feature set. Using genetic algorithm to optimize the feature set, an optimized feature set with 51 features can be achieved. Using the optimized feature set as an input vector of neural networks, the recognition effects of LVQ neural networks have been studied. Experiment results show that the new method can get a higher classification rate and can settle the automatic recognition problem of surface defects on cold rolled strips ideally.展开更多
Video summarization aims at selecting valuable clips for browsing videos with high efficiency.Previous approaches typically focus on aggregating temporal features while ignoring the potential role of visual representa...Video summarization aims at selecting valuable clips for browsing videos with high efficiency.Previous approaches typically focus on aggregating temporal features while ignoring the potential role of visual representations in summarizing videos.In this paper,we present a global difference-aware network(GDANet)that exploits the feature difference across frame and video as guidance to enhance visual features.Initially,a difference optimization module(DOM)is devised to enhance the discriminability of visual features,bringing gains in accurately aggregating temporal cues.Subsequently,a dual-scale attention module(DSAM)is introduced to capture informative contextual information.Eventually,we design an adaptive feature fusion module(AFFM)to make the network adaptively learn context representations and perform feature fusion effectively.We have conducted experiments on benchmark datasets,and the empirical results demonstrate the effectiveness of the proposed framework.展开更多
One exciting area within computer vision is classifying human activities, which has diverse applications like medical informatics, human-computer interaction, surveillance, and task monitoring systems. In the healthca...One exciting area within computer vision is classifying human activities, which has diverse applications like medical informatics, human-computer interaction, surveillance, and task monitoring systems. In the healthcare field, understanding and classifying patients’ activities is crucial for providing doctors with essential information for medication reactions and diagnosis. While some research methods already exist, utilizing machine learning and soft computational algorithms to recognize human activity from videos and images, there’s ongoing exploration of more advanced computer vision techniques. This paper introduces a straightforward and effective automated approach that involves five key steps: preprocessing, feature extraction technique, feature selection, feature fusion, and finally classification. To evaluate the proposed approach, two commonly used benchmark datasets KTH and Weizmann are employed for training, validation, and testing of ML classifiers. The study’s findings show that the first and second datasets had remarkable accuracy rates of 99.94% and 99.80%, respectively. When compared to existing methods, our approach stands out in terms of sensitivity, accuracy, precision, and specificity evaluation metrics. In essence, this paper demonstrates a practical method for automatically classifying human activities using an optimal feature fusion and deep learning approach, promising a great result that could benefit various fields, particularly in healthcare.展开更多
Graph neural networks(GNNs)have demonstrated excellent performance in graph representation learning.However,as the volume of graph data grows,issues related to cost and efficiency become increasingly prominent.Graph d...Graph neural networks(GNNs)have demonstrated excellent performance in graph representation learning.However,as the volume of graph data grows,issues related to cost and efficiency become increasingly prominent.Graph distillation methods address this challenge by extracting a smaller,reduced graph,ensuring that GNNs trained on both the original and reduced graphs show similar performance.Existing methods,however,primarily optimize the feature matrix of the reduced graph and rely on correlation information from GNNs,while neglecting the original graph’s structure and redundant nodes.This often results in a loss of critical information within the reduced graph.To overcome this limitation,we propose a graph distillation method guided by network symmetry.Specifically,we identify symmetric nodes with equivalent neighborhood structures and merge them into“super nodes”,thereby simplifying the network structure,reducing redundant parameter optimization and enhancing training efficiency.At the same time,instead of relying on the original node features,we employ gradient descent to match optimal features that align with the original features,thus improving downstream task performance.Theoretically,our method guarantees that the reduced graph retains the key information present in the original graph.Extensive experiments demonstrate that our approach achieves significant improvements in graph distillation,exhibiting strong generalization capability and outperforming existing graph reduction methods.展开更多
Coastal wetlands are crucial for the‘blue carbon sink’,significantly contributing to regulating climate change.This study util-ized 160 soil samples,35 remote sensing features,and 5 geo-climatic data to accurately e...Coastal wetlands are crucial for the‘blue carbon sink’,significantly contributing to regulating climate change.This study util-ized 160 soil samples,35 remote sensing features,and 5 geo-climatic data to accurately estimate the soil organic carbon stocks(SOCS)in the coastal wetlands of Tianjin and Hebei,China.To reduce data redundancy,simplify model complexity,and improve model inter-pretability,Pearson correlation analysis(PsCA),Boruta,and recursive feature elimination(RFE)were employed to optimize features.Combined with the optimized features,the soil organic carbon density(SOCD)prediction model was constructed by using multivariate adaptive regression splines(MARS),extreme gradient boosting(XGBoost),and random forest(RF)algorithms and applied to predict the spatial distribution of SOCD and estimate the SOCS of different wetland types in 2020.The results show that:1)different feature combinations have a significant influence on the model performance.Better prediction performance was attained by building a model using RFE-based feature combinations.RF has the best prediction accuracy(R^(2)=0.587,RMSE=0.798 kg/m^(2),MAE=0.660 kg/m^(2)).2)Optical features are more important than radar and geo-climatic features in the MARS,XGBoost,and RF algorithms.3)The size of SOCS is related to SOCD and the area of each wetland type,aquaculture pond has the highest SOCS,followed by marsh,salt pan,mud-flat,and sand shore.展开更多
Feature selection(FS)(or feature dimensional reduction,or feature optimization)is an essential process in pattern recognition and machine learning because of its enhanced classification speed and accuracy and reduced ...Feature selection(FS)(or feature dimensional reduction,or feature optimization)is an essential process in pattern recognition and machine learning because of its enhanced classification speed and accuracy and reduced system complexity.FS reduces the number of features extracted in the feature extraction phase by reducing highly correlated features,retaining features with high information gain,and removing features with no weights in classification.In this work,an FS filter-type statistical method is designed and implemented,utilizing a t-test to decrease the convergence between feature subsets by calculating the quality of performance value(QoPV).The approach utilizes the well-designed fitness function to calculate the strength of recognition value(SoRV).The two values are used to rank all features according to the final weight(FW)calculated for each feature subset using a function that prioritizes feature subsets with high SoRV values.An FW is assigned to each feature subset,and those with FWs less than a predefined threshold are removed from the feature subset domain.Experiments are implemented on three datasets:Ryerson Audio-Visual Database of Emotional Speech and Song,Berlin,and Surrey Audio-Visual Expressed Emotion.The performance of the F-test and F-score FS methods are compared to those of the proposed method.Tests are also conducted on a system before and after deploying the FS methods.Results demonstrate the comparative efficiency of the proposed method.The complexity of the system is calculated based on the time overhead required before and after FS.Results show that the proposed method can reduce system complexity.展开更多
Since the beginning of time,humans have relied on plants for food,energy,and medicine.Plants are recognized by leaf,flower,or fruit and linked to their suitable cluster.Classification methods are used to extract and s...Since the beginning of time,humans have relied on plants for food,energy,and medicine.Plants are recognized by leaf,flower,or fruit and linked to their suitable cluster.Classification methods are used to extract and select traits that are helpful in identifying a plant.In plant leaf image categorization,each plant is assigned a label according to its classification.The purpose of classifying plant leaf images is to enable farmers to recognize plants,leading to the management of plants in several aspects.This study aims to present a modified whale optimization algorithm and categorizes plant leaf images into classes.This modified algorithm works on different sets of plant leaves.The proposed algorithm examines several benchmark functions with adequate performance.On ten plant leaf images,this classification method was validated.The proposed model calculates precision,recall,F-measurement,and accuracy for ten different plant leaf image datasets and compares these parameters with other existing algorithms.Based on experimental data,it is observed that the accuracy of the proposed method outperforms the accuracy of different algorithms under consideration and improves accuracy by 5%.展开更多
In computer vision applications like surveillance and remote sensing,to mention a few,deep learning has had considerable success.Medical imaging still faces a number of difficulties,including intra-class similarity,a ...In computer vision applications like surveillance and remote sensing,to mention a few,deep learning has had considerable success.Medical imaging still faces a number of difficulties,including intra-class similarity,a scarcity of training data,and poor contrast skin lesions,notably in the case of skin cancer.An optimisation-aided deep learningbased system is proposed for accurate multi-class skin lesion identification.The sequential procedures of the proposed system start with preprocessing and end with categorisation.The preprocessing step is where a hybrid contrast enhancement technique is initially proposed for lesion identification with healthy regions.Instead of flipping and rotating data,the outputs from the middle phases of the hybrid enhanced technique are employed for data augmentation in the next step.Next,two pre-trained deep learning models,MobileNetV2 and NasNet Mobile,are trained using deep transfer learning on the upgraded enriched dataset.Later,a dual-threshold serial approach is employed to obtain and combine the features of both models.The next step was the variance-controlled Marine Predator methodology,which the authors proposed as a superior optimisation method.The top features from the fused feature vector are classified using machine learning classifiers.The experimental strategy provided enhanced accuracy of 94.4%using the publicly available dataset HAM10000.Additionally,the proposed framework is evaluated compared to current approaches,with remarkable results.展开更多
Automated Facial Expression Recognition(FER)serves as the backbone of patient monitoring systems,security,and surveillance systems.Real-time FER is a challenging task,due to the uncontrolled nature of the environment ...Automated Facial Expression Recognition(FER)serves as the backbone of patient monitoring systems,security,and surveillance systems.Real-time FER is a challenging task,due to the uncontrolled nature of the environment and poor quality of input frames.In this paper,a novel FER framework has been proposed for patient monitoring.Preprocessing is performed using contrast-limited adaptive enhancement and the dataset is balanced using augmentation.Two lightweight efficient Convolution Neural Network(CNN)models MobileNetV2 and Neural search Architecture Network Mobile(NasNetMobile)are trained,and feature vectors are extracted.The Whale Optimization Algorithm(WOA)is utilized to remove irrelevant features from these vectors.Finally,the optimized features are serially fused to pass them to the classifier.A comprehensive set of experiments were carried out for the evaluation of real-time image datasets FER-2013,MMA,and CK+to report performance based on various metrics.Accuracy results show that the proposed model has achieved 82.5%accuracy and performed better in comparison to the state-of-the-art classification techniques in terms of accuracy.We would like to highlight that the proposed technique has achieved better accuracy by using 2.8 times lesser number of features.展开更多
In 2020,COVID-19 started spreading throughout the world.This deadly infection was identified as a virus that may affect the lungs and,in severe cases,could be the cause of death.The polymerase chain reaction(PCR)test ...In 2020,COVID-19 started spreading throughout the world.This deadly infection was identified as a virus that may affect the lungs and,in severe cases,could be the cause of death.The polymerase chain reaction(PCR)test is commonly used to detect this virus through the nasal passage or throat.However,the PCR test exposes health workers to this deadly virus.To limit human exposure while detecting COVID-19,image processing techniques using deep learning have been successfully applied.In this paper,a strategy based on deep learning is employed to classify the COVID-19 virus.To extract features,two deep learning models have been used,the DenseNet201 and the SqueezeNet.Transfer learning is used in feature extraction,and models are fine-tuned.A publicly available computerized tomography(CT)scan dataset has been used in this study.The extracted features from the deep learning models are optimized using the Ant Colony Optimization algorithm.The proposed technique is validated through multiple evaluation parameters.Several classifiers have been employed to classify the optimized features.The cubic support vector machine(Cubic SVM)classifier shows superiority over other commonly used classifiers and attained an accuracy of 98.72%.The proposed technique achieves state-of-the-art accuracy,a sensitivity of 98.80%,and a specificity of 96.64%.展开更多
Person re-identification(Re-ID) is integral to intelligent monitoring systems.However,due to the variability in viewing angles and illumination,it is easy to cause visual ambiguities,affecting the accuracy of person r...Person re-identification(Re-ID) is integral to intelligent monitoring systems.However,due to the variability in viewing angles and illumination,it is easy to cause visual ambiguities,affecting the accuracy of person re-identification.An approach for person re-identification based on feature mapping space and sample determination is proposed.At first,a weight fusion model,including mean and maximum value of the horizontal occurrence in local features,is introduced into the mapping space to optimize local features.Then,the Gaussian distribution model with hierarchical mean and covariance of pixel features is introduced to enhance feature expression.Finally,considering the influence of the size of samples on metric learning performance,the appropriate metric learning is selected by sample determination method to further improve the performance of person re-identification.Experimental results on the VIPeR,PRID450 S and CUHK01 datasets demonstrate that the proposed method is better than the traditional methods.展开更多
Accurate short-term photovoltaic(PV)output forecasting is beneficial for increasing grid stabil-ity and enhancing the capacity for photovoltaic power absorption.In response to the challenges faced by commonly used pho...Accurate short-term photovoltaic(PV)output forecasting is beneficial for increasing grid stabil-ity and enhancing the capacity for photovoltaic power absorption.In response to the challenges faced by commonly used photovoltaic forecasting methods,which struggle to handle issues such as non-u-niform lengths of time series data for power generation and meteorological conditions,overlapping photovoltaic characteristics,and nonlinear correlations,an improved method that utilizes spectral clustering and dynamic time warping(DTW)for selecting similar days is proposed to optimize the dataset along the temporal dimension.Furthermore,XGBoost is employed for recursive feature selec-tion.On this basis,to address the issue that single forecasting models excel at capturing different data characteristics and tend to exhibit significant prediction errors under adverse meteorological con-ditions,an improved forecasting model based on Stacking and weighted fusion is proposed to reduce the independent bias and variance of individual models and enhance the predictive accuracy.Final-ly,experimental validation is carried out using real data from a photovoltaic power station in the Xi-aoshan District of Hangzhou,China,demonstrating that the proposed method can still achieve accu-rate and robust forecasting results even under conditions of significant meteorological fluctuations.展开更多
Owing to technological developments,Medical image analysis has received considerable attention in the rapid detection and classification of diseases.The brain is an essential organ in humans.Brain tumors cause loss of...Owing to technological developments,Medical image analysis has received considerable attention in the rapid detection and classification of diseases.The brain is an essential organ in humans.Brain tumors cause loss of memory,vision,and name.In 2020,approximately 18,020 deaths occurred due to brain tumors.These cases can be minimized if a brain tumor is diagnosed at a very early stage.Computer vision researchers have introduced several techniques for brain tumor detection and classification.However,owing to many factors,this is still a challenging task.These challenges relate to the tumor size,the shape of a tumor,location of the tumor,selection of important features,among others.In this study,we proposed a framework for multimodal brain tumor classification using an ensemble of optimal deep learning features.In the proposed framework,initially,a database is normalized in the form of high-grade glioma(HGG)and low-grade glioma(LGG)patients and then two pre-trained deep learning models(ResNet50 and Densenet201)are chosen.The deep learning models were modified and trained using transfer learning.Subsequently,the enhanced ant colony optimization algorithm is proposed for best feature selection from both deep models.The selected features are fused using a serial-based approach and classified using a cubic support vector machine.The experimental process was conducted on the BraTs2019 dataset and achieved accuracies of 87.8%and 84.6%for HGG and LGG,respectively.The comparison is performed using several classification methods,and it shows the significance of our proposed technique.展开更多
文摘At present, salient object detection (SOD) has achieved considerable progress. However, the methods that perform well still face the issue of inadequate detection accuracy. For example, sometimes there are problems of missed and false detections. Effectively optimizing features to capture key information and better integrating different levels of features to enhance their complementarity are two significant challenges in the domain of SOD. In response to these challenges, this study proposes a novel SOD method based on multi-strategy feature optimization. We propose the multi-size feature extraction module (MSFEM), which uses the attention mechanism, the multi-level feature fusion, and the residual block to obtain finer features. This module provides robust support for the subsequent accurate detection of the salient object. In addition, we use two rounds of feature fusion and the feedback mechanism to optimize the features obtained by the MSFEM to improve detection accuracy. The first round of feature fusion is applied to integrate the features extracted by the MSFEM to obtain more refined features. Subsequently, the feedback mechanism and the second round of feature fusion are applied to refine the features, thereby providing a stronger foundation for accurately detecting salient objects. To improve the fusion effect, we propose the feature enhancement module (FEM) and the feature optimization module (FOM). The FEM integrates the upper and lower features with the optimized features obtained by the FOM to enhance feature complementarity. The FOM uses different receptive fields, the attention mechanism, and the residual block to more effectively capture key information. Experimental results demonstrate that our method outperforms 10 state-of-the-art SOD methods.
基金funded by the Natural Science Foundation of Shandong Province (ZR2021MD061ZR2023QD025)+3 种基金China Postdoctoral Science Foundation (2022M721972)National Natural Science Foundation of China (41174098)Young Talents Foundation of Inner Mongolia University (10000-23112101/055)Qingdao Postdoctoral Science Foundation (QDBSH20230102094)。
文摘Conventional machine learning(CML)methods have been successfully applied for gas reservoir prediction.Their prediction accuracy largely depends on the quality of the sample data;therefore,feature optimization of the input samples is particularly important.Commonly used feature optimization methods increase the interpretability of gas reservoirs;however,their steps are cumbersome,and the selected features cannot sufficiently guide CML models to mine the intrinsic features of sample data efficiently.In contrast to CML methods,deep learning(DL)methods can directly extract the important features of targets from raw data.Therefore,this study proposes a feature optimization and gas-bearing prediction method based on a hybrid fusion model that combines a convolutional neural network(CNN)and an adaptive particle swarm optimization-least squares support vector machine(APSO-LSSVM).This model adopts an end-to-end algorithm structure to directly extract features from sensitive multicomponent seismic attributes,considerably simplifying the feature optimization.A CNN was used for feature optimization to highlight sensitive gas reservoir information.APSO-LSSVM was used to fully learn the relationship between the features extracted by the CNN to obtain the prediction results.The constructed hybrid fusion model improves gas-bearing prediction accuracy through two processes of feature optimization and intelligent prediction,giving full play to the advantages of DL and CML methods.The prediction results obtained are better than those of a single CNN model or APSO-LSSVM model.In the feature optimization process of multicomponent seismic attribute data,CNN has demonstrated better gas reservoir feature extraction capabilities than commonly used attribute optimization methods.In the prediction process,the APSO-LSSVM model can learn the gas reservoir characteristics better than the LSSVM model and has a higher prediction accuracy.The constructed CNN-APSO-LSSVM model had lower errors and a better fit on the test dataset than the other individual models.This method proves the effectiveness of DL technology for the feature extraction of gas reservoirs and provides a feasible way to combine DL and CML technologies to predict gas reservoirs.
基金supported by the National Natural Science Foundation of China (60774096)the National HighTech R&D Program of China (2008BAK49B05)
文摘Feature optimization is important to agricultural text mining. Usually, the vector space model is used to represent text documents. However, this basic approach still suffers from two drawbacks: thecurse of dimension and the lack of semantic information. In this paper, a novel ontology-based feature optimization method for agricultural text was proposed. First, terms of vector space model were mapped into concepts of agricultural ontology, which concept frequency weights are computed statistically by term frequency weights; second, weights of concept similarity were assigned to the concept features according to the structure of the agricultural ontology. By combining feature frequency weights and feature similarity weights based on the agricultural ontology, the dimensionality of feature space can be reduced drastically. Moreover, the semantic information can be incorporated into this method. The results showed that this method yields a significant improvement on agricultural text clustering by the feature optimization.
基金Project (No 2008AA01Z132) supported by the National High-Tech Research and Development Program of China
文摘Image feature optimization is an important means to deal with high-dimensional image data in image semantic understanding and its applications. We formulate image feature optimization as the establishment of a mapping between highand low-dimensional space via a five-tuple model. Nonlinear dimensionality reduction based on manifold learning provides a feasible way for solving such a problem. We propose a novel globular neighborhood based locally linear embedding (GNLLE) algorithm using neighborhood update and an incremental neighbor search scheme, which not only can handle sparse datasets but also has strong anti-noise capability and good topological stability. Given that the distance measure adopted in nonlinear dimensionality reduction is usually based on pairwise similarity calculation, we also present a globular neighborhood and path clustering based locally linear embedding (GNPCLLE) algorithm based on path-based clustering. Due to its full consideration of correlations between image data, GNPCLLE can eliminate the distortion of the overall topological structure within the dataset on the manifold. Experimental results on two image sets show the effectiveness and efficiency of the proposed algorithms.
基金King Saud University,Grant/Award Number:RSP2024R157。
文摘Biometric characteristics are playing a vital role in security for the last few years.Human gait classification in video sequences is an important biometrics attribute and is used for security purposes.A new framework for human gait classification in video sequences using deep learning(DL)fusion assisted and posterior probability-based moth flames optimization(MFO)is proposed.In the first step,the video frames are resized and finetuned by two pre-trained lightweight DL models,EfficientNetB0 and MobileNetV2.Both models are selected based on the top-5 accuracy and less number of parameters.Later,both models are trained through deep transfer learning and extracted deep features fused using a voting scheme.In the last step,the authors develop a posterior probabilitybased MFO feature selection algorithm to select the best features.The selected features are classified using several supervised learning methods.The CASIA-B publicly available dataset has been employed for the experimental process.On this dataset,the authors selected six angles such as 0°,18°,90°,108°,162°,and 180°and obtained an average accuracy of 96.9%,95.7%,86.8%,90.0%,95.1%,and 99.7%.Results demonstrate comparable improvement in accuracy and significantly minimize the computational time with recent state-of-the-art techniques.
基金supported by the National Natural Science Foundation of China(No.12172076)。
文摘Gesture recognition plays an increasingly important role as the requirements of intelligent systems for human-computer interaction methods increase.To improve the accuracy of the millimeter-wave radar gesture detection algorithm with limited computational resources,this study improves the detection performance in terms of optimized features and interference filtering.The accuracy of the algorithm is improved by refining the combination of gesture features using a self-constructed dataset,and biometric filtering is introduced to reduce the interference of inanimate object motion.Finally,experiments demonstrate the effectiveness of the proposed algorithm in both mitigating interference from inanimate objects and accurately recognizing gestures.Results show a notable 93.29%average reduction in false detections achieved through the integration of biometric filtering into the algorithm’s interpretation of target movements.Additionally,the algorithm adeptly identifies the six gestures with an average accuracy of 96.84%on embedded systems.
基金supported by Korea Institute for Advancement of Technology(KIAT)grant funded by the Korea Government(MOTIE)(P0012724,The Competency Development Program for Industry Specialist)and the Soonchunhyang University Research Fund.
文摘In the area of medical image processing,stomach cancer is one of the most important cancers which need to be diagnose at the early stage.In this paper,an optimized deep learning method is presented for multiple stomach disease classication.The proposed method work in few important steps—preprocessing using the fusion of ltering images along with Ant Colony Optimization(ACO),deep transfer learning-based features extraction,optimization of deep extracted features using nature-inspired algorithms,and nally fusion of optimal vectors and classication using Multi-Layered Perceptron Neural Network(MLNN).In the feature extraction step,pretrained Inception V3 is utilized and retrained on selected stomach infection classes using the deep transfer learning step.Later on,the activation function is applied to Global Average Pool(GAP)for feature extraction.However,the extracted features are optimized through two different nature-inspired algorithms—Particle Swarm Optimization(PSO)with dynamic tness function and Crow Search Algorithm(CSA).Hence,both methods’output is fused by a maximal value approach and classied the fused feature vector by MLNN.Two datasets are used to evaluate the proposed method—CUI WahStomach Diseases and Combined dataset and achieved an average accuracy of 99.5%.The comparison with existing techniques,it is shown that the proposed method shows signicant performance.
基金This work was financially supported by the National High Technology Research and Development Program of China (No.2003AA331080 and 2001AA339030)the Talent Science Research Foundation of Henan University of Science & Technology (No.09001121).
文摘Considering that the surface defects of cold rolled strips are hard to be recognized by human eyes under high-speed circumstances, an automatic recognition technique was discussed. Spectrum images of defects can be got by fast Fourier transform (FFF) and sum of valid pixels (SVP), and its optimized center region, which concentrates nearly all energies, are extracted as an original feature set. Using genetic algorithm to optimize the feature set, an optimized feature set with 51 features can be achieved. Using the optimized feature set as an input vector of neural networks, the recognition effects of LVQ neural networks have been studied. Experiment results show that the new method can get a higher classification rate and can settle the automatic recognition problem of surface defects on cold rolled strips ideally.
基金the National Natural Science Foundation of China(Nos.61702347 and 62027801)the Natural Science Foundation of Hebei Province(Nos.F2022210007 and F2017210161)+1 种基金the Science and Technology Project of Hebei Education Department(Nos.ZD2022100 and QN2017132)the Central Guidance on Local Science and Technology Development Fund(No.226Z0501G)。
文摘Video summarization aims at selecting valuable clips for browsing videos with high efficiency.Previous approaches typically focus on aggregating temporal features while ignoring the potential role of visual representations in summarizing videos.In this paper,we present a global difference-aware network(GDANet)that exploits the feature difference across frame and video as guidance to enhance visual features.Initially,a difference optimization module(DOM)is devised to enhance the discriminability of visual features,bringing gains in accurately aggregating temporal cues.Subsequently,a dual-scale attention module(DSAM)is introduced to capture informative contextual information.Eventually,we design an adaptive feature fusion module(AFFM)to make the network adaptively learn context representations and perform feature fusion effectively.We have conducted experiments on benchmark datasets,and the empirical results demonstrate the effectiveness of the proposed framework.
文摘One exciting area within computer vision is classifying human activities, which has diverse applications like medical informatics, human-computer interaction, surveillance, and task monitoring systems. In the healthcare field, understanding and classifying patients’ activities is crucial for providing doctors with essential information for medication reactions and diagnosis. While some research methods already exist, utilizing machine learning and soft computational algorithms to recognize human activity from videos and images, there’s ongoing exploration of more advanced computer vision techniques. This paper introduces a straightforward and effective automated approach that involves five key steps: preprocessing, feature extraction technique, feature selection, feature fusion, and finally classification. To evaluate the proposed approach, two commonly used benchmark datasets KTH and Weizmann are employed for training, validation, and testing of ML classifiers. The study’s findings show that the first and second datasets had remarkable accuracy rates of 99.94% and 99.80%, respectively. When compared to existing methods, our approach stands out in terms of sensitivity, accuracy, precision, and specificity evaluation metrics. In essence, this paper demonstrates a practical method for automatically classifying human activities using an optimal feature fusion and deep learning approach, promising a great result that could benefit various fields, particularly in healthcare.
基金Project supported by the National Natural Science Foundation of China(Grant No.62176217)the Program from the Sichuan Provincial Science and Technology,China(Grant No.2018RZ0081)the Fundamental Research Funds of China West Normal University(Grant No.17E063).
文摘Graph neural networks(GNNs)have demonstrated excellent performance in graph representation learning.However,as the volume of graph data grows,issues related to cost and efficiency become increasingly prominent.Graph distillation methods address this challenge by extracting a smaller,reduced graph,ensuring that GNNs trained on both the original and reduced graphs show similar performance.Existing methods,however,primarily optimize the feature matrix of the reduced graph and rely on correlation information from GNNs,while neglecting the original graph’s structure and redundant nodes.This often results in a loss of critical information within the reduced graph.To overcome this limitation,we propose a graph distillation method guided by network symmetry.Specifically,we identify symmetric nodes with equivalent neighborhood structures and merge them into“super nodes”,thereby simplifying the network structure,reducing redundant parameter optimization and enhancing training efficiency.At the same time,instead of relying on the original node features,we employ gradient descent to match optimal features that align with the original features,thus improving downstream task performance.Theoretically,our method guarantees that the reduced graph retains the key information present in the original graph.Extensive experiments demonstrate that our approach achieves significant improvements in graph distillation,exhibiting strong generalization capability and outperforming existing graph reduction methods.
基金Under the auspices of National Natural Science Foundation of China(No.42101393,41901375,52274166)Hebei Natural Science Foundation(No.D2022209005,D2023209008)Central Guided Local Science and Technology Development Fund Project of Hebei Province(No.236Z3305G,246Z4201G)Key Research and Development Program of Science and Technology Plan of Tangshan,China(No.22150221J)。
文摘Coastal wetlands are crucial for the‘blue carbon sink’,significantly contributing to regulating climate change.This study util-ized 160 soil samples,35 remote sensing features,and 5 geo-climatic data to accurately estimate the soil organic carbon stocks(SOCS)in the coastal wetlands of Tianjin and Hebei,China.To reduce data redundancy,simplify model complexity,and improve model inter-pretability,Pearson correlation analysis(PsCA),Boruta,and recursive feature elimination(RFE)were employed to optimize features.Combined with the optimized features,the soil organic carbon density(SOCD)prediction model was constructed by using multivariate adaptive regression splines(MARS),extreme gradient boosting(XGBoost),and random forest(RF)algorithms and applied to predict the spatial distribution of SOCD and estimate the SOCS of different wetland types in 2020.The results show that:1)different feature combinations have a significant influence on the model performance.Better prediction performance was attained by building a model using RFE-based feature combinations.RF has the best prediction accuracy(R^(2)=0.587,RMSE=0.798 kg/m^(2),MAE=0.660 kg/m^(2)).2)Optical features are more important than radar and geo-climatic features in the MARS,XGBoost,and RF algorithms.3)The size of SOCS is related to SOCD and the area of each wetland type,aquaculture pond has the highest SOCS,followed by marsh,salt pan,mud-flat,and sand shore.
文摘Feature selection(FS)(or feature dimensional reduction,or feature optimization)is an essential process in pattern recognition and machine learning because of its enhanced classification speed and accuracy and reduced system complexity.FS reduces the number of features extracted in the feature extraction phase by reducing highly correlated features,retaining features with high information gain,and removing features with no weights in classification.In this work,an FS filter-type statistical method is designed and implemented,utilizing a t-test to decrease the convergence between feature subsets by calculating the quality of performance value(QoPV).The approach utilizes the well-designed fitness function to calculate the strength of recognition value(SoRV).The two values are used to rank all features according to the final weight(FW)calculated for each feature subset using a function that prioritizes feature subsets with high SoRV values.An FW is assigned to each feature subset,and those with FWs less than a predefined threshold are removed from the feature subset domain.Experiments are implemented on three datasets:Ryerson Audio-Visual Database of Emotional Speech and Song,Berlin,and Surrey Audio-Visual Expressed Emotion.The performance of the F-test and F-score FS methods are compared to those of the proposed method.Tests are also conducted on a system before and after deploying the FS methods.Results demonstrate the comparative efficiency of the proposed method.The complexity of the system is calculated based on the time overhead required before and after FS.Results show that the proposed method can reduce system complexity.
基金This work was supported by the Deanship of Scientific Research,King Saud University,Saudi Arabia.
文摘Since the beginning of time,humans have relied on plants for food,energy,and medicine.Plants are recognized by leaf,flower,or fruit and linked to their suitable cluster.Classification methods are used to extract and select traits that are helpful in identifying a plant.In plant leaf image categorization,each plant is assigned a label according to its classification.The purpose of classifying plant leaf images is to enable farmers to recognize plants,leading to the management of plants in several aspects.This study aims to present a modified whale optimization algorithm and categorizes plant leaf images into classes.This modified algorithm works on different sets of plant leaves.The proposed algorithm examines several benchmark functions with adequate performance.On ten plant leaf images,this classification method was validated.The proposed model calculates precision,recall,F-measurement,and accuracy for ten different plant leaf image datasets and compares these parameters with other existing algorithms.Based on experimental data,it is observed that the accuracy of the proposed method outperforms the accuracy of different algorithms under consideration and improves accuracy by 5%.
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project,Grant/Award Number:PNURSP2023R333。
文摘In computer vision applications like surveillance and remote sensing,to mention a few,deep learning has had considerable success.Medical imaging still faces a number of difficulties,including intra-class similarity,a scarcity of training data,and poor contrast skin lesions,notably in the case of skin cancer.An optimisation-aided deep learningbased system is proposed for accurate multi-class skin lesion identification.The sequential procedures of the proposed system start with preprocessing and end with categorisation.The preprocessing step is where a hybrid contrast enhancement technique is initially proposed for lesion identification with healthy regions.Instead of flipping and rotating data,the outputs from the middle phases of the hybrid enhanced technique are employed for data augmentation in the next step.Next,two pre-trained deep learning models,MobileNetV2 and NasNet Mobile,are trained using deep transfer learning on the upgraded enriched dataset.Later,a dual-threshold serial approach is employed to obtain and combine the features of both models.The next step was the variance-controlled Marine Predator methodology,which the authors proposed as a superior optimisation method.The top features from the fused feature vector are classified using machine learning classifiers.The experimental strategy provided enhanced accuracy of 94.4%using the publicly available dataset HAM10000.Additionally,the proposed framework is evaluated compared to current approaches,with remarkable results.
基金Researchers Supporting Project Number(RSP2022R458),King Saud University,Riyadh,Saudi Arabia.
文摘Automated Facial Expression Recognition(FER)serves as the backbone of patient monitoring systems,security,and surveillance systems.Real-time FER is a challenging task,due to the uncontrolled nature of the environment and poor quality of input frames.In this paper,a novel FER framework has been proposed for patient monitoring.Preprocessing is performed using contrast-limited adaptive enhancement and the dataset is balanced using augmentation.Two lightweight efficient Convolution Neural Network(CNN)models MobileNetV2 and Neural search Architecture Network Mobile(NasNetMobile)are trained,and feature vectors are extracted.The Whale Optimization Algorithm(WOA)is utilized to remove irrelevant features from these vectors.Finally,the optimized features are serially fused to pass them to the classifier.A comprehensive set of experiments were carried out for the evaluation of real-time image datasets FER-2013,MMA,and CK+to report performance based on various metrics.Accuracy results show that the proposed model has achieved 82.5%accuracy and performed better in comparison to the state-of-the-art classification techniques in terms of accuracy.We would like to highlight that the proposed technique has achieved better accuracy by using 2.8 times lesser number of features.
文摘In 2020,COVID-19 started spreading throughout the world.This deadly infection was identified as a virus that may affect the lungs and,in severe cases,could be the cause of death.The polymerase chain reaction(PCR)test is commonly used to detect this virus through the nasal passage or throat.However,the PCR test exposes health workers to this deadly virus.To limit human exposure while detecting COVID-19,image processing techniques using deep learning have been successfully applied.In this paper,a strategy based on deep learning is employed to classify the COVID-19 virus.To extract features,two deep learning models have been used,the DenseNet201 and the SqueezeNet.Transfer learning is used in feature extraction,and models are fine-tuned.A publicly available computerized tomography(CT)scan dataset has been used in this study.The extracted features from the deep learning models are optimized using the Ant Colony Optimization algorithm.The proposed technique is validated through multiple evaluation parameters.Several classifiers have been employed to classify the optimized features.The cubic support vector machine(Cubic SVM)classifier shows superiority over other commonly used classifiers and attained an accuracy of 98.72%.The proposed technique achieves state-of-the-art accuracy,a sensitivity of 98.80%,and a specificity of 96.64%.
基金Supported by the National Natural Science Foundation of China (No.61976080)the Science and Technology Key Project of Science and Technology Department of Henan Province (No.212102310298)+1 种基金the Innovation and Quality Improvement Project for Graduate Education of Henan University (No.SYL20010101)the Academic Degress&Graduate Education Reform Project of Henan Province (2021SJLX195Y)。
文摘Person re-identification(Re-ID) is integral to intelligent monitoring systems.However,due to the variability in viewing angles and illumination,it is easy to cause visual ambiguities,affecting the accuracy of person re-identification.An approach for person re-identification based on feature mapping space and sample determination is proposed.At first,a weight fusion model,including mean and maximum value of the horizontal occurrence in local features,is introduced into the mapping space to optimize local features.Then,the Gaussian distribution model with hierarchical mean and covariance of pixel features is introduced to enhance feature expression.Finally,considering the influence of the size of samples on metric learning performance,the appropriate metric learning is selected by sample determination method to further improve the performance of person re-identification.Experimental results on the VIPeR,PRID450 S and CUHK01 datasets demonstrate that the proposed method is better than the traditional methods.
基金Supported by the National Natural Science Foundation of China(No.52005442)the Technology Project of Zhejiang Huayun Information Technology Co.,Ltd.(No.HYJT/JS-2020-004).
文摘Accurate short-term photovoltaic(PV)output forecasting is beneficial for increasing grid stabil-ity and enhancing the capacity for photovoltaic power absorption.In response to the challenges faced by commonly used photovoltaic forecasting methods,which struggle to handle issues such as non-u-niform lengths of time series data for power generation and meteorological conditions,overlapping photovoltaic characteristics,and nonlinear correlations,an improved method that utilizes spectral clustering and dynamic time warping(DTW)for selecting similar days is proposed to optimize the dataset along the temporal dimension.Furthermore,XGBoost is employed for recursive feature selec-tion.On this basis,to address the issue that single forecasting models excel at capturing different data characteristics and tend to exhibit significant prediction errors under adverse meteorological con-ditions,an improved forecasting model based on Stacking and weighted fusion is proposed to reduce the independent bias and variance of individual models and enhance the predictive accuracy.Final-ly,experimental validation is carried out using real data from a photovoltaic power station in the Xi-aoshan District of Hangzhou,China,demonstrating that the proposed method can still achieve accu-rate and robust forecasting results even under conditions of significant meteorological fluctuations.
基金This study was supported by the grants of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute(KHIDI),funded by the Ministry of Health&Welfare(HI18C1216)the grant of the National Research Foundation of Korea(NRF-2020R1I1A1A01074256)the Soonchunhyang University Research Fund.
文摘Owing to technological developments,Medical image analysis has received considerable attention in the rapid detection and classification of diseases.The brain is an essential organ in humans.Brain tumors cause loss of memory,vision,and name.In 2020,approximately 18,020 deaths occurred due to brain tumors.These cases can be minimized if a brain tumor is diagnosed at a very early stage.Computer vision researchers have introduced several techniques for brain tumor detection and classification.However,owing to many factors,this is still a challenging task.These challenges relate to the tumor size,the shape of a tumor,location of the tumor,selection of important features,among others.In this study,we proposed a framework for multimodal brain tumor classification using an ensemble of optimal deep learning features.In the proposed framework,initially,a database is normalized in the form of high-grade glioma(HGG)and low-grade glioma(LGG)patients and then two pre-trained deep learning models(ResNet50 and Densenet201)are chosen.The deep learning models were modified and trained using transfer learning.Subsequently,the enhanced ant colony optimization algorithm is proposed for best feature selection from both deep models.The selected features are fused using a serial-based approach and classified using a cubic support vector machine.The experimental process was conducted on the BraTs2019 dataset and achieved accuracies of 87.8%and 84.6%for HGG and LGG,respectively.The comparison is performed using several classification methods,and it shows the significance of our proposed technique.