The rough sets and Boolean reasoning based discretization approach (RSBRA) is no t suitable for feature selection for machine learning algorithms such as neural network or SVM because the information loss due to discr...The rough sets and Boolean reasoning based discretization approach (RSBRA) is no t suitable for feature selection for machine learning algorithms such as neural network or SVM because the information loss due to discretization is large. A mo dified RSBRA for feature selection was proposed and evaluated with SVM classifie rs. In the presented algorithm, the level of consistency, coined from the rough sets theory, is introduced to substitute the stop criterion of circulation of th e RSBRA, which maintains the fidelity of the training set after discretization. The experimental results show the modified algorithm has better predictive accur acy and less training time than the original RSBRA.展开更多
Watermarks can provide reliable and secure copyright protection for optical coherence tomography(OCT)fundus images.The effective image segmentation is helpful for promoting OCT image watermarking.However,OCT images ha...Watermarks can provide reliable and secure copyright protection for optical coherence tomography(OCT)fundus images.The effective image segmentation is helpful for promoting OCT image watermarking.However,OCT images have a large amount of low-quality data,which seriously affects the performance of segmentationmethods.Therefore,this paper proposes an effective segmentation method for OCT fundus image watermarking using a rough convolutional neural network(RCNN).First,the rough-set-based feature discretization module is designed to preprocess the input data.Second,a dual attention mechanism for feature channels and spatial regions in the CNN is added to enable the model to adaptively select important information for fusion.Finally,the refinement module for enhancing the extraction power of multi-scale information is added to improve the edge accuracy in segmentation.RCNN is compared with CE-Net and MultiResUNet on 83 gold standard 3D retinal OCT data samples.The average dice similarly coefficient(DSC)obtained by RCNN is 6%higher than that of CE-Net.The average 95 percent Hausdorff distance(95HD)and average symmetric surface distance(ASD)obtained by RCNN are 32.4%and 33.3%lower than those of MultiResUNet,respectively.We also evaluate the effect of feature discretization,as well as analyze the initial learning rate of RCNN and conduct ablation experiments with the four different models.The experimental results indicate that our method can improve the segmentation accuracy of OCT fundus images,providing strong support for its application in medical image watermarking.展开更多
The significance of the preprocessing stage in any data mining task is well known. Before attempting medical data classification, characteristics of medical datasets, including noise, incompleteness, and the existence...The significance of the preprocessing stage in any data mining task is well known. Before attempting medical data classification, characteristics of medical datasets, including noise, incompleteness, and the existence of multiple and possibly irrelevant features, need to be addressed. In this paper, we show that selecting the right combination of prepro- cessing methods has a considerable impact on the classification potential of a dataset. The preprocessing operations con- sidered include the discretization of numeric attributes, the selection of attribute subset(s), and the handling of missing values. The classification is performed by an ant colony optimization algorithm as a case study. Experimental results on 25 real-world medical datasets show that a significant relative improvement in predictive accuracy, exceeding 60% in some cases, is obtained.展开更多
基金National Key Fundamental Research Pro-ject of China (No.2002cb312200-01-3),National Natural Science Foundation ofChina (No.60174038) and Specialized Re-search Fund for the Doctoral Program ofHigher Education (No.20030248040)
文摘The rough sets and Boolean reasoning based discretization approach (RSBRA) is no t suitable for feature selection for machine learning algorithms such as neural network or SVM because the information loss due to discretization is large. A mo dified RSBRA for feature selection was proposed and evaluated with SVM classifie rs. In the presented algorithm, the level of consistency, coined from the rough sets theory, is introduced to substitute the stop criterion of circulation of th e RSBRA, which maintains the fidelity of the training set after discretization. The experimental results show the modified algorithm has better predictive accur acy and less training time than the original RSBRA.
基金the China Postdoctoral Science Foundation under Grant 2021M701838the Natural Science Foundation of Hainan Province of China under Grants 621MS042 and 622MS067the Hainan Medical University Teaching Achievement Award Cultivation under Grant HYjcpx202209.
文摘Watermarks can provide reliable and secure copyright protection for optical coherence tomography(OCT)fundus images.The effective image segmentation is helpful for promoting OCT image watermarking.However,OCT images have a large amount of low-quality data,which seriously affects the performance of segmentationmethods.Therefore,this paper proposes an effective segmentation method for OCT fundus image watermarking using a rough convolutional neural network(RCNN).First,the rough-set-based feature discretization module is designed to preprocess the input data.Second,a dual attention mechanism for feature channels and spatial regions in the CNN is added to enable the model to adaptively select important information for fusion.Finally,the refinement module for enhancing the extraction power of multi-scale information is added to improve the edge accuracy in segmentation.RCNN is compared with CE-Net and MultiResUNet on 83 gold standard 3D retinal OCT data samples.The average dice similarly coefficient(DSC)obtained by RCNN is 6%higher than that of CE-Net.The average 95 percent Hausdorff distance(95HD)and average symmetric surface distance(ASD)obtained by RCNN are 32.4%and 33.3%lower than those of MultiResUNet,respectively.We also evaluate the effect of feature discretization,as well as analyze the initial learning rate of RCNN and conduct ablation experiments with the four different models.The experimental results indicate that our method can improve the segmentation accuracy of OCT fundus images,providing strong support for its application in medical image watermarking.
文摘The significance of the preprocessing stage in any data mining task is well known. Before attempting medical data classification, characteristics of medical datasets, including noise, incompleteness, and the existence of multiple and possibly irrelevant features, need to be addressed. In this paper, we show that selecting the right combination of prepro- cessing methods has a considerable impact on the classification potential of a dataset. The preprocessing operations con- sidered include the discretization of numeric attributes, the selection of attribute subset(s), and the handling of missing values. The classification is performed by an ant colony optimization algorithm as a case study. Experimental results on 25 real-world medical datasets show that a significant relative improvement in predictive accuracy, exceeding 60% in some cases, is obtained.