The biodegradability evaluation of petrochemical wastewater is vital for regulating the petrochemical wastewater treatment process.Nevertheless,the essential datasets derived by instruments with different sampling sca...The biodegradability evaluation of petrochemical wastewater is vital for regulating the petrochemical wastewater treatment process.Nevertheless,the essential datasets derived by instruments with different sampling scales are characterized by multiple time scales,making it challenging for the existing data-driven biodegradability evaluation methods to achieve feasible results.In this paper,an intelligent evaluation method is proposed based on multiple time-scale analyses to ensure realtime and accurate biodegradability evaluation of the petrochemical wastewater treatment process.Firstly,a multiple time-scale reconfiguration method is introduced to regularize the datasets consistently by regulating the time-series characteristics of the collected variables.Moreover,missing data for large time-scale variables are supplemented by linear interpolation.Secondly,a multi-scale feature extraction algorithm based on partial least squares is designed to obtain biodegradability feature variables and remove noise and redundant information.Thirdly,an intelligent evaluation model based on a dynamic fuzzy min-max neural network is established to realize the classification of biodegradability.Finally,the proposed evaluation method is applied to the practical petrochemical wastewater treatment process.The experimental results demonstrate that the proposed method can provide real-time and accurate evaluation of the petrochemical wastewater biodegradability.展开更多
A stall diagnosis method based on the entropy feature extraction algorithm is developed in axial compressors.The reliability of the proposed method is determined and a parametric sensitivity analysis is experimentally...A stall diagnosis method based on the entropy feature extraction algorithm is developed in axial compressors.The reliability of the proposed method is determined and a parametric sensitivity analysis is experimentally conducted for two different types of compressor stall diagnoses.A collection of time‐resolved pressure sensors is mounted circumferentially and along the chord direction to measure the dynamic pressure on the casing.Results show that the stall and prestall precursor embedded in the dynamic pressures are identified through nonlinear feature perturbation extraction using the entropy feature extraction algorithm.Further analysis demonstrates that the prestall precursor with the peak entropy value is related to the unsteady tip leakage flow for the spike‐type stall diagnosis.The modal wave inception with increasing amplitude is identified by the considerable increase of the entropy value.The flow field in the tip region indicates that the modal wave corresponds to the flow separation in the suction side of the rotor blade.The warning time is 100–300 rotor revolutions for both types of stall diagnoses,which is beneficial for stall control in different axial compressors.Moreover,a parametric study of the embedding dimension m,similar tolerance n,similar radius r,and data length N in the fuzzy entropy method is conducted to determine the optimal parameter setting for stall diagnosis.The stall warning based on the entropy feature extraction algorithm provides a new stall diagnosis approach in the axial compressor with different stall types.This stall warning can also be adopted as an online stability monitoring index when using the concept of active stall control.展开更多
基金supported by the National Key Research and Development Project(Grant No.2018YFC1900800-5)the National Natural Science Foundation of China(Grant Nos.61890930-5,61622301,61903010,62021003,62103012)Beijing Nova Program(Grant No.20240484694)。
文摘The biodegradability evaluation of petrochemical wastewater is vital for regulating the petrochemical wastewater treatment process.Nevertheless,the essential datasets derived by instruments with different sampling scales are characterized by multiple time scales,making it challenging for the existing data-driven biodegradability evaluation methods to achieve feasible results.In this paper,an intelligent evaluation method is proposed based on multiple time-scale analyses to ensure realtime and accurate biodegradability evaluation of the petrochemical wastewater treatment process.Firstly,a multiple time-scale reconfiguration method is introduced to regularize the datasets consistently by regulating the time-series characteristics of the collected variables.Moreover,missing data for large time-scale variables are supplemented by linear interpolation.Secondly,a multi-scale feature extraction algorithm based on partial least squares is designed to obtain biodegradability feature variables and remove noise and redundant information.Thirdly,an intelligent evaluation model based on a dynamic fuzzy min-max neural network is established to realize the classification of biodegradability.Finally,the proposed evaluation method is applied to the practical petrochemical wastewater treatment process.The experimental results demonstrate that the proposed method can provide real-time and accurate evaluation of the petrochemical wastewater biodegradability.
基金National Natural Science Foundation of China,Grant/Award Number:51922098,51727810National Science and TechnologyMajor Project of China,Grant/Award Number:J2019‐II‐0020‐0041Special Fund for the Member of Youth Innovation Promotion Association of Chinese Academy of Sciences,Grant/Award Number:2018173。
文摘A stall diagnosis method based on the entropy feature extraction algorithm is developed in axial compressors.The reliability of the proposed method is determined and a parametric sensitivity analysis is experimentally conducted for two different types of compressor stall diagnoses.A collection of time‐resolved pressure sensors is mounted circumferentially and along the chord direction to measure the dynamic pressure on the casing.Results show that the stall and prestall precursor embedded in the dynamic pressures are identified through nonlinear feature perturbation extraction using the entropy feature extraction algorithm.Further analysis demonstrates that the prestall precursor with the peak entropy value is related to the unsteady tip leakage flow for the spike‐type stall diagnosis.The modal wave inception with increasing amplitude is identified by the considerable increase of the entropy value.The flow field in the tip region indicates that the modal wave corresponds to the flow separation in the suction side of the rotor blade.The warning time is 100–300 rotor revolutions for both types of stall diagnoses,which is beneficial for stall control in different axial compressors.Moreover,a parametric study of the embedding dimension m,similar tolerance n,similar radius r,and data length N in the fuzzy entropy method is conducted to determine the optimal parameter setting for stall diagnosis.The stall warning based on the entropy feature extraction algorithm provides a new stall diagnosis approach in the axial compressor with different stall types.This stall warning can also be adopted as an online stability monitoring index when using the concept of active stall control.