The application of transformer networks and feature fusion models in medical image segmentation has aroused considerable attention within the academic circle.Nevertheless,two main obstacles persist:(1)the restrictions...The application of transformer networks and feature fusion models in medical image segmentation has aroused considerable attention within the academic circle.Nevertheless,two main obstacles persist:(1)the restrictions of the Transformer network in dealing with locally detailed features,and(2)the considerable loss of feature information in current feature fusion modules.To solve these issues,this study initially presents a refined feature extraction approach,employing a double-branch feature extraction network to capture complex multi-scale local and global information from images.Subsequently,we proposed a low-loss feature fusion method-Multi-branch Feature Fusion Enhancement Module(MFFEM),which realizes effective feature fusion with minimal loss.Simultaneously,the cross-layer cross-attention fusion module(CLCA)is adopted to further achieve adequate feature fusion by enhancing the interaction between encoders and decoders of various scales.Finally,the feasibility of our method was verified using the Synapse and ACDC datasets,demonstrating its competitiveness.The average DSC(%)was 83.62 and 91.99 respectively,and the average HD95(mm)was reduced to 19.55 and 1.15 respectively.展开更多
Sputum smear tests are critical for the diagnosis of respiratory diseases. Automatic segmentation of bacteria from spu-tum smear images is important for improving diagnostic efficiency. However, this remains a challen...Sputum smear tests are critical for the diagnosis of respiratory diseases. Automatic segmentation of bacteria from spu-tum smear images is important for improving diagnostic efficiency. However, this remains a challenging task owing to the high interclass similarity among different categories of bacteria and the low contrast of the bacterial edges. To explore more levels of global pattern features to promote the distinguishing ability of bacterial categories and main-tain sufficient local fine-grained features to ensure accurate localization of ambiguous bacteria simultaneously, we propose a novel dual-branch deformable cross-attention fusion network (DB-DCAFN) for accurate bacterial segmen-tation. Specifically, we first designed a dual-branch encoder consisting of multiple convolution and transformer blocks in parallel to simultaneously extract multilevel local and global features. We then designed a sparse and deformable cross-attention module to capture the semantic dependencies between local and global features, which can bridge the semantic gap and fuse features effectively. Furthermore, we designed a feature assignment fusion module to enhance meaningful features using an adaptive feature weighting strategy to obtain more accurate segmentation. We conducted extensive experiments to evaluate the effectiveness of DB-DCAFN on a clinical dataset comprising three bacterial categories: Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The experi-mental results demonstrate that the proposed DB-DCAFN outperforms other state-of-the-art methods and is effective at segmenting bacteria from sputum smear images.展开更多
The numerous photos captured by low-price Internet of Things(IoT)sensors are frequently affected by meteorological factors,especially rainfall.It causes varying sizes of white streaks on the image,destroying the image...The numerous photos captured by low-price Internet of Things(IoT)sensors are frequently affected by meteorological factors,especially rainfall.It causes varying sizes of white streaks on the image,destroying the image texture and ruining the performance of the outdoor computer vision system.Existing methods utilise training with pairs of images,which is difficult to cover all scenes and leads to domain gaps.In addition,the network structures adopt deep learning to map rain images to rain-free images,failing to use prior knowledge effectively.To solve these problems,we introduce a single image derain model in edge computing that combines prior knowledge of rain patterns with the learning capability of the neural network.Specifically,the algorithm first uses Residue Channel Prior to filter out the rainfall textural features then it uses the Feature Fusion Module to fuse the original image with the background feature information.This results in a pre-processed image which is fed into Half Instance Net(HINet)to recover a high-quality rain-free image with a clear and accurate structure,and the model does not rely on any rainfall assumptions.Experimental results on synthetic and real-world datasets show that the average peak signal-to-noise ratio of the model decreases by 0.37 dB on the synthetic dataset and increases by 0.43 dB on the real-world dataset,demonstrating that a combined model reduces the gap between synthetic data and natural rain scenes,improves the generalization ability of the derain network,and alleviates the overfitting problem.展开更多
基金funded by the Henan Science and Technology research project(222103810042)Support by the open project of scientific research platform of grain information processing center of Henan University of Technology(KFJJ-2021-108)+1 种基金Support by the innovative funds plan of Henan University of Technology(2021ZKCJ14)Henan University of Technology Youth Backbone Teacher Program.
文摘The application of transformer networks and feature fusion models in medical image segmentation has aroused considerable attention within the academic circle.Nevertheless,two main obstacles persist:(1)the restrictions of the Transformer network in dealing with locally detailed features,and(2)the considerable loss of feature information in current feature fusion modules.To solve these issues,this study initially presents a refined feature extraction approach,employing a double-branch feature extraction network to capture complex multi-scale local and global information from images.Subsequently,we proposed a low-loss feature fusion method-Multi-branch Feature Fusion Enhancement Module(MFFEM),which realizes effective feature fusion with minimal loss.Simultaneously,the cross-layer cross-attention fusion module(CLCA)is adopted to further achieve adequate feature fusion by enhancing the interaction between encoders and decoders of various scales.Finally,the feasibility of our method was verified using the Synapse and ACDC datasets,demonstrating its competitiveness.The average DSC(%)was 83.62 and 91.99 respectively,and the average HD95(mm)was reduced to 19.55 and 1.15 respectively.
基金the Natural Science Foundation of Shandong Province,No.ZR2021MH213and in part by the Suzhou Science and Technology Bureau,No.SJC2021023.
文摘Sputum smear tests are critical for the diagnosis of respiratory diseases. Automatic segmentation of bacteria from spu-tum smear images is important for improving diagnostic efficiency. However, this remains a challenging task owing to the high interclass similarity among different categories of bacteria and the low contrast of the bacterial edges. To explore more levels of global pattern features to promote the distinguishing ability of bacterial categories and main-tain sufficient local fine-grained features to ensure accurate localization of ambiguous bacteria simultaneously, we propose a novel dual-branch deformable cross-attention fusion network (DB-DCAFN) for accurate bacterial segmen-tation. Specifically, we first designed a dual-branch encoder consisting of multiple convolution and transformer blocks in parallel to simultaneously extract multilevel local and global features. We then designed a sparse and deformable cross-attention module to capture the semantic dependencies between local and global features, which can bridge the semantic gap and fuse features effectively. Furthermore, we designed a feature assignment fusion module to enhance meaningful features using an adaptive feature weighting strategy to obtain more accurate segmentation. We conducted extensive experiments to evaluate the effectiveness of DB-DCAFN on a clinical dataset comprising three bacterial categories: Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The experi-mental results demonstrate that the proposed DB-DCAFN outperforms other state-of-the-art methods and is effective at segmenting bacteria from sputum smear images.
基金supported by the National Natural Science Foundation of China under Grant no.41975183,and Grant no.41875184 and Supported by a grant from State Key Laboratory of Resources and Environmental Information System.
文摘The numerous photos captured by low-price Internet of Things(IoT)sensors are frequently affected by meteorological factors,especially rainfall.It causes varying sizes of white streaks on the image,destroying the image texture and ruining the performance of the outdoor computer vision system.Existing methods utilise training with pairs of images,which is difficult to cover all scenes and leads to domain gaps.In addition,the network structures adopt deep learning to map rain images to rain-free images,failing to use prior knowledge effectively.To solve these problems,we introduce a single image derain model in edge computing that combines prior knowledge of rain patterns with the learning capability of the neural network.Specifically,the algorithm first uses Residue Channel Prior to filter out the rainfall textural features then it uses the Feature Fusion Module to fuse the original image with the background feature information.This results in a pre-processed image which is fed into Half Instance Net(HINet)to recover a high-quality rain-free image with a clear and accurate structure,and the model does not rely on any rainfall assumptions.Experimental results on synthetic and real-world datasets show that the average peak signal-to-noise ratio of the model decreases by 0.37 dB on the synthetic dataset and increases by 0.43 dB on the real-world dataset,demonstrating that a combined model reduces the gap between synthetic data and natural rain scenes,improves the generalization ability of the derain network,and alleviates the overfitting problem.