期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
RFLE-Net:Refined Feature Extraction and Low-Loss Feature Fusion Method in Semantic Segmentation of Medical Images
1
作者 Fan Zhang Zihao Zhang +5 位作者 Huifang Hou Yale Yang Kangzhan Xie Chao Fan Xiaozhen Ren Quan Pan 《Journal of Bionic Engineering》 2025年第3期1557-1572,共16页
The application of transformer networks and feature fusion models in medical image segmentation has aroused considerable attention within the academic circle.Nevertheless,two main obstacles persist:(1)the restrictions... The application of transformer networks and feature fusion models in medical image segmentation has aroused considerable attention within the academic circle.Nevertheless,two main obstacles persist:(1)the restrictions of the Transformer network in dealing with locally detailed features,and(2)the considerable loss of feature information in current feature fusion modules.To solve these issues,this study initially presents a refined feature extraction approach,employing a double-branch feature extraction network to capture complex multi-scale local and global information from images.Subsequently,we proposed a low-loss feature fusion method-Multi-branch Feature Fusion Enhancement Module(MFFEM),which realizes effective feature fusion with minimal loss.Simultaneously,the cross-layer cross-attention fusion module(CLCA)is adopted to further achieve adequate feature fusion by enhancing the interaction between encoders and decoders of various scales.Finally,the feasibility of our method was verified using the Synapse and ACDC datasets,demonstrating its competitiveness.The average DSC(%)was 83.62 and 91.99 respectively,and the average HD95(mm)was reduced to 19.55 and 1.15 respectively. 展开更多
关键词 Multi-organ medical image segmentation Fine-grained dual branch feature extractor Low-Loss feature fusion module
在线阅读 下载PDF
DB-DCAFN:dual-branch deformable cross-attention fusion network for bacterial segmentation
2
作者 Jingkun Wang Xinyu Ma +6 位作者 Long Cao Yilin Leng Zeyi Li Zihan Cheng Yuzhu Cao Xiaoping Huang Jian Zheng 《Visual Computing for Industry,Biomedicine,and Art》 EI 2023年第1期155-170,共16页
Sputum smear tests are critical for the diagnosis of respiratory diseases. Automatic segmentation of bacteria from spu-tum smear images is important for improving diagnostic efficiency. However, this remains a challen... Sputum smear tests are critical for the diagnosis of respiratory diseases. Automatic segmentation of bacteria from spu-tum smear images is important for improving diagnostic efficiency. However, this remains a challenging task owing to the high interclass similarity among different categories of bacteria and the low contrast of the bacterial edges. To explore more levels of global pattern features to promote the distinguishing ability of bacterial categories and main-tain sufficient local fine-grained features to ensure accurate localization of ambiguous bacteria simultaneously, we propose a novel dual-branch deformable cross-attention fusion network (DB-DCAFN) for accurate bacterial segmen-tation. Specifically, we first designed a dual-branch encoder consisting of multiple convolution and transformer blocks in parallel to simultaneously extract multilevel local and global features. We then designed a sparse and deformable cross-attention module to capture the semantic dependencies between local and global features, which can bridge the semantic gap and fuse features effectively. Furthermore, we designed a feature assignment fusion module to enhance meaningful features using an adaptive feature weighting strategy to obtain more accurate segmentation. We conducted extensive experiments to evaluate the effectiveness of DB-DCAFN on a clinical dataset comprising three bacterial categories: Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The experi-mental results demonstrate that the proposed DB-DCAFN outperforms other state-of-the-art methods and is effective at segmenting bacteria from sputum smear images. 展开更多
关键词 Bacterial segmentation Dual-branch parallel encoder Deformable cross-attention module feature assignment fusion module
在线阅读 下载PDF
A Single Image Derain Method Based on Residue Channel Decomposition in Edge Computing
3
作者 Yong Cheng Zexuan Yang +3 位作者 Wenjie Zhang Ling Yang Jun Wang Tingzhao Guan 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期1469-1482,共14页
The numerous photos captured by low-price Internet of Things(IoT)sensors are frequently affected by meteorological factors,especially rainfall.It causes varying sizes of white streaks on the image,destroying the image... The numerous photos captured by low-price Internet of Things(IoT)sensors are frequently affected by meteorological factors,especially rainfall.It causes varying sizes of white streaks on the image,destroying the image texture and ruining the performance of the outdoor computer vision system.Existing methods utilise training with pairs of images,which is difficult to cover all scenes and leads to domain gaps.In addition,the network structures adopt deep learning to map rain images to rain-free images,failing to use prior knowledge effectively.To solve these problems,we introduce a single image derain model in edge computing that combines prior knowledge of rain patterns with the learning capability of the neural network.Specifically,the algorithm first uses Residue Channel Prior to filter out the rainfall textural features then it uses the Feature Fusion Module to fuse the original image with the background feature information.This results in a pre-processed image which is fed into Half Instance Net(HINet)to recover a high-quality rain-free image with a clear and accurate structure,and the model does not rely on any rainfall assumptions.Experimental results on synthetic and real-world datasets show that the average peak signal-to-noise ratio of the model decreases by 0.37 dB on the synthetic dataset and increases by 0.43 dB on the real-world dataset,demonstrating that a combined model reduces the gap between synthetic data and natural rain scenes,improves the generalization ability of the derain network,and alleviates the overfitting problem. 展开更多
关键词 Single image derain method edge computing residue channel prior feature fusion module
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部