期刊文献+
共找到37篇文章
< 1 2 >
每页显示 20 50 100
Double Self-Attention Based Fully Connected Feature Pyramid Network for Field Crop Pest Detection
1
作者 Zijun Gao Zheyi Li +2 位作者 Chunqi Zhang Ying Wang Jingwen Su 《Computers, Materials & Continua》 2025年第6期4353-4371,共19页
Pest detection techniques are helpful in reducing the frequency and scale of pest outbreaks;however,their application in the actual agricultural production process is still challenging owing to the problems of intersp... Pest detection techniques are helpful in reducing the frequency and scale of pest outbreaks;however,their application in the actual agricultural production process is still challenging owing to the problems of interspecies similarity,multi-scale,and background complexity of pests.To address these problems,this study proposes an FD-YOLO pest target detection model.The FD-YOLO model uses a Fully Connected Feature Pyramid Network(FC-FPN)instead of a PANet in the neck,which can adaptively fuse multi-scale information so that the model can retain small-scale target features in the deep layer,enhance large-scale target features in the shallow layer,and enhance the multiplexing of effective features.A dual self-attention module(DSA)is then embedded in the C3 module of the neck,which captures the dependencies between the information in both spatial and channel dimensions,effectively enhancing global features.We selected 16 types of pests that widely damage field crops in the IP102 pest dataset,which were used as our dataset after data supplementation and enhancement.The experimental results showed that FD-YOLO’s mAP@0.5 improved by 6.8%compared to YOLOv5,reaching 82.6%and 19.1%–5%better than other state-of-the-art models.This method provides an effective new approach for detecting similar or multiscale pests in field crops. 展开更多
关键词 Pest detection YOLOv5 feature pyramid network transformer attention module
在线阅读 下载PDF
Feature pyramid attention network for audio-visual scene classification
2
作者 Liguang Zhou Yuhongze Zhou +3 位作者 Xiaonan Qi Junjie Hu Tin Lun Lam Yangsheng Xu 《CAAI Transactions on Intelligence Technology》 2025年第2期359-374,共16页
Audio-visual scene classification(AVSC)poses a formidable challenge owing to the intricate spatial-temporal relationships exhibited by audio-visual signals,coupled with the complex spatial patterns of objects and text... Audio-visual scene classification(AVSC)poses a formidable challenge owing to the intricate spatial-temporal relationships exhibited by audio-visual signals,coupled with the complex spatial patterns of objects and textures found in visual images.The focus of recent studies has predominantly revolved around extracting features from diverse neural network structures,inadvertently neglecting the acquisition of semantically meaningful regions and crucial components within audio-visual data.The authors present a feature pyramid attention network(FPANet)for audio-visual scene understanding,which extracts semantically significant characteristics from audio-visual data.The authors’approach builds multi-scale hierarchical features of sound spectrograms and visual images using a feature pyramid representation and localises the semantically relevant regions with a feature pyramid attention module(FPAM).A dimension alignment(DA)strategy is employed to align feature maps from multiple layers,a pyramid spatial attention(PSA)to spatially locate essential regions,and a pyramid channel attention(PCA)to pinpoint significant temporal frames.Experiments on visual scene classification(VSC),audio scene classification(ASC),and AVSC tasks demonstrate that FPANet achieves performance on par with state-of-the-art(SOTA)approaches,with a 95.9 F1-score on the ADVANCE dataset and a relative improvement of 28.8%.Visualisation results show that FPANet can prioritise semantically meaningful areas in audio-visual signals. 展开更多
关键词 dimension alignment feature pyramid attention network pyramid channel attention pyramid spatial attention semantic relevant regions
在线阅读 下载PDF
IMTNet:Improved Multi-Task Copy-Move Forgery Detection Network with Feature Decoupling and Multi-Feature Pyramid
3
作者 Huan Wang Hong Wang +2 位作者 Zhongyuan Jiang Qing Qian Yong Long 《Computers, Materials & Continua》 SCIE EI 2024年第9期4603-4620,共18页
Copy-Move Forgery Detection(CMFD)is a technique that is designed to identify image tampering and locate suspicious areas.However,the practicality of the CMFD is impeded by the scarcity of datasets,inadequate quality a... Copy-Move Forgery Detection(CMFD)is a technique that is designed to identify image tampering and locate suspicious areas.However,the practicality of the CMFD is impeded by the scarcity of datasets,inadequate quality and quantity,and a narrow range of applicable tasks.These limitations significantly restrict the capacity and applicability of CMFD.To overcome the limitations of existing methods,a novel solution called IMTNet is proposed for CMFD by employing a feature decoupling approach.Firstly,this study formulates the objective task and network relationship as an optimization problem using transfer learning.Furthermore,it thoroughly discusses and analyzes the relationship between CMFD and deep network architecture by employing ResNet-50 during the optimization solving phase.Secondly,a quantitative comparison between fine-tuning and feature decoupling is conducted to evaluate the degree of similarity between the image classification and CMFD domains by the enhanced ResNet-50.Finally,suspicious regions are localized using a feature pyramid network with bottom-up path augmentation.Experimental results demonstrate that IMTNet achieves faster convergence,shorter training times,and favorable generalization performance compared to existingmethods.Moreover,it is shown that IMTNet significantly outperforms fine-tuning based approaches in terms of accuracy and F_(1). 展开更多
关键词 Image copy-move detection feature decoupling multi-scale feature pyramids passive forensics
在线阅读 下载PDF
Two-Layer Attention Feature Pyramid Network for Small Object Detection
4
作者 Sheng Xiang Junhao Ma +2 位作者 Qunli Shang Xianbao Wang Defu Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期713-731,共19页
Effective small object detection is crucial in various applications including urban intelligent transportation and pedestrian detection.However,small objects are difficult to detect accurately because they contain les... Effective small object detection is crucial in various applications including urban intelligent transportation and pedestrian detection.However,small objects are difficult to detect accurately because they contain less information.Many current methods,particularly those based on Feature Pyramid Network(FPN),address this challenge by leveraging multi-scale feature fusion.However,existing FPN-based methods often suffer from inadequate feature fusion due to varying resolutions across different layers,leading to suboptimal small object detection.To address this problem,we propose the Two-layerAttention Feature Pyramid Network(TA-FPN),featuring two key modules:the Two-layer Attention Module(TAM)and the Small Object Detail Enhancement Module(SODEM).TAM uses the attention module to make the network more focused on the semantic information of the object and fuse it to the lower layer,so that each layer contains similar semantic information,to alleviate the problem of small object information being submerged due to semantic gaps between different layers.At the same time,SODEM is introduced to strengthen the local features of the object,suppress background noise,enhance the information details of the small object,and fuse the enhanced features to other feature layers to ensure that each layer is rich in small object information,to improve small object detection accuracy.Our extensive experiments on challenging datasets such as Microsoft Common Objects inContext(MSCOCO)and Pattern Analysis Statistical Modelling and Computational Learning,Visual Object Classes(PASCAL VOC)demonstrate the validity of the proposedmethod.Experimental results show a significant improvement in small object detection accuracy compared to state-of-theart detectors. 展开更多
关键词 Small object detection two-layer attention module small object detail enhancement module feature pyramid network
在线阅读 下载PDF
Bidirectional parallel multi-branch convolution feature pyramid network for target detection in aerial images of swarm UAVs 被引量:4
5
作者 Lei Fu Wen-bin Gu +3 位作者 Wei Li Liang Chen Yong-bao Ai Hua-lei Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第4期1531-1541,共11页
In this paper,based on a bidirectional parallel multi-branch feature pyramid network(BPMFPN),a novel one-stage object detector called BPMFPN Det is proposed for real-time detection of ground multi-scale targets by swa... In this paper,based on a bidirectional parallel multi-branch feature pyramid network(BPMFPN),a novel one-stage object detector called BPMFPN Det is proposed for real-time detection of ground multi-scale targets by swarm unmanned aerial vehicles(UAVs).First,the bidirectional parallel multi-branch convolution modules are used to construct the feature pyramid to enhance the feature expression abilities of different scale feature layers.Next,the feature pyramid is integrated into the single-stage object detection framework to ensure real-time performance.In order to validate the effectiveness of the proposed algorithm,experiments are conducted on four datasets.For the PASCAL VOC dataset,the proposed algorithm achieves the mean average precision(mAP)of 85.4 on the VOC 2007 test set.With regard to the detection in optical remote sensing(DIOR)dataset,the proposed algorithm achieves 73.9 mAP.For vehicle detection in aerial imagery(VEDAI)dataset,the detection accuracy of small land vehicle(slv)targets reaches 97.4 mAP.For unmanned aerial vehicle detection and tracking(UAVDT)dataset,the proposed BPMFPN Det achieves the mAP of 48.75.Compared with the previous state-of-the-art methods,the results obtained by the proposed algorithm are more competitive.The experimental results demonstrate that the proposed algorithm can effectively solve the problem of real-time detection of ground multi-scale targets in aerial images of swarm UAVs. 展开更多
关键词 Aerial images Object detection feature pyramid networks Multi-scale feature fusion Swarm UAVs
在线阅读 下载PDF
Dual Attention Based Feature Pyramid Network 被引量:5
6
作者 Huijun Xing Shuai Wang +1 位作者 Dezhi Zheng Xiaotong Zhao 《China Communications》 SCIE CSCD 2020年第8期242-252,共11页
Object detection could be recognized as an essential part of the research to scenarios such as automatic driving and pedestrian detection, etc. Among multiple types of target objects, the identification of small-scale... Object detection could be recognized as an essential part of the research to scenarios such as automatic driving and pedestrian detection, etc. Among multiple types of target objects, the identification of small-scale objects faces significant challenges. We would introduce a new feature pyramid framework called Dual Attention based Feature Pyramid Network(DAFPN), which is designed to avoid predicament about multi-scale object recognition. In DAFPN, the attention mechanism is introduced by calculating the topdown pathway and lateral pathway, where the spatial attention, as well as channel attention, would participate, respectively, such that the pyramidal feature maps can be generated with enhanced spatial and channel interdependencies, which bring more semantical information for the feature pyramid. Using the COCO data set, which consists of a considerable quantity of small-scale objects, the experiments are implemented. The analysis results verify the optimized performance of DAFPN compared with the original Feature Pyramid Network(FPN) specifically for the identification on a small scale. The proposed DAFPN is promising for object detection in an era full of intelligent machines that need to detect multi-scale objects. 展开更多
关键词 object detection convolutional neural networks feature pyramid
在线阅读 下载PDF
Neighborhood fusion-based hierarchical parallel feature pyramid network for object detection 被引量:3
7
作者 Mo Lingfei Hu Shuming 《Journal of Southeast University(English Edition)》 EI CAS 2020年第3期252-263,共12页
In order to improve the detection accuracy of small objects,a neighborhood fusion-based hierarchical parallel feature pyramid network(NFPN)is proposed.Unlike the layer-by-layer structure adopted in the feature pyramid... In order to improve the detection accuracy of small objects,a neighborhood fusion-based hierarchical parallel feature pyramid network(NFPN)is proposed.Unlike the layer-by-layer structure adopted in the feature pyramid network(FPN)and deconvolutional single shot detector(DSSD),where the bottom layer of the feature pyramid network relies on the top layer,NFPN builds the feature pyramid network with no connections between the upper and lower layers.That is,it only fuses shallow features on similar scales.NFPN is highly portable and can be embedded in many models to further boost performance.Extensive experiments on PASCAL VOC 2007,2012,and COCO datasets demonstrate that the NFPN-based SSD without intricate tricks can exceed the DSSD model in terms of detection accuracy and inference speed,especially for small objects,e.g.,4%to 5%higher mAP(mean average precision)than SSD,and 2%to 3%higher mAP than DSSD.On VOC 2007 test set,the NFPN-based SSD with 300×300 input reaches 79.4%mAP at 34.6 frame/s,and the mAP can raise to 82.9%after using the multi-scale testing strategy. 展开更多
关键词 computer vision deep convolutional neural network object detection hierarchical parallel feature pyramid network multi-scale feature fusion
在线阅读 下载PDF
An Improved Data-Driven Topology Optimization Method Using Feature Pyramid Networks with Physical Constraints 被引量:1
8
作者 Jiaxiang Luo Yu Li +3 位作者 Weien Zhou ZhiqiangGong Zeyu Zhang Wen Yao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第9期823-848,共26页
Deep learning for topology optimization has been extensively studied to reduce the cost of calculation in recent years.However,the loss function of the above method is mainly based on pixel-wise errors from the image ... Deep learning for topology optimization has been extensively studied to reduce the cost of calculation in recent years.However,the loss function of the above method is mainly based on pixel-wise errors from the image perspective,which cannot embed the physical knowledge of topology optimization.Therefore,this paper presents an improved deep learning model to alleviate the above difficulty effectively.The feature pyramid network(FPN),a kind of deep learning model,is trained to learn the inherent physical law of topology optimization itself,of which the loss function is composed of pixel-wise errors and physical constraints.Since the calculation of physical constraints requires finite element analysis(FEA)with high calculating costs,the strategy of adjusting the time when physical constraints are added is proposed to achieve the balance between the training cost and the training effect.Then,two classical topology optimization problems are investigated to verify the effectiveness of the proposed method.The results show that the developed model using a small number of samples can quickly obtain the optimization structure without any iteration,which has not only high pixel-wise accuracy but also good physical performance. 展开更多
关键词 Topology optimization deep learning feature pyramid networks finite element analysis physical constraints
在线阅读 下载PDF
Optimized Convolutional Neural Networks with Multi-Scale Pyramid Feature Integration for Efficient Traffic Light Detection in Intelligent Transportation Systems
9
作者 Yahia Said Yahya Alassaf +2 位作者 Refka Ghodhbani Taoufik Saidani Olfa Ben Rhaiem 《Computers, Materials & Continua》 2025年第2期3005-3018,共14页
Transportation systems are experiencing a significant transformation due to the integration of advanced technologies, including artificial intelligence and machine learning. In the context of intelligent transportatio... Transportation systems are experiencing a significant transformation due to the integration of advanced technologies, including artificial intelligence and machine learning. In the context of intelligent transportation systems (ITS) and Advanced Driver Assistance Systems (ADAS), the development of efficient and reliable traffic light detection mechanisms is crucial for enhancing road safety and traffic management. This paper presents an optimized convolutional neural network (CNN) framework designed to detect traffic lights in real-time within complex urban environments. Leveraging multi-scale pyramid feature maps, the proposed model addresses key challenges such as the detection of small, occluded, and low-resolution traffic lights amidst complex backgrounds. The integration of dilated convolutions, Region of Interest (ROI) alignment, and Soft Non-Maximum Suppression (Soft-NMS) further improves detection accuracy and reduces false positives. By optimizing computational efficiency and parameter complexity, the framework is designed to operate seamlessly on embedded systems, ensuring robust performance in real-world applications. Extensive experiments using real-world datasets demonstrate that our model significantly outperforms existing methods, providing a scalable solution for ITS and ADAS applications. This research contributes to the advancement of Artificial Intelligence-driven (AI-driven) pattern recognition in transportation systems and offers a mathematical approach to improving efficiency and safety in logistics and transportation networks. 展开更多
关键词 Intelligent transportation systems(ITS) traffic light detection multi-scale pyramid feature maps advanced driver assistance systems(ADAS) real-time detection AI in transportation
在线阅读 下载PDF
Hyperspectral Satellite Image Classification Based on Feature Pyramid Networks With 3D Convolution
10
作者 CHEN Cheng PENG Pan +1 位作者 TAO Wei ZHAO Hui 《Journal of Shanghai Jiaotong university(Science)》 2025年第6期1073-1084,共12页
Recent advances in convolution neural network (CNN) have fostered the progress in object recognition and semantic segmentation, which in turn has improved the performance of hyperspectral image (HSI) classification. N... Recent advances in convolution neural network (CNN) have fostered the progress in object recognition and semantic segmentation, which in turn has improved the performance of hyperspectral image (HSI) classification. Nevertheless, the difficulty of high dimensional feature extraction and the shortage of small training samples seriously hinder the future development of HSI classification. In this paper, we propose a novel algorithm for HSI classification based on three-dimensional (3D) CNN and a feature pyramid network (FPN), called 3D-FPN. The framework contains a principle component analysis, a feature extraction structure and a logistic regression. Specifically, the FPN built with 3D convolutions not only retains the advantages of 3D convolution to fully extract the spectral-spatial feature maps, but also concentrates on more detailed information and performs multi-scale feature fusion. This method avoids the excessive complexity of the model and is suitable for small sample hyperspectral classification with varying categories and spatial resolutions. In order to test the performance of our proposed 3D-FPN method, rigorous experimental analysis was performed on three public hyperspectral data sets and hyperspectral data of GF-5 satellite. Quantitative and qualitative results indicated that our proposed method attained the best performance among other current state-of-the-art end-to-end deep learning-based methods. 展开更多
关键词 hyperspectral image(HSI) deep learning feature pyramid network(FPN) spectral-spatial feature extraction
原文传递
AHLNet:Adaptive Multihead Structure and Lightweight Feature Pyramid Network for Detection of Live Working in Substations
11
作者 Mengle Peng Xiaoyong Jiang +3 位作者 Langyue Huang Zhongyi Li Haiteng Wu Xiaotang Geng 《Machine Intelligence Research》 EI CSCD 2024年第5期983-992,共10页
With the increasing demand for power in society,there is much live equipment in substations,and the safety and standardization of live working of workers are facing challenges.Aiming at these problems of scene complex... With the increasing demand for power in society,there is much live equipment in substations,and the safety and standardization of live working of workers are facing challenges.Aiming at these problems of scene complexity and object diversity in the real-time detection of the live working safety of substation workers,an adaptive multihead structure and lightweight feature pyramid-based network(AHLNet)is proposed in this study,which is based on YOLOV3.First,we take AH-Darknet53 as the backbone network of YOLOV3,which can introduce an adaptive multihead(AMH)structure,reduce the number of network parameters,and improve the feature extraction ability of the backbone network.Second,to reduce the number of convolution layers of the deeper feature map,a lightweight feature pyramid network(LFPN)is proposed,which can perform feature fusion in advance to alleviate the problem of feature imbalance and gradient disappearance.Finally,the proposed AHLNet is evaluated on the datasets of 16 categories of substation safety operation scenarios,and the average prediction accuracy MAP_(50)reaches 82.10%.Compared with YOLOV3,MAP_(50)is increased by 2.43%,and the number of parameters is 90 M,which is only 38%of the number of parameters of YOLOV3.In addition,the detection speed is basically the same as that of YOLOV3,which can meet the real-time and accurate detection requirements for the safe operation of substation staff. 展开更多
关键词 Adaptive multihead structure lightweight feature pyramid substation feature imbalance multiobject detection
原文传递
Enhancing Classroom Behavior Recognition with Lightweight Multi-Scale Feature Fusion
12
作者 Chuanchuan Wang Ahmad Sufril Azlan Mohamed +3 位作者 Xiao Yang Hao Zhang Xiang Li Mohd Halim Bin Mohd Noor 《Computers, Materials & Continua》 2025年第10期855-874,共20页
Classroom behavior recognition is a hot research topic,which plays a vital role in assessing and improving the quality of classroom teaching.However,existing classroom behavior recognition methods have challenges for ... Classroom behavior recognition is a hot research topic,which plays a vital role in assessing and improving the quality of classroom teaching.However,existing classroom behavior recognition methods have challenges for high recognition accuracy with datasets with problems such as scenes with blurred pictures,and inconsistent objects.To address this challenge,we proposed an effective,lightweight object detector method called the RFNet model(YOLO-FR).The YOLO-FR is a lightweight and effective model.Specifically,for efficient multi-scale feature extraction,effective feature pyramid shared convolutional(FPSC)was designed to improve the feature extract performance by leveraging convolutional layers with varying dilation rates from the input image in the backbone.Secondly,to address the problem of multi-scale variability in the scene,we design the Rep Ghost fusion Cross Stage Partial and Efficient Layer Aggregation Network(RGCSPELAN)to improve the network performance further and reduce the amount of computation and the number of parameters.In addition,by conducting experimental valuation on the SCB dataset3 and STBD-08 dataset.Experimental results indicate that,compared to the baseline model,the RFNet model has increased mean accuracy precision(mAP@50)from 69.6%to 71.0%on the SCB dataset3 and from 91.8%to 93.1%on the STBD-08 dataset.The RFNet approach has effectiveness precision at 68.6%,surpassing the baseline method(YOLOv11)at 3.3%and archieve the minimal size(4.9 M)on the SCB dataset3.Finally,comparing it with other algorithms,it accurately detects student behavior in complex classroom environments results confirmed that RFNet is well-suited for real-time and efficiently recognizing classroom behaviors. 展开更多
关键词 Classroom action recognition YOLO-FR feature pyramid shared convolutional rep ghost cross stage partial efficient layer aggregation network(RGCSPELAN)
在线阅读 下载PDF
Parallel channel and position attention-guided feature pyramid for pig face posture detection
13
作者 Zhiwei Hu Hongwen Yan Tiantian Lou 《International Journal of Agricultural and Biological Engineering》 SCIE CAS 2022年第6期222-234,共13页
The area of the pig’s face contains rich biological information,such as eyes,nose,and ear.The high-precision detection of pig face postures is crucial to the identification of pigs,and it can also provide fundamental... The area of the pig’s face contains rich biological information,such as eyes,nose,and ear.The high-precision detection of pig face postures is crucial to the identification of pigs,and it can also provide fundamental archival information for the study of abnormal behavioral characteristics and regularities.In this study,a series of attention blocks were embedded in Feature Pyramid Network(FPN)for automatic detection of the pig face posture in group-breeding environments.Firstly,the Channel Attention Block(CAB)and Position Attention Block(PAB)were proposed to capture the channel dependencies and the pixel-level long-range relationships,respectively.Secondly,a variety of attention modules are proposed to effectively combine the two kinds of attention information,specifically including Parallel Channel Position(PCP),Cascade Position Channel(CPC),and Cascade Channel Position(CCP),which fuse the channel and position attention information in both parallel or cascade ways.Finally,the verification experiments on three task networks with two backbone networks were conducted for different attention blocks or modules.A total of 45 pigs in 8 pigpens were used as the research objects.Experimental results show that attention-based models perform better.Especially,with Faster Region Convolutional Neural Network(Faster R-CNN)as the task network and ResNet101 as the backbone network,after the introduction of the PCP module,the Average Precision(AP)indicators of the face poses of Downward with head-on face(D-O),Downward with lateral face(D-L),Level with head-on face(L-O),Level with lateral face(L-L),Upward with head-on face(U-O),and Upward with lateral face(U-L)achieve 91.55%,90.36%,90.10%,90.05%,85.96%,and 87.92%,respectively.Ablation experiments show that the PAB attention block is not as effective as the CAB attention block,and the parallel combination method is better than the cascade manner.Taking Faster R-CNN as the task network and ResNet101 as the backbone network,the heatmap visualization of different layers of FPN before and after adding PCP shows that,compared with the non-PCP module,the PCP module can more easily aggregate denser and richer contextual information,this,in turn,enhances long-range dependencies to improve feature representation.At the same time,the model based on PCP attention can effectively detect the pig face posture of different ages,different scenes,and different light intensities,which can help lay the foundation for subsequent individual identification and behavior analysis of pigs. 展开更多
关键词 objection detection attention mechanism feature pyramid network face posture detection PIG
原文传递
Infrared road object detection algorithm based on spatial depth channel attention network and improved YOLOv8
14
作者 LI Song SHI Tao +1 位作者 JING Fangke CUI Jie 《Optoelectronics Letters》 2025年第8期491-498,共8页
Aiming at the problems of low detection accuracy and large model size of existing object detection algorithms applied to complex road scenes,an improved you only look once version 8(YOLOv8)object detection algorithm f... Aiming at the problems of low detection accuracy and large model size of existing object detection algorithms applied to complex road scenes,an improved you only look once version 8(YOLOv8)object detection algorithm for infrared images,F-YOLOv8,is proposed.First,a spatial-to-depth network replaces the traditional backbone network's strided convolution or pooling layer.At the same time,it combines with the channel attention mechanism so that the neural network focuses on the channels with large weight values to better extract low-resolution image feature information;then an improved feature pyramid network of lightweight bidirectional feature pyramid network(L-BiFPN)is proposed,which can efficiently fuse features of different scales.In addition,a loss function of insertion of union based on the minimum point distance(MPDIoU)is introduced for bounding box regression,which obtains faster convergence speed and more accurate regression results.Experimental results on the FLIR dataset show that the improved algorithm can accurately detect infrared road targets in real time with 3%and 2.2%enhancement in mean average precision at 50%IoU(mAP50)and mean average precision at 50%—95%IoU(mAP50-95),respectively,and 38.1%,37.3%and 16.9%reduction in the number of model parameters,the model weight,and floating-point operations per second(FLOPs),respectively.To further demonstrate the detection capability of the improved algorithm,it is tested on the public dataset PASCAL VOC,and the results show that F-YOLO has excellent generalized detection performance. 展开更多
关键词 feature pyramid network infrared road object detection infrared imagesf yolov backbone networks channel attention mechanism spatial depth channel attention network object detection improved YOLOv
原文传递
Hybrid receptive field network for small object detection on drone view
15
作者 Zhaodong CHEN Hongbing JI +2 位作者 Yongquan ZHANG Wenke LIU Zhigang ZHU 《Chinese Journal of Aeronautics》 2025年第2期322-338,共17页
Drone-based small object detection is of great significance in practical applications such as military actions, disaster rescue, transportation, etc. However, the severe scale differences in objects captured by drones... Drone-based small object detection is of great significance in practical applications such as military actions, disaster rescue, transportation, etc. However, the severe scale differences in objects captured by drones and lack of detail information for small-scale objects make drone-based small object detection a formidable challenge. To address these issues, we first develop a mathematical model to explore how changing receptive fields impacts the polynomial fitting results. Subsequently, based on the obtained conclusions, we propose a simple but effective Hybrid Receptive Field Network (HRFNet), whose modules include Hybrid Feature Augmentation (HFA), Hybrid Feature Pyramid (HFP) and Dual Scale Head (DSH). Specifically, HFA employs parallel dilated convolution kernels of different sizes to extend shallow features with different receptive fields, committed to improving the multi-scale adaptability of the network;HFP enhances the perception of small objects by capturing contextual information across layers, while DSH reconstructs the original prediction head utilizing a set of high-resolution features and ultrahigh-resolution features. In addition, in order to train HRFNet, the corresponding dual-scale loss function is designed. Finally, comprehensive evaluation results on public benchmarks such as VisDrone-DET and TinyPerson demonstrate the robustness of the proposed method. Most impressively, the proposed HRFNet achieves a mAP of 51.0 on VisDrone-DET with 29.3 M parameters, which outperforms the extant state-of-the-art detectors. HRFNet also performs excellently in complex scenarios captured by drones, achieving the best performance on the CS-Drone dataset we built. 展开更多
关键词 Drone remote sensing Object detection on drone view Small object detector Hybrid receptive field feature pyramid network feature augmentation Multi-scale object detection
原文传递
Weld Defect Monitoring Based on Two-Stage Convolutional Neural Network
16
作者 XIAO Wenbo XIONG Jiakai +2 位作者 YU Lesheng HE Yinshui MA Guohong 《Journal of Shanghai Jiaotong university(Science)》 2025年第2期291-299,共9页
Zn vapour is easily generated on the surface by fusion welding galvanized steel sheet,resulting in the formation of defects.Rapidly developing computer vision sensing technology collects weld images in the welding pro... Zn vapour is easily generated on the surface by fusion welding galvanized steel sheet,resulting in the formation of defects.Rapidly developing computer vision sensing technology collects weld images in the welding process,then obtains laser fringe information through digital image processing,identifies welding defects,and finally realizes online control of weld defects.The performance of a convolutional neural network is related to its structure and the quality of the input image.The acquired original images are labeled with LabelMe,and repeated attempts are made to determine the appropriate filtering and edge detection image preprocessing methods.Two-stage convolutional neural networks with different structures are built on the Tensorflow deep learning framework,different thresholds of intersection over union are set,and deep learning methods are used to evaluate the collected original images and the preprocessed images separately.Compared with the test results,the comprehensive performance of the improved feature pyramid networks algorithm based on the basic network VGG16 is lower than that of the basic network Resnet101.Edge detection of the image will significantly improve the accuracy of the model.Adding blur will reduce the accuracy of the model slightly;however,the overall performance of the improved algorithm is still relatively good,which proves the stability of the algorithm.The self-developed software inspection system can be used for image preprocessing and defect recognition,which can be used to record the number and location of typical defects in continuous welds. 展开更多
关键词 defects monitoring image preprocessing Resnet101 feature pyramid network
原文传递
Visual Perception and Adaptive Scene Analysis with Autonomous Panoptic Segmentation
17
作者 Darthy Rabecka V Britto Pari J Man-Fai Leung 《Computers, Materials & Continua》 2025年第10期827-853,共27页
Techniques in deep learning have significantly boosted the accuracy and productivity of computer vision segmentation tasks.This article offers an intriguing architecture for semantic,instance,and panoptic segmentation... Techniques in deep learning have significantly boosted the accuracy and productivity of computer vision segmentation tasks.This article offers an intriguing architecture for semantic,instance,and panoptic segmentation using EfficientNet-B7 and Bidirectional Feature Pyramid Networks(Bi-FPN).When implemented in place of the EfficientNet-B5 backbone,EfficientNet-B7 strengthens the model’s feature extraction capabilities and is far more appropriate for real-world applications.By ensuring superior multi-scale feature fusion,Bi-FPN integration enhances the segmentation of complex objects across various urban environments.The design suggested is examined on rigorous datasets,encompassing Cityscapes,Common Objects in Context,KITTI Karlsruhe Institute of Technology and Toyota Technological Institute,and Indian Driving Dataset,which replicate numerous real-world driving conditions.During extensive training,validation,and testing,the model showcases major gains in segmentation accuracy and surpasses state-of-the-art performance in semantic,instance,and panoptic segmentation tasks.Outperforming present methods,the recommended approach generates noteworthy gains in Panoptic Quality:+0.4%on Cityscapes,+0.2%on COCO,+1.7%on KITTI,and+0.4%on IDD.These changes show just how efficient it is in various driving circumstances and datasets.This study emphasizes the potential of EfficientNet-B7 and Bi-FPN to provide dependable,high-precision segmentation in computer vision applications,primarily autonomous driving.The research results suggest that this framework efficiently tackles the constraints of practical situations while delivering a robust solution for high-performance tasks involving segmentation. 展开更多
关键词 Panoptic segmentation multi-scale features efficient net-B7 feature pyramid Network
在线阅读 下载PDF
基于YOLOv8改进的脑癌检测算法
18
作者 王喆 赵慧俊 +2 位作者 谭超 李骏 申冲 《计算机科学》 CSCD 北大核心 2024年第S02期444-450,共7页
自动检测脑部肿瘤在磁共振成像中的位置是一个复杂、繁重的任务,需要耗费大量时间和资源。传统识别方案经常出现误解、遗漏和误导的情况,从而影响患者的治疗进度,对患者的生命安全产生影响。为了进一步提高鉴定的效果,引入了4项关键改... 自动检测脑部肿瘤在磁共振成像中的位置是一个复杂、繁重的任务,需要耗费大量时间和资源。传统识别方案经常出现误解、遗漏和误导的情况,从而影响患者的治疗进度,对患者的生命安全产生影响。为了进一步提高鉴定的效果,引入了4项关键改进措施。首先,采用了高效的多尺度注意力EMA(Efficient Multi-scale Attention),这种方法既可以对全局信息进行编码,也可以对信息进行重新校准,同时通过并行的分支输出特征进行跨维度的交互,使信息进一步聚合。其次,引入了BiFPN(Bidirectional Feature Pyramid Network)模块,并对其结构进行改进,以便缩短每一次检测所需要的时间,同时提升图像识别效果。然后采用MDPIoU损失函数和Mish激活函数进行改进,进一步提高检测的准确度。最后进行仿真实验,实验结果表明,改进的YOLOv8算法在脑癌检测中的精确率、召回率、平均精度均值均有提升,其中Precision提高了4.48%,Recall提高了2.64%,mAP@0.5提高了2.6%,mAP@0.5:0.9提高了7.0%。 展开更多
关键词 YOLOv8 脑癌 Efficient Multi-Scale Attention模块 Bidirectional feature pyramid Network结构 Missed Softplus with Identity Shortcut激活函数 Minimum Point Distance Intersection over Union损失函数
在线阅读 下载PDF
Detecting the Bull’s-Eye Effect in Seismic Inversion Low-Frequency Models Using the Optimized YOLOv7 Model
19
作者 Jun Li Jia-bing Meng Pan Li 《Applied Geophysics》 SCIE CSCD 2024年第4期766-776,880,881,共13页
To detect bull’s-eye anomalies in low-frequency seismic inversion models,the study proposed an advanced method using an optimized you only look once version 7(YOLOv7)model.This model is enhanced by integrating advanc... To detect bull’s-eye anomalies in low-frequency seismic inversion models,the study proposed an advanced method using an optimized you only look once version 7(YOLOv7)model.This model is enhanced by integrating advanced modules,including the bidirectional feature pyramid network(BiFPN),weighted intersection-over-union(wise-IoU),efficient channel attention(ECA),and atrous spatial pyramid pooling(ASPP).BiFPN facilitates robust feature extraction by enabling bidirectional information fl ow across network scales,which enhances the ability of the model to capture complex patterns in seismic inversion models.Wise-IoU improves the precision and fineness of reservoir feature localization through its weighted approach to IoU.Meanwhile,ECA optimizes interactions between channels,which promotes eff ective information exchange and enhances the overall response of the model to subtle inversion details.Lastly,the ASPP module strategically addresses spatial dependencies at multiple scales,which further enhances the ability of the model to identify complex reservoir structures.By synergistically integrating these advanced modules,the proposed model not only demonstrates superior performance in detecting bull’s-eye anomalies but also marks a pioneering step in utilizing cutting-edge deep learning technologies to enhance the accuracy and reliability of seismic reservoir prediction in oil and gas exploration.The results meet scientific literature standards and provide new perspectives on methodology,which makes significant contributions to ongoing eff orts to refine accurate and efficient prediction models for oil and gas exploration. 展开更多
关键词 bull’s-eye YOLO bidirectional feature pyramid network weighted intersection-over-union atrous spatial pyramid pooling
在线阅读 下载PDF
YOLO-VSI: An Improved YOLOv8 Model for Detecting Railway Turnouts Defects in Complex Environments
20
作者 Chenghai Yu Zhilong Lu 《Computers, Materials & Continua》 SCIE EI 2024年第11期3261-3280,共20页
Railway turnouts often develop defects such as chipping,cracks,and wear during use.If not detected and addressed promptly,these defects can pose significant risks to train operation safety and passenger security.Despi... Railway turnouts often develop defects such as chipping,cracks,and wear during use.If not detected and addressed promptly,these defects can pose significant risks to train operation safety and passenger security.Despite advances in defect detection technologies,research specifically targeting railway turnout defects remains limited.To address this gap,we collected images from railway inspectors and constructed a dataset of railway turnout defects in complex environments.To enhance detection accuracy,we propose an improved YOLOv8 model named YOLO-VSS-SOUP-Inner-CIoU(YOLO-VSI).The model employs a state-space model(SSM)to enhance the C2f module in the YOLOv8 backbone,proposed the C2f-VSS module to better capture long-range dependencies and contextual features,thus improving feature extraction in complex environments.In the network’s neck layer,we integrate SPDConv and Omni-Kernel Network(OKM)modules to improve the original PAFPN(Path Aggregation Feature Pyramid Network)structure,and proposed the Small Object Upgrade Pyramid(SOUP)structure to enhance small object detection capabilities.Additionally,the Inner-CIoU loss function with a scale factor is applied to further enhance the model’s detection capabilities.Compared to the baseline model,YOLO-VSI demonstrates a 3.5%improvement in average precision on our railway turnout dataset,showcasing increased accuracy and robustness.Experiments on the public NEU-DET dataset reveal a 2.3%increase in average precision over the baseline,indicating that YOLO-VSI has good generalization capabilities. 展开更多
关键词 YOLO railway turnouts defect detection mamba FPN(feature pyramid Network)
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部