[Objective]This experiment aimed to establish fast and slow feathering lines from purified and rejuvenated core breeding flock. [Method] Individual and family selection were used for continuous selection from zero to ...[Objective]This experiment aimed to establish fast and slow feathering lines from purified and rejuvenated core breeding flock. [Method] Individual and family selection were used for continuous selection from zero to the second generation. [Result]The results showed that in the fast feathering line,the average weight gain was improved by 108. 34 g per generation in roosters at the age of 20 weeks while a 54. 5 g increase was got per generation in hens. Hen housed egg production was increased from 150 to 170 at the age of 66 weeks,and the healthy rate of chicken flock was raised by 0. 7 percent. In the slow feathering line,the average weight gain was increased by 156. 6g per generation in roosters while a 38. 9 g increase was got per generation in hens,and the hen housed egg production was increased from 158 to 179 at the age of 66 weeks. [Conclusion] This research had a great significance in increasing native chicken's production performance and developing its market competitiveness.展开更多
Jinyang Ⅲ strain of late-feathering Leghorn chicken has been successively selectedwith comprehensive index for 7 generations by family breeding method of mass-first and closing-late.As compared with the control,the s...Jinyang Ⅲ strain of late-feathering Leghorn chicken has been successively selectedwith comprehensive index for 7 generations by family breeding method of mass-first and closing-late.As compared with the control,the selection result is average 7 days earlier at first laying forevery generation,more than 13 of egg number at age of 300 days and higher than 0.63% for sur-vival rate in laying period.Main laying performances are as follows:age at first laying 156±10.4days;egg number at age of 300 days 99±26.O;egg number and egg weight at 72 weeks of age 226±38.8 and 58.2±4.6g respectively.Through cross breeding selection,a series of white-shell au-tosexing chicken has been developed.More than 5.1 million commercial sex-identified chickenhave been released as well.展开更多
Insufficient interfacial activity and poor wettability between fibers and matrix are the two main factors limiting the improvement of mechanical properties of Carbon Fiber Reinforced Plastics(CFRP).Owl feathers are kn...Insufficient interfacial activity and poor wettability between fibers and matrix are the two main factors limiting the improvement of mechanical properties of Carbon Fiber Reinforced Plastics(CFRP).Owl feathers are known for their unique compact structure;they are not only lightweight but also strong.In this study,an in-depth look at owl feathers was made and it found that owl feathers not only have the macro branches structure between feather shafts and branches but also have fine feather structures on the branches.The presence of these fine feather structures increases the specific surface area of the plume branches and allows neighboring plume branches to hook up with each other,forming an effective mechanical interlocking structure.These structures bring owl feathers excellent mechanical properties.Inspired by the natural structure of owl feathers,a weaving technique and a sizing process were combined to prepare bionic Carbon Fiber(CF)fabrics and then to fabricate the bionic CFRP with structural characteristics similar to owl feathers.To evaluate the effect of the fine feather structure on the mechanical properties of CFRP,a mechanical property study on CFRP with and without the fine feather imitation structure were conducted.The experimental results show that the introduction of the fine feather branch structure enhance the mechanical properties of CFRP significantly.Specifically,the tensile strength of the composites increased by 6.42%and 13.06%and the flexural strength increased by 8.02%and 16.87%in the 0°and 90°sample directions,respectively.These results provide a new design idea for the improvement of the mechanical properties of the CFRP,promoting the application of CFRP in engineering fields,such as automotive transportation,rail transit,aerospace,and construction.展开更多
Powered fight in birds is reliant on feathers forming an aerodynamic surface that resists air pressures.Many basic aspects of feather functionality are unknown,which hampers our understanding of wing function in birds...Powered fight in birds is reliant on feathers forming an aerodynamic surface that resists air pressures.Many basic aspects of feather functionality are unknown,which hampers our understanding of wing function in birds.This study measured the dimensions of primary and secondaryfight feathers of 19 species of parrots.The maximum force the feathers could withstand from below was also measured to mimic the pressuresexperienced during a downstroke.The analysis tested whether:(1)feather dimensions differed along the wing and among secondary and primary remiges;(2)the force that feathers could withstand varied among the remiges;and(3)there would be isometric relationships with bodymass for feather characteristics.The results show that body mass signifcantly affected vane width,rachis thickness,maximum force,and ultimate bending moment,but the relationship for feather length only approached signifcance.Many of the proximal secondary feathers showedsignifcantly lower values relative to the frst primary,whereas for distal primaries the values were greater.There were isometric relationships forforce measurements of primary and secondary feathers with body mass,but there was positive allometry for feather lengths and vane widths.The forces feathers can withstand vary along the wing may be a proxy for the aerodynamic properties of the feathers in situ.Broader taxonomicstudies that explore these topics are required for other species representing a range of different orders.A better understanding of the functionality of feathers will improve our understanding of how avian fight works particularly considering the variety in fight style and wing shape in birds.展开更多
The number of secondary feathers varies among orders of birds with some orders exhibiting a positive relationship with ulna length,whereas in other orders secondary number is invariant.This difference has implications...The number of secondary feathers varies among orders of birds with some orders exhibiting a positive relationship with ulna length,whereas in other orders secondary number is invariant.This difference has implications for scaling of the width of the feather vane within orders.In those species where the number of secondary remiges is invariant with ulna length,vane width should scale isometrically with ulna size to maintain an aerodynamic flight surface.Where feather count increases with increasing ulna length then vane width should exhibit negative allometry.Vane length should also correlate with ulna length,irrespective of the number of feathers.Data were compiled from an online library of images for the vane length and the width of the vane at 50%of the vane length for the fifth secondary feather for 209 bird species from 24 different orders.The results supported the hypotheses that vane width is a function of ulna size,and the number of secondary feathers as associated with different orders.Vane length was unaffected by the number of secondaries but varied between orders.The results suggest that birds have solved the problem of maintaining the aerodynamic surface of the proximal wing in two ways.Hence as ulna length increases the first solution involves more feathers that exhibit negative allometry for vane width,or in the second where feather count doesn't change,the vane width simply scales isometrically.The implications for the mechanical properties of the vane,and how it affects wing function,have not yet been explored in a range of birds.展开更多
Fire disturbances are increasing under global climate change and ecological transformations of forests are occurring.Specifically,shifts from productive closed-canopy feather moss forests to low-productivity open-cano...Fire disturbances are increasing under global climate change and ecological transformations of forests are occurring.Specifically,shifts from productive closed-canopy feather moss forests to low-productivity open-canopy lichen(Cladonia spp.)woodlands have been observed in boreal forests of eastern Canada.It has been hypothesized that high severity of fires would be the cause of this change,but this is difficult to validate a posteriori on mature forest stands.Because charcoal properties are affected by fire severity,we have put forward the hypothesis that the amount and physicochemical properties of charcoal(C,N,H,O,ash,surface area)would be different and indicative of a greater fire severity for open-canopy forests compared to closed canopy ones.Our hypothesis was partly validated in that the amount of charcoal found on the ground of closed-canopy forests was greater than that of open-canopy forests.However,the physicochemical properties were not different,albeit a greater variability of charcoal properties for open canopy stands.These results do not allow us to fully validate or reject our hypothesis on the role of fire severity in the shift between open and closed canopy stands.However,they suggest that the variability in fire conditions as well as the amounts of charcoal produced are different between the two ecosystem types.Furthermore,considering the role that biochar may play in improving soil conditions and promoting vegetation restoration,our results suggest that charcoal may play a role in maintaining these two stable alternative ecosystem states.展开更多
Taking a widely contaminated yet abundant waste,such as poultry feathers,and extracting keratin from this struc-ture appears to be a real challenge whenever the preservation of the secondary structure of the protein i...Taking a widely contaminated yet abundant waste,such as poultry feathers,and extracting keratin from this struc-ture appears to be a real challenge whenever the preservation of the secondary structure of the protein is desired.This process would allow exploiting it in ways(e.g.,in the biomedicalfield)that are inspired by a structure that is primarily designed forflight,therefore capable specifically of withstandingflexure and lateral buckling,also with very low thicknesses.The preservation of the structure is based on disulfide crosslinks,and it is offered with pre-ference by some chemical treatments,mainly those based on ionic liquid and on a reduction process.However,the degree of preservation cannot always be precisely assessed;however,beyond chemical characterization,the forma-tion of homogeneous gels can also suggest that the process was successful in this sense.An extraction respectful of nature’s intentions,considering that the secondary structure builds up according to the very function of the feath-ers in the animal,can be deemed to be biomimetic.In particular,biomimetic extractions comply with the very characteristics the protein was designed for to serve in the specific environmental and mechanical situation in which it is inserted.This review tries to elucidate in which cases this aim is achieved and for which specific appli-cations a chicken feather keratin that has preserved its secondary structure can be suited.展开更多
Background Poor feather growth not only affects the appearance of the organism but also decreases the feed efficiency.Methionine(Met)is an essential amino acid required for feather follicle development;yet the exact m...Background Poor feather growth not only affects the appearance of the organism but also decreases the feed efficiency.Methionine(Met)is an essential amino acid required for feather follicle development;yet the exact mechanism involved remains insufficiently understood.Methods A total of 1801-day-old broilers were selected and randomly divided into 3 treatments:control group(0.45%Met),Met-deficiency group(0.25%Met),and Met-rescue group(0.45%Met in the pre-trial period and 0.25%Met in the post-trial period).The experimental period lasted for 56 d,with a pre-trial period of 1–28 d and a post-trial period of 29–56 d.In addition,Met-deficiency and Met-rescue models were constructed in feather follicle epidermal stem cell by controlling the supply of Met in the culture medium.Results Dietary Met-deficiency significantly(P<0.05)reduced the ADG,ADFI and F/G,and inhibited feather follicle development.Met supplementation significantly(P<0.05)improved growth performance and the feather growth in broilers.Met-rescue may promote feather growth in broilers by activating the Wnt/β-catenin signaling pathway(GSK-3β,CK1,Axin1,β-catenin,Activeβ-catenin,TCF4,and Cyclin D1).Compared with Met-deficiency group,Met-rescue significantly(P<0.05)increased the activity of feather follicle epidermal stem cell and mitochondrial membrane potential,activated Wnt/β-catenin signaling pathway,and decreased the content of reactive oxygen species(P<0.05).CO-IP confirmed that mitochondrial protein PGAM5 interacted with Axin1,the scaffold protein of the disruption complex of the Wnt/β-catenin signaling pathway,and directly mediated Met regulation of Wnt/β-catenin signaling pathway and feather follicle development.Conclusions PGAM5 binding to Axin1 mediates the regulation of Wnt/β-catenin signaling pathway,and promotes feather follicle development and feather growth of broiler chickens through Met supplementation.These results provide theoretical support for the improvement of economic value and production efficiency of broiler chickens.展开更多
A duxianqin musician needs only a single string stretched across an elongated(细长的)soundboard and a feather⁃shaped rod to deliver a diverse repertoire,whether pop or classical,Chinese or Western.In his Zen⁃style stu...A duxianqin musician needs only a single string stretched across an elongated(细长的)soundboard and a feather⁃shaped rod to deliver a diverse repertoire,whether pop or classical,Chinese or Western.In his Zen⁃style studio adorned with folding screens,Wei Qingbing,39,sits on a bamboo mat and plucks(弹拨)the string of his duxianqin with his right hand,while his left hand slides across the rod to adjust the pitch and add vibrato.展开更多
Flight feathers represent a hallmark innovation of avian evolution.Recent comparative genomic analyses identified a 284 bp avian-specific highly conserved element(ASHCE)located within the eighth intron of the SIM bHLH...Flight feathers represent a hallmark innovation of avian evolution.Recent comparative genomic analyses identified a 284 bp avian-specific highly conserved element(ASHCE)located within the eighth intron of the SIM bHLH transcription factor 1(Sim1)gene,postulated to act as a cis-regulatory element governing flight feather morphogenesis.To investigate its functional significance,genome-edited(GE)primordial germ cell(PGC)lines carrying targeted ASHCE deletions were generated using CRISPR/Cas9-mediated editing,with germline chimeric males subsequently mated with wild-type(WT)hens to obtain GE progeny.The resulting GE chickens harbored 257-260 bp deletions,excising approximately half of the Sim1-ASHCE sequence.Reverse transcription-quantitative real-time polymerase chain reaction(RT-qPCR)analysis showed an average 0.32-fold reduction in Sim1 expression in the forelimbs of GE embryos at day 8(E8)compared to WT counterparts.Despite this,GE chickens developed structurally normal flight and tail feathers.In situ hybridization localized Sim1 expression to the posterior mesenchyme surrounding flight feather buds in E8 WT embryos,but not within the buds themselves.These results suggest that partial deletion of Sim1-ASHCE,despite diminishing Sim1 expression,does not disrupt flight feather formation.The excised region appears to possess enhancer activity toward Sim1 but is dispensable for flight feather development.Complete ablation of the ASHCE will be necessary to fully resolve the regulatory role of Sim1 in avian feather morphogenesis.展开更多
The Beijing Olympics signature building has been touted as the Eiffel Tower of China In about one year from now, on the night of August 8, 2008, the Olympic flame of the 2008 Olympic Games will be
Nests are important structures for birds to raise their offspring and for signaling.Many birds incorporate feathers into the nest,since feathers were traditionally thought to serve the function of insulation.Hypothese...Nests are important structures for birds to raise their offspring and for signaling.Many birds incorporate feathers into the nest,since feathers were traditionally thought to serve the function of insulation.Hypotheses in recent years have considered that some birds place feathers in conspicuous locations in the nest for decoration to trigger a fear response in the competitors.In this study,we investigated whether decorative feathers could deter nest usurpation by Crested Mynas(Acridotheres cristatellus)by manipulating nest box contents.The results revealed that Crested Mynas preferred black feathers to white feathers as decorations and occupied nest boxes decorated with black feathers significantly less than those decorated with white feathers,suggesting that black decorative feathers in the nest could be more effective in preventing nest usurpation by Crested Mynas and that white decorative feathers may have other functions.The black feathers in the nest are prominently placed at the edge of the nest to convey the message that“this nest is occupied”or“the owner of this nest has been preyed upon”to visitor Crested Mynas,thus effectively preventing them from usurping the nest at a later stage.展开更多
This study aimed to investigate the effects of fermented puffed feather meal(FPFM)on growth performance,serum biochemical indices,meat quality,and intestinal microbiota in Arbor Acres(AA)broilers.A single-factor desig...This study aimed to investigate the effects of fermented puffed feather meal(FPFM)on growth performance,serum biochemical indices,meat quality,and intestinal microbiota in Arbor Acres(AA)broilers.A single-factor design was adopted,and four treatments were administered with five replicates to 240 one-day-old AA broilers.The control group(group A)received a basal diet,while the experimental groups received a basal diet plus 33%(group B),67%(group C)and 100%(group D)FPFM,respectively.Compared with group A,(1)the average daily gain(ADG)in group C decreased(P<0.05),and the feed conversion ratio(FCR)in group D increased(P<0.05);(2)the level of serum urea nitrogen in treatment groups decreased(P<0.05),and the levels of triglyceride,high density lipoprotein,low density lipoprotein,cholesterol,and glucose contents in group D increased(P<0.05)at day 21;(3)the serum immunoglobulin M and immunoglobulin G in group B and the immunoglobulin A in group C increased(P<0.05)at day 21,and the serum immunoglobulin M and immunoglobulin G in group D decreased(P<0.05)at day 42;(4)the share force of breast muscle and thigh muscle in group D increased(P<0.05);(5)the villus height to crypt depth ratio in the jejunum of group B increased(P<0.05)at day 21,and the villus height in group C and D increased(P<0.05)at day 42;(6)the proteobacteria counts in the cecum digesta in treatment groups decreased(P<0.05)at day 21.The basal diet supplemented with 33%FPFM promoted protein metabolism,enhanced immunity and improved meat quality,promoted the digestion and absorption of nutrients,increased intestinal microbial diversity,and improved the content of beneficial bacteria without affecting the growth performance,it was possible to be used as a good substitute for fish meal.展开更多
In present,there are increasing interests in the research on mechanical and control system of underwater vehicles.These ongoing research efforts are motivated by more pervasive applications of such vehicles including ...In present,there are increasing interests in the research on mechanical and control system of underwater vehicles.These ongoing research efforts are motivated by more pervasive applications of such vehicles including seabed oil and gas explorations, scientific deep ocean surveys,military purposes,ecological and water environmental studies,and also entertainments. However,the performance of underwater vehicles with screw type propellers is not prospective in terms of its efficiency and maneuverability.The main weaknesses of this kind of propellers are the production of vortices and sudden generation of thrust forces which make the control of the position and motion difficult. On the other hand,fishes and other aquatic animals are efficient swimmers,posses high maneuverability,are able to follow trajectories,can efficiently stabilize themselves in currents and surges,create less wakes than currently used underwater vehicle, and also have a noiseless propulsion.The fish's locomotion mechanism is mainly controlled by its caudal fin and paired pectoral fins.They are classified into Body and/or Caudal Fin(BCF)and Median and/or paired Pectoral Fins(MPF).The study of highly efficient swimming mechanisms of fish can inspire a better underwater vehicles thruster design and its mechanism. There are few studies on underwater vehicles or fish robots using paired pectoral fins as thruster.The work presented in this paper represents a contribution in this area covering study,design and implementation of locomotion mechanisms of paired pectoral fins in a fish robot.The performance and viability of the biomimetic method for underwater vehicles are highlighted through in-water experiment of a robotic fish.展开更多
[Objective]This study aimed to explore the inheritance pattem of feather color in hybrid offspring of Texan pigeon and American Silver King pigeon, so as to provide a theoretical basis for the breeding of feather colo...[Objective]This study aimed to explore the inheritance pattem of feather color in hybrid offspring of Texan pigeon and American Silver King pigeon, so as to provide a theoretical basis for the breeding of feather color auto-sexing strains. [Method]The segregation situation of feather color in the male and female offspring of Texan pigeon (♂)×American Silver King pigeon (♀)(TKYW) and American Silver King pigeon (♂) ×Texan pigeon (♀) (YWTK) was analyzed. [Result]The feather color of TKYW offspring was all slate gray. Among the offspring of YWTK, the feather color of the males was all slate gray, while the feather color of the females was all silver gray; and the ratio between different colors was 1:1 (P 〉 0.05). The F1 generation of YWTK was subjected to selfing, and the feather color of the male and female F2 generation was analyzed. It was found that the ratio of silver gray (male) to slate gray (male) to silver gray (female) to slate gray (female) was 1:1:1:1 (P 〉 0.05). On the basis of the above results, it could be preliminarily predicated that the feather color control genes of Texan pigeon are Z^BZB and Z^BW and those of American Silver King pigeon are Z^bZ^b and Z^bW. There is a cumulative effect on B which is dominant for b. [Conclusion] This study will better solve the problem of male and female identification of pigeon in the early period.展开更多
A novel Al-14.1 Mg-0.47 Si-0.31 Sc-0.17 Zr alloy was applied in the printing process of selective laser melting(SLM),and the corresponding microstructural feature,phase identification,tensile properties and corrosion ...A novel Al-14.1 Mg-0.47 Si-0.31 Sc-0.17 Zr alloy was applied in the printing process of selective laser melting(SLM),and the corresponding microstructural feature,phase identification,tensile properties and corrosion behavior of the Al Mg Si Sc Zr alloy were studied in detail.As fabricated at 160 W and 200 mm/s,the Mg content of bulk sample decreased to 11.7 wt%due to the element vaporization at high energy density,and the density of this additively manufactured Al Mg Si Sc Zr alloy was 2.538 g/cm^(3),which is4.2%8.5%lighter than that of other SLM-processed Al alloys.After heat-treated(HT)at 325℃and 6 h,the microstructure was almost unchanged with an alternate distribution of fine equiaxed crystals and coarse columnar crystals.Nano-sized Al3(Sc,Zr)and Mg_(2)Si phases precipitated dispersedly in the Al matrix,and the tensile strength increased from 487.6 MPa to 578.4 MPa for precipitation strengthening and fine grain strengthening.With a fine grain size of 2.53μm,an excellent corrosion resistance was obtained for the as-printed(AP)Al Mg Si Sc Zr alloy.While the corrosion resistance of HT sample decreased slightly for the formation of non-dense oxide layer and pitting corrosion induced by diffuse precipitation distribution.This SLM-printed Al Mg Si Sc Zr alloy with high specific strength,good thermal stability and excellent corrosion resistance has broad prospects for the aerospace and automotive applications.展开更多
Bird flight is a remarkable adaption that has allowed thousands of species to colonize all terrestrial habitats. A golden eagle has impressive flying abilities, such as hovering, perching, preying and attacking. To re...Bird flight is a remarkable adaption that has allowed thousands of species to colonize all terrestrial habitats. A golden eagle has impressive flying abilities, such as hovering, perching, preying and attacking. To reveal the flying abilities, avian geometry of a golden eagle was extracted based on noncontact surface measurements using a ROMBER three-dimensional laser scanner. Distributions of a camber line, thickness and a secondary feather line of the extracted point cloud were fitted using convenient analytical expressions. A traditional airfoil was established with the camber line and thickness, then a combined airfoil was constructed by combining the traditional airfoil with a secondary feather. Oscillations of an airfoil as well as rapid pitch up were simplified as a sine wave around the quarter chord axis. Thereafter, both steady and unsteady aerodynamic performances of the airfoil are computed, the influences of the secondary feather on the steady and unsteady aerodynamics were further studied.展开更多
Bacillus sp. JM7, a strain isolated from the deep-sea of the South China Sea, was found to efficiently degrade 79.4% native chicken feather within 30 h. Scanning electron microscopy analysis showed that JM7 strain cou...Bacillus sp. JM7, a strain isolated from the deep-sea of the South China Sea, was found to efficiently degrade 79.4% native chicken feather within 30 h. Scanning electron microscopy analysis showed that JM7 strain could gradually degrade feather by modifying the microstructure of feather keratin. A total of 25 protease genes were predicted from the draft genome of JM7 strain, among which a predicted subtilisin-like serine protease(designated as Ker02562) was further characterized for its keratinolytic activity. The recombinant Ker02562 functioned at a wide range of temperatures from 30℃ to 60℃, with an optimum at 40–50℃. Ker02562 was highly active at various pHs ranging from 5.0 to 13.0, with a maximum activity observed at pH 7.0–9.0. Remarkably, recombinant Ker02562 was stable in extreme alkaline environments(pH 10–13), which was much better than most other reported keratinases. Collectively, these favorable properties could make Bacillus sp. JM7 and Ker02562 attractive to be applied in the detergent formulation and feather bioconversion.展开更多
基金Supported by the Ministry of Science and Technology Development Project(10050306003)
文摘[Objective]This experiment aimed to establish fast and slow feathering lines from purified and rejuvenated core breeding flock. [Method] Individual and family selection were used for continuous selection from zero to the second generation. [Result]The results showed that in the fast feathering line,the average weight gain was improved by 108. 34 g per generation in roosters at the age of 20 weeks while a 54. 5 g increase was got per generation in hens. Hen housed egg production was increased from 150 to 170 at the age of 66 weeks,and the healthy rate of chicken flock was raised by 0. 7 percent. In the slow feathering line,the average weight gain was increased by 156. 6g per generation in roosters while a 38. 9 g increase was got per generation in hens,and the hen housed egg production was increased from 158 to 179 at the age of 66 weeks. [Conclusion] This research had a great significance in increasing native chicken's production performance and developing its market competitiveness.
文摘Jinyang Ⅲ strain of late-feathering Leghorn chicken has been successively selectedwith comprehensive index for 7 generations by family breeding method of mass-first and closing-late.As compared with the control,the selection result is average 7 days earlier at first laying forevery generation,more than 13 of egg number at age of 300 days and higher than 0.63% for sur-vival rate in laying period.Main laying performances are as follows:age at first laying 156±10.4days;egg number at age of 300 days 99±26.O;egg number and egg weight at 72 weeks of age 226±38.8 and 58.2±4.6g respectively.Through cross breeding selection,a series of white-shell au-tosexing chicken has been developed.More than 5.1 million commercial sex-identified chickenhave been released as well.
基金supported by the Science and Technology Development Program of Jilin Province(No.20240101122JC)and(No.20240101143JC)the Key Scientific and Technological Research and Development Projects of Jilin Provincial Science and Technology Department(Grant Number 20230201108GX)。
文摘Insufficient interfacial activity and poor wettability between fibers and matrix are the two main factors limiting the improvement of mechanical properties of Carbon Fiber Reinforced Plastics(CFRP).Owl feathers are known for their unique compact structure;they are not only lightweight but also strong.In this study,an in-depth look at owl feathers was made and it found that owl feathers not only have the macro branches structure between feather shafts and branches but also have fine feather structures on the branches.The presence of these fine feather structures increases the specific surface area of the plume branches and allows neighboring plume branches to hook up with each other,forming an effective mechanical interlocking structure.These structures bring owl feathers excellent mechanical properties.Inspired by the natural structure of owl feathers,a weaving technique and a sizing process were combined to prepare bionic Carbon Fiber(CF)fabrics and then to fabricate the bionic CFRP with structural characteristics similar to owl feathers.To evaluate the effect of the fine feather structure on the mechanical properties of CFRP,a mechanical property study on CFRP with and without the fine feather imitation structure were conducted.The experimental results show that the introduction of the fine feather branch structure enhance the mechanical properties of CFRP significantly.Specifically,the tensile strength of the composites increased by 6.42%and 13.06%and the flexural strength increased by 8.02%and 16.87%in the 0°and 90°sample directions,respectively.These results provide a new design idea for the improvement of the mechanical properties of the CFRP,promoting the application of CFRP in engineering fields,such as automotive transportation,rail transit,aerospace,and construction.
文摘Powered fight in birds is reliant on feathers forming an aerodynamic surface that resists air pressures.Many basic aspects of feather functionality are unknown,which hampers our understanding of wing function in birds.This study measured the dimensions of primary and secondaryfight feathers of 19 species of parrots.The maximum force the feathers could withstand from below was also measured to mimic the pressuresexperienced during a downstroke.The analysis tested whether:(1)feather dimensions differed along the wing and among secondary and primary remiges;(2)the force that feathers could withstand varied among the remiges;and(3)there would be isometric relationships with bodymass for feather characteristics.The results show that body mass signifcantly affected vane width,rachis thickness,maximum force,and ultimate bending moment,but the relationship for feather length only approached signifcance.Many of the proximal secondary feathers showedsignifcantly lower values relative to the frst primary,whereas for distal primaries the values were greater.There were isometric relationships forforce measurements of primary and secondary feathers with body mass,but there was positive allometry for feather lengths and vane widths.The forces feathers can withstand vary along the wing may be a proxy for the aerodynamic properties of the feathers in situ.Broader taxonomicstudies that explore these topics are required for other species representing a range of different orders.A better understanding of the functionality of feathers will improve our understanding of how avian fight works particularly considering the variety in fight style and wing shape in birds.
文摘The number of secondary feathers varies among orders of birds with some orders exhibiting a positive relationship with ulna length,whereas in other orders secondary number is invariant.This difference has implications for scaling of the width of the feather vane within orders.In those species where the number of secondary remiges is invariant with ulna length,vane width should scale isometrically with ulna size to maintain an aerodynamic flight surface.Where feather count increases with increasing ulna length then vane width should exhibit negative allometry.Vane length should also correlate with ulna length,irrespective of the number of feathers.Data were compiled from an online library of images for the vane length and the width of the vane at 50%of the vane length for the fifth secondary feather for 209 bird species from 24 different orders.The results supported the hypotheses that vane width is a function of ulna size,and the number of secondary feathers as associated with different orders.Vane length was unaffected by the number of secondaries but varied between orders.The results suggest that birds have solved the problem of maintaining the aerodynamic surface of the proximal wing in two ways.Hence as ulna length increases the first solution involves more feathers that exhibit negative allometry for vane width,or in the second where feather count doesn't change,the vane width simply scales isometrically.The implications for the mechanical properties of the vane,and how it affects wing function,have not yet been explored in a range of birds.
基金supported by the MITACS Accelerate grant with Greenfirst,industry partner in La Sarre,QC,Canada.
文摘Fire disturbances are increasing under global climate change and ecological transformations of forests are occurring.Specifically,shifts from productive closed-canopy feather moss forests to low-productivity open-canopy lichen(Cladonia spp.)woodlands have been observed in boreal forests of eastern Canada.It has been hypothesized that high severity of fires would be the cause of this change,but this is difficult to validate a posteriori on mature forest stands.Because charcoal properties are affected by fire severity,we have put forward the hypothesis that the amount and physicochemical properties of charcoal(C,N,H,O,ash,surface area)would be different and indicative of a greater fire severity for open-canopy forests compared to closed canopy ones.Our hypothesis was partly validated in that the amount of charcoal found on the ground of closed-canopy forests was greater than that of open-canopy forests.However,the physicochemical properties were not different,albeit a greater variability of charcoal properties for open canopy stands.These results do not allow us to fully validate or reject our hypothesis on the role of fire severity in the shift between open and closed canopy stands.However,they suggest that the variability in fire conditions as well as the amounts of charcoal produced are different between the two ecosystem types.Furthermore,considering the role that biochar may play in improving soil conditions and promoting vegetation restoration,our results suggest that charcoal may play a role in maintaining these two stable alternative ecosystem states.
文摘Taking a widely contaminated yet abundant waste,such as poultry feathers,and extracting keratin from this struc-ture appears to be a real challenge whenever the preservation of the secondary structure of the protein is desired.This process would allow exploiting it in ways(e.g.,in the biomedicalfield)that are inspired by a structure that is primarily designed forflight,therefore capable specifically of withstandingflexure and lateral buckling,also with very low thicknesses.The preservation of the structure is based on disulfide crosslinks,and it is offered with pre-ference by some chemical treatments,mainly those based on ionic liquid and on a reduction process.However,the degree of preservation cannot always be precisely assessed;however,beyond chemical characterization,the forma-tion of homogeneous gels can also suggest that the process was successful in this sense.An extraction respectful of nature’s intentions,considering that the secondary structure builds up according to the very function of the feath-ers in the animal,can be deemed to be biomimetic.In particular,biomimetic extractions comply with the very characteristics the protein was designed for to serve in the specific environmental and mechanical situation in which it is inserted.This review tries to elucidate in which cases this aim is achieved and for which specific appli-cations a chicken feather keratin that has preserved its secondary structure can be suited.
基金supported by the National Natural Science Foundation of China(32372902)Guangdong Special Support Program for Young Talents(NYQN2024007)。
文摘Background Poor feather growth not only affects the appearance of the organism but also decreases the feed efficiency.Methionine(Met)is an essential amino acid required for feather follicle development;yet the exact mechanism involved remains insufficiently understood.Methods A total of 1801-day-old broilers were selected and randomly divided into 3 treatments:control group(0.45%Met),Met-deficiency group(0.25%Met),and Met-rescue group(0.45%Met in the pre-trial period and 0.25%Met in the post-trial period).The experimental period lasted for 56 d,with a pre-trial period of 1–28 d and a post-trial period of 29–56 d.In addition,Met-deficiency and Met-rescue models were constructed in feather follicle epidermal stem cell by controlling the supply of Met in the culture medium.Results Dietary Met-deficiency significantly(P<0.05)reduced the ADG,ADFI and F/G,and inhibited feather follicle development.Met supplementation significantly(P<0.05)improved growth performance and the feather growth in broilers.Met-rescue may promote feather growth in broilers by activating the Wnt/β-catenin signaling pathway(GSK-3β,CK1,Axin1,β-catenin,Activeβ-catenin,TCF4,and Cyclin D1).Compared with Met-deficiency group,Met-rescue significantly(P<0.05)increased the activity of feather follicle epidermal stem cell and mitochondrial membrane potential,activated Wnt/β-catenin signaling pathway,and decreased the content of reactive oxygen species(P<0.05).CO-IP confirmed that mitochondrial protein PGAM5 interacted with Axin1,the scaffold protein of the disruption complex of the Wnt/β-catenin signaling pathway,and directly mediated Met regulation of Wnt/β-catenin signaling pathway and feather follicle development.Conclusions PGAM5 binding to Axin1 mediates the regulation of Wnt/β-catenin signaling pathway,and promotes feather follicle development and feather growth of broiler chickens through Met supplementation.These results provide theoretical support for the improvement of economic value and production efficiency of broiler chickens.
文摘A duxianqin musician needs only a single string stretched across an elongated(细长的)soundboard and a feather⁃shaped rod to deliver a diverse repertoire,whether pop or classical,Chinese or Western.In his Zen⁃style studio adorned with folding screens,Wei Qingbing,39,sits on a bamboo mat and plucks(弹拨)the string of his duxianqin with his right hand,while his left hand slides across the rod to adjust the pitch and add vibrato.
基金supported by the Ministry of Agriculture and Rural Affairs of the People's Republic of China(125A0607)Department of Science and Technology of Yunnan Province(XDYC-KJLJ-2022-0004)。
文摘Flight feathers represent a hallmark innovation of avian evolution.Recent comparative genomic analyses identified a 284 bp avian-specific highly conserved element(ASHCE)located within the eighth intron of the SIM bHLH transcription factor 1(Sim1)gene,postulated to act as a cis-regulatory element governing flight feather morphogenesis.To investigate its functional significance,genome-edited(GE)primordial germ cell(PGC)lines carrying targeted ASHCE deletions were generated using CRISPR/Cas9-mediated editing,with germline chimeric males subsequently mated with wild-type(WT)hens to obtain GE progeny.The resulting GE chickens harbored 257-260 bp deletions,excising approximately half of the Sim1-ASHCE sequence.Reverse transcription-quantitative real-time polymerase chain reaction(RT-qPCR)analysis showed an average 0.32-fold reduction in Sim1 expression in the forelimbs of GE embryos at day 8(E8)compared to WT counterparts.Despite this,GE chickens developed structurally normal flight and tail feathers.In situ hybridization localized Sim1 expression to the posterior mesenchyme surrounding flight feather buds in E8 WT embryos,but not within the buds themselves.These results suggest that partial deletion of Sim1-ASHCE,despite diminishing Sim1 expression,does not disrupt flight feather formation.The excised region appears to possess enhancer activity toward Sim1 but is dispensable for flight feather development.Complete ablation of the ASHCE will be necessary to fully resolve the regulatory role of Sim1 in avian feather morphogenesis.
文摘The Beijing Olympics signature building has been touted as the Eiffel Tower of China In about one year from now, on the night of August 8, 2008, the Olympic flame of the 2008 Olympic Games will be
基金supported by the National Natural Science Foundation of China(No.31970427 and 32270526 granted to W.L.).
文摘Nests are important structures for birds to raise their offspring and for signaling.Many birds incorporate feathers into the nest,since feathers were traditionally thought to serve the function of insulation.Hypotheses in recent years have considered that some birds place feathers in conspicuous locations in the nest for decoration to trigger a fear response in the competitors.In this study,we investigated whether decorative feathers could deter nest usurpation by Crested Mynas(Acridotheres cristatellus)by manipulating nest box contents.The results revealed that Crested Mynas preferred black feathers to white feathers as decorations and occupied nest boxes decorated with black feathers significantly less than those decorated with white feathers,suggesting that black decorative feathers in the nest could be more effective in preventing nest usurpation by Crested Mynas and that white decorative feathers may have other functions.The black feathers in the nest are prominently placed at the edge of the nest to convey the message that“this nest is occupied”or“the owner of this nest has been preyed upon”to visitor Crested Mynas,thus effectively preventing them from usurping the nest at a later stage.
基金Supported by Harbin Applied Technology Research and Development Project(2016RAXXJ015)。
文摘This study aimed to investigate the effects of fermented puffed feather meal(FPFM)on growth performance,serum biochemical indices,meat quality,and intestinal microbiota in Arbor Acres(AA)broilers.A single-factor design was adopted,and four treatments were administered with five replicates to 240 one-day-old AA broilers.The control group(group A)received a basal diet,while the experimental groups received a basal diet plus 33%(group B),67%(group C)and 100%(group D)FPFM,respectively.Compared with group A,(1)the average daily gain(ADG)in group C decreased(P<0.05),and the feed conversion ratio(FCR)in group D increased(P<0.05);(2)the level of serum urea nitrogen in treatment groups decreased(P<0.05),and the levels of triglyceride,high density lipoprotein,low density lipoprotein,cholesterol,and glucose contents in group D increased(P<0.05)at day 21;(3)the serum immunoglobulin M and immunoglobulin G in group B and the immunoglobulin A in group C increased(P<0.05)at day 21,and the serum immunoglobulin M and immunoglobulin G in group D decreased(P<0.05)at day 42;(4)the share force of breast muscle and thigh muscle in group D increased(P<0.05);(5)the villus height to crypt depth ratio in the jejunum of group B increased(P<0.05)at day 21,and the villus height in group C and D increased(P<0.05)at day 42;(6)the proteobacteria counts in the cecum digesta in treatment groups decreased(P<0.05)at day 21.The basal diet supplemented with 33%FPFM promoted protein metabolism,enhanced immunity and improved meat quality,promoted the digestion and absorption of nutrients,increased intestinal microbial diversity,and improved the content of beneficial bacteria without affecting the growth performance,it was possible to be used as a good substitute for fish meal.
文摘In present,there are increasing interests in the research on mechanical and control system of underwater vehicles.These ongoing research efforts are motivated by more pervasive applications of such vehicles including seabed oil and gas explorations, scientific deep ocean surveys,military purposes,ecological and water environmental studies,and also entertainments. However,the performance of underwater vehicles with screw type propellers is not prospective in terms of its efficiency and maneuverability.The main weaknesses of this kind of propellers are the production of vortices and sudden generation of thrust forces which make the control of the position and motion difficult. On the other hand,fishes and other aquatic animals are efficient swimmers,posses high maneuverability,are able to follow trajectories,can efficiently stabilize themselves in currents and surges,create less wakes than currently used underwater vehicle, and also have a noiseless propulsion.The fish's locomotion mechanism is mainly controlled by its caudal fin and paired pectoral fins.They are classified into Body and/or Caudal Fin(BCF)and Median and/or paired Pectoral Fins(MPF).The study of highly efficient swimming mechanisms of fish can inspire a better underwater vehicles thruster design and its mechanism. There are few studies on underwater vehicles or fish robots using paired pectoral fins as thruster.The work presented in this paper represents a contribution in this area covering study,design and implementation of locomotion mechanisms of paired pectoral fins in a fish robot.The performance and viability of the biomimetic method for underwater vehicles are highlighted through in-water experiment of a robotic fish.
基金Supported by Key Research and Development Program of Jiangsu Province(Modern Agriculture)(BE2017348)~~
文摘[Objective]This study aimed to explore the inheritance pattem of feather color in hybrid offspring of Texan pigeon and American Silver King pigeon, so as to provide a theoretical basis for the breeding of feather color auto-sexing strains. [Method]The segregation situation of feather color in the male and female offspring of Texan pigeon (♂)×American Silver King pigeon (♀)(TKYW) and American Silver King pigeon (♂) ×Texan pigeon (♀) (YWTK) was analyzed. [Result]The feather color of TKYW offspring was all slate gray. Among the offspring of YWTK, the feather color of the males was all slate gray, while the feather color of the females was all silver gray; and the ratio between different colors was 1:1 (P 〉 0.05). The F1 generation of YWTK was subjected to selfing, and the feather color of the male and female F2 generation was analyzed. It was found that the ratio of silver gray (male) to slate gray (male) to silver gray (female) to slate gray (female) was 1:1:1:1 (P 〉 0.05). On the basis of the above results, it could be preliminarily predicated that the feather color control genes of Texan pigeon are Z^BZB and Z^BW and those of American Silver King pigeon are Z^bZ^b and Z^bW. There is a cumulative effect on B which is dominant for b. [Conclusion] This study will better solve the problem of male and female identification of pigeon in the early period.
文摘A novel Al-14.1 Mg-0.47 Si-0.31 Sc-0.17 Zr alloy was applied in the printing process of selective laser melting(SLM),and the corresponding microstructural feature,phase identification,tensile properties and corrosion behavior of the Al Mg Si Sc Zr alloy were studied in detail.As fabricated at 160 W and 200 mm/s,the Mg content of bulk sample decreased to 11.7 wt%due to the element vaporization at high energy density,and the density of this additively manufactured Al Mg Si Sc Zr alloy was 2.538 g/cm^(3),which is4.2%8.5%lighter than that of other SLM-processed Al alloys.After heat-treated(HT)at 325℃and 6 h,the microstructure was almost unchanged with an alternate distribution of fine equiaxed crystals and coarse columnar crystals.Nano-sized Al3(Sc,Zr)and Mg_(2)Si phases precipitated dispersedly in the Al matrix,and the tensile strength increased from 487.6 MPa to 578.4 MPa for precipitation strengthening and fine grain strengthening.With a fine grain size of 2.53μm,an excellent corrosion resistance was obtained for the as-printed(AP)Al Mg Si Sc Zr alloy.While the corrosion resistance of HT sample decreased slightly for the formation of non-dense oxide layer and pitting corrosion induced by diffuse precipitation distribution.This SLM-printed Al Mg Si Sc Zr alloy with high specific strength,good thermal stability and excellent corrosion resistance has broad prospects for the aerospace and automotive applications.
文摘Bird flight is a remarkable adaption that has allowed thousands of species to colonize all terrestrial habitats. A golden eagle has impressive flying abilities, such as hovering, perching, preying and attacking. To reveal the flying abilities, avian geometry of a golden eagle was extracted based on noncontact surface measurements using a ROMBER three-dimensional laser scanner. Distributions of a camber line, thickness and a secondary feather line of the extracted point cloud were fitted using convenient analytical expressions. A traditional airfoil was established with the camber line and thickness, then a combined airfoil was constructed by combining the traditional airfoil with a secondary feather. Oscillations of an airfoil as well as rapid pitch up were simplified as a sine wave around the quarter chord axis. Thereafter, both steady and unsteady aerodynamic performances of the airfoil are computed, the influences of the secondary feather on the steady and unsteady aerodynamics were further studied.
基金The Scientific Research Foundation of Third Institute of Oceanography,Ministry of Natural Resources under contract No.2015019the National Natural Science Foundation of China under contract No.41606144the Science Foundation of the Fujian Province,China under contract No.2016J05098
文摘Bacillus sp. JM7, a strain isolated from the deep-sea of the South China Sea, was found to efficiently degrade 79.4% native chicken feather within 30 h. Scanning electron microscopy analysis showed that JM7 strain could gradually degrade feather by modifying the microstructure of feather keratin. A total of 25 protease genes were predicted from the draft genome of JM7 strain, among which a predicted subtilisin-like serine protease(designated as Ker02562) was further characterized for its keratinolytic activity. The recombinant Ker02562 functioned at a wide range of temperatures from 30℃ to 60℃, with an optimum at 40–50℃. Ker02562 was highly active at various pHs ranging from 5.0 to 13.0, with a maximum activity observed at pH 7.0–9.0. Remarkably, recombinant Ker02562 was stable in extreme alkaline environments(pH 10–13), which was much better than most other reported keratinases. Collectively, these favorable properties could make Bacillus sp. JM7 and Ker02562 attractive to be applied in the detergent formulation and feather bioconversion.