期刊文献+
共找到370篇文章
< 1 2 19 >
每页显示 20 50 100
Optimizing Optical Fiber Faults Detection:A Comparative Analysis of Advanced Machine Learning Approaches
1
作者 Kamlesh Kumar Soothar Yuanxiang Chen +2 位作者 Arif Hussain Magsi Cong Hu Hussain Shah 《Computers, Materials & Continua》 SCIE EI 2024年第5期2697-2721,共25页
Efficient optical network management poses significant importance in backhaul and access network communicationfor preventing service disruptions and ensuring Quality of Service(QoS)satisfaction.The emerging faultsin o... Efficient optical network management poses significant importance in backhaul and access network communicationfor preventing service disruptions and ensuring Quality of Service(QoS)satisfaction.The emerging faultsin optical networks introduce challenges that can jeopardize the network with a variety of faults.The existingliterature witnessed various partial or inadequate solutions.On the other hand,Machine Learning(ML)hasrevolutionized as a promising technique for fault detection and prevention.Unlike traditional fault managementsystems,this research has three-fold contributions.First,this research leverages the ML and Deep Learning(DL)multi-classification system and evaluates their accuracy in detecting six distinct fault types,including fiber cut,fibereavesdropping,splicing,bad connector,bending,and PC connector.Secondly,this paper assesses the classificationdelay of each classification algorithm.Finally,this work proposes a fiber optics fault prevention algorithm thatdetermines to mitigate the faults accordingly.This work utilized a publicly available fiber optics dataset namedOTDR_Data and applied different ML classifiers,such as Gaussian Naive Bayes(GNB),Logistic Regression(LR),Support Vector Machine(SVM),K-Nearest Neighbor(KNN),Random Forest(RF),and Decision Tree(DT).Moreover,Ensemble Learning(EL)techniques are applied to evaluate the accuracy of various classifiers.In addition,this work evaluated the performance of DL-based Convolutional Neural Network and Long-Short Term Memory(CNN-LSTM)hybrid classifier.The findings reveal that the CNN-LSTM hybrid technique achieved the highestaccuracy of 99%with a delay of 360 s.On the other hand,EL techniques improved the accuracy in detecting fiberoptic faults.Thus,this research comprehensively assesses accuracy and delay metrics for various classifiers andproposes the most efficient attack detection system in fiber optics. 展开更多
关键词 Fiber optics fault detection multiclassification machine learning ensemble learning
在线阅读 下载PDF
Sensor/Actuator Faults Detection for Networked Control Systems via Predictive Control 被引量:3
2
作者 Yu-Yan Zhang Jun-Ling Zhang +1 位作者 Xiao-Yuan Luo Xin-Ping Guan 《International Journal of Automation and computing》 EI CSCD 2013年第3期173-180,共8页
Quantized fault detection for sensor/actuator faults of networked control systems (NCSs) with time delays both in the sensor-to-controller channel and controller-to-actuator channel is concerned in this paper. A fau... Quantized fault detection for sensor/actuator faults of networked control systems (NCSs) with time delays both in the sensor-to-controller channel and controller-to-actuator channel is concerned in this paper. A fault model is set up based on the possible cases of sensor/atuator faults. Then, the model predictive control is used to compensate the time delay. When the sensors and actuators are healthy, an H stability criterion of the state predictive observer is obtained in terms of linear matrix inequality. A new threshold computational method that conforms to the actual situation is proposed. Then, the thresholds of the false alarm rate (FAR) and miss detection rate (MDR) are presented by using our proposed method, which are also compared with the ones given in the existin~ literatures. Finally, some numerical simulations are shown to demonstrate the effectiveness of the proposed method. 展开更多
关键词 Networked control system fault detection false alarm rate (FAR) miss detection rate (MDR) predictive control.
原文传递
Chiller faults detection and diagnosis with sensor network and adaptive 1D CNN 被引量:3
3
作者 Ke Yan Xiaokang Zhou 《Digital Communications and Networks》 SCIE CSCD 2022年第4期531-539,共9页
Computer-empowered detection of possible faults for Heating,Ventilation and Air-Conditioning(HVAC)subsystems,e.g.,chillers,is one of the most important applications in Artificial Intelligence(AI)integrated Internet of... Computer-empowered detection of possible faults for Heating,Ventilation and Air-Conditioning(HVAC)subsystems,e.g.,chillers,is one of the most important applications in Artificial Intelligence(AI)integrated Internet of Things(IoT).The cyber-physical system greatly enhances the safety and security of the working facilities,reducing time,saving energy and protecting humans’health.Under the current trends of smart building design and energy management optimization,Automated Fault Detection and Diagnosis(AFDD)of chillers integrated with IoT is highly demanded.Recent studies show that standard machine learning techniques,such as Principal Component Analysis(PCA),Support Vector Machine(SVM)and tree-structure-based algorithms,are useful in capturing various chiller faults with high accuracy rates.With the fast development of deep learning technology,Convolutional Neural Networks(CNNs)have been widely and successfully applied to various fields.However,for chiller AFDD,few existing works are adopting CNN and its extensions in the feature extraction and classification processes.In this study,we propose to perform chiller FDD using a CNN-based approach.The proposed approach has two distinct advantages over existing machine learning-based chiller AFDD methods.First,the CNN-based approach does not require the feature selection/extraction process.Since CNN is reputable with its feature extraction capability,the feature extraction and classification processes are merged,leading to a more neat AFDD framework compared to traditional approaches.Second,the classification accuracy is significantly improved compared to traditional methods using the CNN-based approach. 展开更多
关键词 CHILLER Fault detection and diagnosis Deep learning neural network Long short term memory Recurrent neural network Gated recurrent unit
在线阅读 下载PDF
Engine Misfire Fault Detection Based on the Channel Attention Convolutional Model
4
作者 Feifei Yu Yongxian Huang +3 位作者 Guoyan Chen Xiaoqing Yang Canyi Du Yongkang Gong 《Computers, Materials & Continua》 SCIE EI 2025年第1期843-862,共20页
To accurately diagnosemisfire faults in automotive engines,we propose a Channel Attention Convolutional Model,specifically the Squeeze-and-Excitation Networks(SENET),for classifying engine vibration signals and precis... To accurately diagnosemisfire faults in automotive engines,we propose a Channel Attention Convolutional Model,specifically the Squeeze-and-Excitation Networks(SENET),for classifying engine vibration signals and precisely pinpointing misfire faults.In the experiment,we established a total of 11 distinct states,encompassing the engine’s normal state,single-cylinder misfire faults,and dual-cylinder misfire faults for different cylinders.Data collection was facilitated by a highly sensitive acceleration signal collector with a high sampling rate of 20,840Hz.The collected data were methodically divided into training and testing sets based on different experimental groups to ensure generalization and prevent overlap between the two sets.The results revealed that,with a vibration acceleration sequence of 1000 time steps(approximately 50 ms)as input,the SENET model achieved a misfire fault detection accuracy of 99.8%.For comparison,we also trained and tested several commonly used models,including Long Short-Term Memory(LSTM),Transformer,and Multi-Scale Residual Networks(MSRESNET),yielding accuracy rates of 84%,79%,and 95%,respectively.This underscores the superior accuracy of the SENET model in detecting engine misfire faults compared to other models.Furthermore,the F1 scores for each type of recognition in the SENET model surpassed 0.98,outperforming the baseline models.Our analysis indicated that the misclassified samples in the LSTM and Transformer models’predictions were primarily due to intra-class misidentifications between single-cylinder and dual-cylinder misfire scenarios.To delve deeper,we conducted a visual analysis of the features extracted by the LSTM and SENET models using T-distributed Stochastic Neighbor Embedding(T-SNE)technology.The findings revealed that,in the LSTMmodel,data points of the same type tended to cluster together with significant overlap.Conversely,in the SENET model,data points of various types were more widely and evenly dispersed,demonstrating its effectiveness in distinguishing between different fault types. 展开更多
关键词 Channel attention SENET model engine misfire fault fault detection
在线阅读 下载PDF
A New Perspective on Fault Detection and Diagnosis for Plantwide Systems in the Era of Smart Process Manufacturing
5
作者 Wangyan Li Jie Bao 《Engineering》 2025年第9期19-24,共6页
1.Background In the chemical industry,process plants-commonly referred to as plantwide systems-typically consist of many process units(unit operations).Driven by the considerable economic efficiency offered by complex... 1.Background In the chemical industry,process plants-commonly referred to as plantwide systems-typically consist of many process units(unit operations).Driven by the considerable economic efficiency offered by complex and interactive process designs,modern plantwide systems are becoming increasingly sophisticated.The operation of these processes is typically characterized by the complexity of individual units(subsystems)and the intricate interactions between geographically distributed units through networks of material and energy flows,as well as control loops[1]. 展开更多
关键词 plantwide systems smart process manufacturing process units complex interactions fault detection diagnosis chemical industry networks o
在线阅读 下载PDF
Optimal fault detection from seismic data using intelligent techniques:A comprehensive review of methods
6
作者 Bhaktishree Nayak Pallavi Nayak 《Journal of Groundwater Science and Engineering》 2025年第2期193-208,共16页
Seismic data plays a pivotal role in fault detection,offering critical insights into subsurface structures and seismic hazards.Understanding fault detection from seismic data is essential for mitigating seismic risks ... Seismic data plays a pivotal role in fault detection,offering critical insights into subsurface structures and seismic hazards.Understanding fault detection from seismic data is essential for mitigating seismic risks and guiding land-use plans.This paper presents a comprehensive review of existing methodologies for fault detection,focusing on the application of Machine Learning(ML)and Deep Learning(DL)techniques to enhance accuracy and efficiency.Various ML and DL approaches are analyzed with respect to fault segmentation,adaptive learning,and fault detection models.These techniques,benchmarked against established seismic datasets,reveal significant improvements over classical methods in terms of accuracy and computational efficiency.Additionally,this review highlights emerging trends,including hybrid model applications and the integration of real-time data processing for seismic fault detection.By providing a detailed comparative analysis of current methodologies,this review aims to guide future research and foster advancements in the effectiveness and reliability of seismic studies.Ultimately,the study seeks to bridge the gap between theoretical investigations and practical implementations in fault detection. 展开更多
关键词 Seismic data Fault detection Fault Segmentation Machine learning Deep learning Adaptive learning
在线阅读 下载PDF
Application of Bagging Ensemble Model for Fault Detection in Wireless Sensor Networks
7
作者 Rahul Prasad Baghel R K 《Journal of Harbin Institute of Technology(New Series)》 2025年第5期74-85,共12页
A Wireless Sensor Network(WSN)comprises a series of spatially distributed autonomous devices,each equipped with sophisticated sensors.These sensors play a crucial role in monitoring diverse environmental conditions su... A Wireless Sensor Network(WSN)comprises a series of spatially distributed autonomous devices,each equipped with sophisticated sensors.These sensors play a crucial role in monitoring diverse environmental conditions such as light intensity,air pressure,temperature,humidity,wind,etc.These sensors are generally deployed in harsh and hostile conditions;hence they suffer from different kinds of faults.However,identifying faults in WSN data remains a complex task,as existing fault detection methods,including centralized,distributed,and hybrid approaches,rely on the spatio⁃temporal correlation among sensor nodes.Moreover,existing techniques predominantly leverage classification⁃based machine learning methods to discern the fault state within WSN.In this paper,we propose a regression⁃based bagging method to detect the faults in the network.The proposed bagging method is consisted of GRU(Gated Recurrent Unit)and Prophet model.Bagging allows weak learners to combine efforts to outperform a strong learner,hence it is appropriate to use in WSN.The proposed bagging method was first trained at the base station,then they were deployed at each SN(Sensor Node).Most of the common faults in WSN,such as transient,intermittent and permanent faults,were considered.The validity of the proposed scheme was tested using a trusted online published dataset.Using experimental studies,compared to the latest state⁃of⁃the⁃art machine learning models,the effectiveness of the proposed model is shown for fault detection.Performance evaluation in terms of false positive rate,accuracy,and false alarm rate shows the efficiency of the proposed algorithm. 展开更多
关键词 fault detection GRU PROPHET deep learning wireless sensor networks
在线阅读 下载PDF
A review of research on intelligent fault detection of power equipment based on infrared and voiceprint: methods, applications and challenges
8
作者 Xizhou Du Xing Lei +4 位作者 Ting Ye Yingzhou Sun Zewen Shang Zhiqiang Liu Tianyi Xu 《Global Energy Interconnection》 2025年第5期821-846,共26页
As modern power systems grow in complexity,accurate and efficient fault detection has become increasingly important.While many existing reviews focus on a single modality,this paper presents a comprehensive survey fro... As modern power systems grow in complexity,accurate and efficient fault detection has become increasingly important.While many existing reviews focus on a single modality,this paper presents a comprehensive survey from a dual-modality perspective-infrared imaging and voiceprint analysis-two complementary,non-contact techniques that capture different fault characteristics.Infrared imaging excels at detecting thermal anomalies,while voiceprint signals provide insight into mechanical vibrations and internal discharge phenomena.We review both traditional signal processing and deep learning-based approaches for each modality,categorized by key processing stages such as feature extraction and classification.The paper highlights how these modalities address distinct fault types and how they may be fused to improve robustness and accuracy.Representative datasets are summarized,and practical challenges such as noise interference,limited fault samples,and deployment constraints are discussed.By offering a cross-modal,comparative analysis,this work aims to bridge fragmented research and guide future development in intelligent fault detection systems.The review concludes with research trends including multimodal fusion,lightweight models,and self-supervised learning. 展开更多
关键词 Power equipment fault detection Infrared image Voiceprint data Deep learning Traditional image processing Voiceprint detection
在线阅读 下载PDF
Fault Detection of Yarn Congestion in Sizing Machine Based on Machine Vision
9
作者 LI Jingwei ZOU Kun ZHAO Chen 《Journal of Donghua University(English Edition)》 2025年第3期292-300,共9页
During the sizing process,yarn congestion fault occurs at the reed teeth of a sizing machine.At present,the yarn congestion fault is generally handled by manual detection.The sizing production line operates on a large... During the sizing process,yarn congestion fault occurs at the reed teeth of a sizing machine.At present,the yarn congestion fault is generally handled by manual detection.The sizing production line operates on a large scale and runs continuously.Untimely handling of the yarn congestion fault causes a large amount of yarn waste.In this research,a machine vision-based algorithm for yarn congestion fault detection is developed.Through the analysis of the congestion fault and interference contour characteristics,the basic idea of image phase subtraction to identify the congestion fault is determined.To address the interference information appearing after image phase subtraction,the image pre-processing methods of Canny edge extraction and mean filtering are employed.According to the fault size and location characteristics,the fault contour detection algorithm based on inter-frame difference is designed.To mitigate the camera vibration interference,the anti-vibration interference algorithm based on affine transformation is studied,and the fault detection algorithm for the total yarn congestion fault is determined.The detection of 20 sets of field data is carried out,and the detection rate reaches 90%.This fault detection algorithm realizes the automatic detection of yarn congestion fault of sizing machine with certain real-time performance and accuracy. 展开更多
关键词 machine vision yarn congestion fault detection inter-frame difference affine transformation
在线阅读 下载PDF
Fault Detection for Split Pins of Power Transmission Fittings in UAV Inspections via Automatic Image Cropping-based Super-Resolution Reconstruction and Enhanced YOLOv8
10
作者 Shihao Cui Zhengyu Hu +1 位作者 Fangcheng Qiu Qinglong Wang 《Journal of Electronic Research and Application》 2025年第3期222-234,共13页
In modern industrial applications,ensuring the reliability of mechanical fittings is critical for maintaining operational safety and efficiency,particularly in power grid systems where split pins serve a pivotal role ... In modern industrial applications,ensuring the reliability of mechanical fittings is critical for maintaining operational safety and efficiency,particularly in power grid systems where split pins serve a pivotal role despite being susceptible to environmental degradation and failure.Existing UAV-based inspection systems are hampered by a low representation of split pin elements and complex backgrounds,leading to challenges in accurate fault detection and timely maintenance.To address this pressing issue,our study proposes an innovative fault detection method for split pins.The approach employs a three-step process:first,cropping operations are used to accurately isolate the fittings containing split pins;second,super-resolution reconstruction is applied to enhance image clarity and detail;and finally,an improved YOLOv8 network,augmented with inner-shape IoU and local window attention mechanisms,is utilized to refine local feature extraction and annotation accuracy.Experimental evaluations on a split pin defect dataset demonstrate robust performance,achieving an accuracy rate of 72.1%and a mean average precision(mAP)of 67.7%,thereby validating the method’s effectiveness under challenging conditions.The proposed approach contributes to the field by specifically targeting the challenges associated with split pin detection in UAV-based inspections,offering a practically applicable and reliably precise method. 展开更多
关键词 Split pins Fault detection Power transmission fittings YOLO Deep learning
在线阅读 下载PDF
Graph-guided fault detection for multi-type lithium-ion batteries in realistic electric vehicles optimized by ensemble learning
11
作者 Caiping Zhang Shuowei Li +3 位作者 Jingcai Du Linjing Zhang Wei Luo Yan Jiang 《Journal of Energy Chemistry》 2025年第7期507-522,共16页
Accurately evaluating the safety status of lithium-ion battery systems in electric vehicles is imperative due to the challenges in effectively predicting potential battery failure risks under stochastic profiles.Compl... Accurately evaluating the safety status of lithium-ion battery systems in electric vehicles is imperative due to the challenges in effectively predicting potential battery failure risks under stochastic profiles.Complex battery fault mechanisms and limited poor-quality data collection impede fault detection for battery systems under real-world conditions.This paper proposes a novel graph-guided fault detection method designed to recognize concealed anomalies in realistic data.Graphs guided by physical relationships are constructed for learning the dynamic evolution of physical quantities under normal conditions and their potential change characteristics in fault scenarios.An ensemble Graph Sample and Aggregate Network model are developed to tackle sample distribution imbalances and non-uniformity battery system specifications across vehicles.Failure risk probabilities for diverse battery charging and discharging segments are derived.An ablation study verifies the necessity of ensemble learning in addressing imbalanced datasets.Analysis of 102,095 segments across 86 vehicles with different battery material systems,battery capacities,and numbers of cells and temperature sensors confirms the robustness and generalization of the proposed method,yielding a recall of 98.37%.By introducing the graph,spatio-temporal global fault characteristics of battery systems are automatically extracted.The coupling relationship and evolution of physical quantities under both normal and faulty states are established,effectively uncovering fault information hidden in collected battery data without observable anomalies.The safety state of battery systems is reflected in terms of failure risk probability,providing reliable data support for battery system maintenance. 展开更多
关键词 Lithium-ion battery Fault detection Ensemble Learning Deep learning Real-world operating
在线阅读 下载PDF
Real-Time Fault Detection and Isolation in Power Systems for Improved Digital Grid Stability Using an Intelligent Neuro-Fuzzy Logic
12
作者 Zuhaib Nishtar Fangzong Wang +1 位作者 Fawwad Hassan Jaskani Hussain Afzaal 《Computer Modeling in Engineering & Sciences》 2025年第6期2919-2956,共38页
This research aims to address the challenges of fault detection and isolation(FDI)in digital grids,focusing on improving the reliability and stability of power systems.Traditional fault detection techniques,such as ru... This research aims to address the challenges of fault detection and isolation(FDI)in digital grids,focusing on improving the reliability and stability of power systems.Traditional fault detection techniques,such as rule-based fuzzy systems and conventional FDI methods,often struggle with the dynamic nature of modern grids,resulting in delays and inaccuracies in fault classification.To overcome these limitations,this study introduces a Hybrid NeuroFuzzy Fault Detection Model that combines the adaptive learning capabilities of neural networks with the reasoning strength of fuzzy logic.The model’s performance was evaluated through extensive simulations on the IEEE 33-bus test system,considering various fault scenarios,including line-to-ground faults(LGF),three-phase short circuits(3PSC),and harmonic distortions(HD).The quantitative results show that the model achieves 97.2%accuracy,a false negative rate(FNR)of 1.9%,and a false positive rate(FPR)of 2.3%,demonstrating its high precision in fault diagnosis.The qualitative analysis further highlights the model’s adaptability and its potential for seamless integration into smart grids,micro grids,and renewable energy systems.By dynamically refining fuzzy inference rules,the model enhances fault detection efficiency without compromising computational feasibility.These findings contribute to the development of more resilient and adaptive fault management systems,paving the way for advanced smart grid technologies. 展开更多
关键词 Fault detection and isolation(FDI) neuro-fuzzy systems digital grids smart grid resilience power system artificial intelligence(AI)
在线阅读 下载PDF
Asynchronously fault detection for flight vehicles with unstable modes via MDLF and MDADT method
13
作者 Sheng Luo Xin Liu +2 位作者 Yanfei Cheng Shiyu Shuai Haoyu Cheng 《Defence Technology(防务技术)》 2025年第7期417-436,共20页
This research focuses on detecting faults in flight vehicles with unstable subsystems operating asynchronously.By accounting for asynchronous switching,a switched model is established,and filters for fault detection(F... This research focuses on detecting faults in flight vehicles with unstable subsystems operating asynchronously.By accounting for asynchronous switching,a switched model is established,and filters for fault detection(FD)in unstable subsystems are developed.The FD challenge is then transformed into an H∞filtering issue.Utilizing the multiple discontinuous Lyapunov function(MDLF)approach and the mode-dependent average dwell time(MDADT)method,sufficient conditions are derived to ensure stability during both fast and slow switching.Furthermore,the existence and solutions for FD filters are provided through linear matrix inequalities(LMIs).The simulation outcomes demonstrated the excellent performance of the developed method in studied cases. 展开更多
关键词 Fault detection Asynchronous switching H∞filtering Multiple discontinuous lyapunov function Mode-dependent average dwell time Linear matrix inequalities(LMIs)
在线阅读 下载PDF
Enhanced Fault Detection and Diagnosis in Photovoltaic Arrays Using a Hybrid NCA-CNN Model
14
作者 Umit Cigdem Turhal Yasemin Onal Kutalmis Turhal 《Computer Modeling in Engineering & Sciences》 2025年第5期2307-2332,共26页
The reliability and efficiency of photovoltaic(PV)systems are essential for sustainable energy produc-tion,requiring accurate fault detection to minimize energy losses.This study proposes a hybrid model integrating Ne... The reliability and efficiency of photovoltaic(PV)systems are essential for sustainable energy produc-tion,requiring accurate fault detection to minimize energy losses.This study proposes a hybrid model integrating Neighborhood Components Analysis(NCA)with a Convolutional Neural Network(CNN)to improve fault detection and diagnosis.Unlike Principal Component Analysis(PCA),which may compromise class relationships during feature extraction,NCA preserves these relationships,enhancing classification performance.The hybrid model combines NCA with CNN,a fundamental deep learning architecture,to enhance fault detection and diagnosis capabilities.The performance of the proposed NCA-CNN model was evaluated against other models.The experimental evaluation demonstrates that the NCA-CNN model outperforms existing methods,achieving 100%fault detection accuracy and 99%fault diagnosis accuracy.These findings underscore the model’s potential in improving PV system reliability and efficiency. 展开更多
关键词 Artificial intelligence photovoltaic energy systems machine learning photovoltaic fault detection and diagnosis convolutional neural networks(CNN) neighbourhood component analysis(NCA)
在线阅读 下载PDF
An Ensembled Multi-Layer Automatic-Constructed Weighted Online Broad Learning System for Fault Detection in Cellular Networks
15
作者 Wang Qi Pan Zhiwen +1 位作者 Liu Nan You Xiaohu 《China Communications》 2025年第8期150-167,共18页
6G is desired to support more intelligence networks and this trend attaches importance to the self-healing capability if degradation emerges in the cellular networks.As a primary component of selfhealing networks,faul... 6G is desired to support more intelligence networks and this trend attaches importance to the self-healing capability if degradation emerges in the cellular networks.As a primary component of selfhealing networks,fault detection is investigated in this paper.Considering the fast response and low timeand-computational consumption,it is the first time that the Online Broad Learning System(OBLS)is applied to identify outages in cellular networks.In addition,the Automatic-constructed Online Broad Learning System(AOBLS)is put forward to rationalize its structure and consequently avoid over-fitting and under-fitting.Furthermore,a multi-layer classification structure is proposed to further improve the classification performance.To face the challenges caused by imbalanced data in fault detection problems,a novel weighting strategy is derived to achieve the Multilayer Automatic-constructed Weighted Online Broad Learning System(MAWOBLS)and ensemble learning with retrained Support Vector Machine(SVM),denoted as EMAWOBLS,for superior treatment with this imbalance issue.Simulation results show that the proposed algorithm has excellent performance in detecting faults with satisfactory time usage. 展开更多
关键词 broad learning system(BLS) cell outage detection cellular network fault detection ensemble learning imbalanced classification online broad learning system(OBLS) self-healing network weighted broad learning system(WBLS)
在线阅读 下载PDF
Enhancing Safety in Electric Vehicles:Multi-Tiered Fault Detection for Micro Short Circuits and Aging in Battery Modules
16
作者 Yi-Feng Luo Jyuan-FongYen Wen-Cheng Su 《Computer Modeling in Engineering & Sciences》 2025年第3期3069-3087,共19页
This article proposes a multi-tiered fault detection system for series-connected lithium-ion battery modules.Improper use of batteries can lead to electrolyte decomposition,resulting in the formation of lithium dendri... This article proposes a multi-tiered fault detection system for series-connected lithium-ion battery modules.Improper use of batteries can lead to electrolyte decomposition,resulting in the formation of lithium dendrites.These dendrites may pierce the separator,leading to the failure of the insulation layer between electrodes and causing micro short circuits.When a micro short circuit occurs,the electrolyte typically undergoes exothermic reactions,leading to thermal runaway and posing a safety risk to users.Relying solely on temperature-based judgment mechanisms within the battery management system often results in delayed intervention.To address this issue,the article develops a multi-tiered fault detection algorithm for series-connected lithium-ion batteries.This algorithm can effectively diagnose micro short circuits,aging,and normal batteries using minimal battery data,thereby improving diagnostic accuracy and enhancing the flexibility of fault detection.Simulations and experiments conducted under various levels of micro short circuits validate the effectiveness of the algorithm,demonstrating its ability to distinguish between short-circuited,aged,and normal batteries under different conditions.This technology can be applied to electric vehicles and energy storage systems,enabling early warnings to ensure safety and prevent thermal runaway. 展开更多
关键词 Multi-tiered fault detection micro short circuits(MSC) battery management system(BMS) lithiumion batteries electric vehicles(EV) energy storage systems(ESS)
在线阅读 下载PDF
An Improved Copula-Based Test Selection Design Strategy for Fault Detection and Isolation Based on PSO
17
作者 Xiuli Wang Dongdong Xie +2 位作者 Yang Li Chun Liu Xinyu Hu 《Instrumentation》 2025年第1期48-59,共12页
Test selection design(TSD)is an important technique for improving product maintainability,reliability and reducing lifecycle costs.In recent years,although some researchers have addressed the design problem of test se... Test selection design(TSD)is an important technique for improving product maintainability,reliability and reducing lifecycle costs.In recent years,although some researchers have addressed the design problem of test selection,the correlation between test outcomes has not been sufficiently considered in test metrics modeling.This study proposes a new approach that combines copula and D-Vine copula to address the correlation issue in TSD.First,the copula is utilized to model FIR on the joint distribution.Furthermore,the D-Vine copula is applied to model the FDR and FAR.Then,a particle swarm optimization is employed to select the optimal testing scheme.Finally,the efficacy of the proposed method is validated through experimentation on a negative feedback circuit. 展开更多
关键词 Design of testability fault detection and isolation(FDI) copula function vine copula model particle swarm optimization(PSO)
原文传递
Fault Detection and Fault-Tolerant Control Based on Bi-LSTM Network and SPRT for Aircraft Braking System
18
作者 Renjie Li Yaoxing Shang +4 位作者 Jinglin Cai Xiaochao Liu Lingdong Geng Pengyuan Qi Zongxia Jiao 《Chinese Journal of Mechanical Engineering》 2025年第3期12-28,共17页
The aircraft braking system is critical to ensure the safe take-off and landing of the aircraft.However,the braking system is often exposed to high temperatures and strong vibration working environments,which makes th... The aircraft braking system is critical to ensure the safe take-off and landing of the aircraft.However,the braking system is often exposed to high temperatures and strong vibration working environments,which makes the sensor prone to failure.Sensor failure has the potential to compromise aircraft safety.In order to improve the safety of the aircraft braking system,a fault detection and fault-tolerant control(FDFTC)strategy for the aircraft brake pressure sensor is designed.Firstly,a model based on a bidirectional long short-term memory(Bi-LSTM)network is constructed to estimate the brake pressure.Then,the residual sequence is obtained by comparing the measured pressure with the estimated pressure.On this basis,the improved sequential probability ratio test(SPRT)method based on mathematical statistics is applied to analyze the residual sequence to detect the fault.Finally,simulation and hardware-in-the-loop(HIL)testing results indicate that the proposed FDFTC strategy can detect sensor faults in time and efficiently complete braking when faults occur.Hence,the proposed FDFTC strategy can effectively deal with the faults of the aircraft brake pressure sensor,which is of great significance to improve the reliability and safety of the aircraft. 展开更多
关键词 Aircraft braking system Fault detection and fault-tolerant control Bidirectional long short-term memory network Sequential probability ratio test
在线阅读 下载PDF
Fault detection and health monitoring of high-power thyristor converter based on long short-term memory in nuclear fusion
19
作者 Ling ZHANG Ge GAO Li JIANG 《Plasma Science and Technology》 2025年第4期64-73,共10页
This research focuses on solving the fault detection and health monitoring of high-power thyristor converter.In terms of the critical role of thyristor converter in nuclear fusion system,a method based on long short-t... This research focuses on solving the fault detection and health monitoring of high-power thyristor converter.In terms of the critical role of thyristor converter in nuclear fusion system,a method based on long short-term memory(LSTM)neural network model is proposed to monitor the operational state of the converter and accurately detect faults as they occur.By sampling and processing a large number of thyristor converter operation data,the LSTM model is trained to identify and detect abnormal state,and the power supply health status is monitored.Compared with traditional methods,LSTM model shows higher accuracy and abnormal state detection ability.The experimental results show that this method can effectively improve the reliability and safety of the thyristor converter,and provide a strong guarantee for the stable operation of the nuclear fusion reactor. 展开更多
关键词 fault detection and health monitoring high-power supply thyristor converter long short-term memory(LSTM) nuclear fusion(Some figures may appear in colour only in the online journal)
在线阅读 下载PDF
Fault Detection of Industrial Robot Drive Systems:An Enhanced Unscented Kalman Filter Approach
20
作者 LIU Chen ZHU Chenyang 《Wuhan University Journal of Natural Sciences》 2025年第4期313-320,共8页
Fault detection in industrial robot drive systems is a critical aspect of ensuring operational reliability and efficiency.To address the challenge of balancing accuracy and robustness in existing fault detection metho... Fault detection in industrial robot drive systems is a critical aspect of ensuring operational reliability and efficiency.To address the challenge of balancing accuracy and robustness in existing fault detection methods,this paper proposes an enhanced fault detection method based on the unscented Kalman filter(UKF).A comprehensive mathematical model of the brushless DC motor drive system is developed to provide a theoretical foundation for the design of subsequent fault detection methods.The conventional UKF estimation process is detailed,and its limitations in balancing estimation accuracy and robustness are addressed by introducing a dynamic,time-varying boundary layer.To further enhance detection performance,the method incorporates residual analysis using improved z-score and signal-tonoise ratio(SNR)metrics.Numerical simulations under both fault-free and faulty conditions demonstrate that the proposed approach achieves lower root mean square error(RMSE)in fault-free scenarios and provides reliable fault detection.These results highlight the potential of the proposed method to enhance the reliability and robustness of fault detection in industrial robot drive systems. 展开更多
关键词 fault detection industrial robot enhanced unscented Kalman filter(UKF)
原文传递
上一页 1 2 19 下一页 到第
使用帮助 返回顶部