期刊文献+
共找到253,584篇文章
< 1 2 250 >
每页显示 20 50 100
Offload Strategy for Edge Computing in Satellite Networks Based on Software Defined Network 被引量:1
1
作者 Zhiguo Liu Yuqing Gui +1 位作者 Lin Wang Yingru Jiang 《Computers, Materials & Continua》 SCIE EI 2025年第1期863-879,共17页
Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in us... Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in user demand for latency-sensitive tasks has inevitably led to offloading bottlenecks and insufficient computational capacity on individual satellite edge servers,making it necessary to implement effective task offloading scheduling to enhance user experience.In this paper,we propose a priority-based task scheduling strategy based on a Software-Defined Network(SDN)framework for satellite-terrestrial integrated networks,which clarifies the execution order of tasks based on their priority.Subsequently,we apply a Dueling-Double Deep Q-Network(DDQN)algorithm enhanced with prioritized experience replay to derive a computation offloading strategy,improving the experience replay mechanism within the Dueling-DDQN framework.Next,we utilize the Deep Deterministic Policy Gradient(DDPG)algorithm to determine the optimal resource allocation strategy to reduce the processing latency of sub-tasks.Simulation results demonstrate that the proposed d3-DDPG algorithm outperforms other approaches,effectively reducing task processing latency and thus improving user experience and system efficiency. 展开更多
关键词 Satellite network edge computing task scheduling computing offloading
在线阅读 下载PDF
Fault-tolerant control strategies for tilt-rotor aerial-aquatic vehicles:Design and implementation 被引量:1
2
作者 Sihuan Wu Sifan Wu +3 位作者 Maosen Shao Zhilin He Yuan Liu Jinxiu Zhang 《Defence Technology(防务技术)》 2025年第9期274-293,共20页
The cross-domain capabilities of aerial-aquatic vehicles(AAVs)hold significant potential for future airsea integrated combat operations.However,the failure rate of AAVs is higher than that of unmanned systems operatin... The cross-domain capabilities of aerial-aquatic vehicles(AAVs)hold significant potential for future airsea integrated combat operations.However,the failure rate of AAVs is higher than that of unmanned systems operating in a single medium.To ensure the reliable and stable completion of tasks by AAVs,this paper proposes a tiltable quadcopter AAV to mitigate the potential issue of rotor failure,which can lead to high-speed spinning or damage during cross-media transitions.Experimental validation demonstrates that this tiltable quadcopter AAV can transform into a dual-rotor or triple-rotor configuration after losing one or two rotors,allowing it to perform cross-domain movements with enhanced stability and maintain task completion.This enhancement significantly improves its fault tolerance and task reliability. 展开更多
关键词 Aerial-aquatic vehicle Tiltable quadcopter fault-tolerANCE Cross-media operation
在线阅读 下载PDF
Optoelectronic memristor based on a-C:Te film for muti-mode reservoir computing 被引量:2
3
作者 Qiaoling Tian Kuo Xun +7 位作者 Zhuangzhuang Li Xiaoning Zhao Ya Lin Ye Tao Zhongqiang Wang Daniele Ielmini Haiyang Xu Yichun Liu 《Journal of Semiconductors》 2025年第2期144-149,共6页
Optoelectronic memristor is generating growing research interest for high efficient computing and sensing-memory applications.In this work,an optoelectronic memristor with Au/a-C:Te/Pt structure is developed.Synaptic ... Optoelectronic memristor is generating growing research interest for high efficient computing and sensing-memory applications.In this work,an optoelectronic memristor with Au/a-C:Te/Pt structure is developed.Synaptic functions,i.e.,excita-tory post-synaptic current and pair-pulse facilitation are successfully mimicked with the memristor under electrical and optical stimulations.More importantly,the device exhibited distinguishable response currents by adjusting 4-bit input electrical/opti-cal signals.A multi-mode reservoir computing(RC)system is constructed with the optoelectronic memristors to emulate human tactile-visual fusion recognition and an accuracy of 98.7%is achieved.The optoelectronic memristor provides potential for developing multi-mode RC system. 展开更多
关键词 optoelectronic memristor volatile switching muti-mode reservoir computing
在线阅读 下载PDF
Dynamic Task Offloading Scheme for Edge Computing via Meta-Reinforcement Learning 被引量:1
4
作者 Jiajia Liu Peng Xie +2 位作者 Wei Li Bo Tang Jianhua Liu 《Computers, Materials & Continua》 2025年第2期2609-2635,共27页
As an important complement to cloud computing, edge computing can effectively reduce the workload of the backbone network. To reduce latency and energy consumption of edge computing, deep learning is used to learn the... As an important complement to cloud computing, edge computing can effectively reduce the workload of the backbone network. To reduce latency and energy consumption of edge computing, deep learning is used to learn the task offloading strategies by interacting with the entities. In actual application scenarios, users of edge computing are always changing dynamically. However, the existing task offloading strategies cannot be applied to such dynamic scenarios. To solve this problem, we propose a novel dynamic task offloading framework for distributed edge computing, leveraging the potential of meta-reinforcement learning (MRL). Our approach formulates a multi-objective optimization problem aimed at minimizing both delay and energy consumption. We model the task offloading strategy using a directed acyclic graph (DAG). Furthermore, we propose a distributed edge computing adaptive task offloading algorithm rooted in MRL. This algorithm integrates multiple Markov decision processes (MDP) with a sequence-to-sequence (seq2seq) network, enabling it to learn and adapt task offloading strategies responsively across diverse network environments. To achieve joint optimization of delay and energy consumption, we incorporate the non-dominated sorting genetic algorithm II (NSGA-II) into our framework. Simulation results demonstrate the superiority of our proposed solution, achieving a 21% reduction in time delay and a 19% decrease in energy consumption compared to alternative task offloading schemes. Moreover, our scheme exhibits remarkable adaptability, responding swiftly to changes in various network environments. 展开更多
关键词 Edge computing adaptive META task offloading joint optimization
在线阅读 下载PDF
Near‑Sensor Edge Computing System Enabled by a CMOS Compatible Photonic Integrated Circuit Platform Using Bilayer AlN/Si Waveguides 被引量:1
5
作者 Zhihao Ren Zixuan Zhang +4 位作者 Yangyang Zhuge Zian Xiao Siyu Xu Jingkai Zhou Chengkuo Lee 《Nano-Micro Letters》 2025年第11期1-20,共20页
The rise of large-scale artificial intelligence(AI)models,such as ChatGPT,Deep-Seek,and autonomous vehicle systems,has significantly advanced the boundaries of AI,enabling highly complex tasks in natural language proc... The rise of large-scale artificial intelligence(AI)models,such as ChatGPT,Deep-Seek,and autonomous vehicle systems,has significantly advanced the boundaries of AI,enabling highly complex tasks in natural language processing,image recognition,and real-time decisionmaking.However,these models demand immense computational power and are often centralized,relying on cloud-based architectures with inherent limitations in latency,privacy,and energy efficiency.To address these challenges and bring AI closer to real-world applications,such as wearable health monitoring,robotics,and immersive virtual environments,innovative hardware solutions are urgently needed.This work introduces a near-sensor edge computing(NSEC)system,built on a bilayer AlN/Si waveguide platform,to provide real-time,energy-efficient AI capabilities at the edge.Leveraging the electro-optic properties of AlN microring resonators for photonic feature extraction,coupled with Si-based thermo-optic Mach-Zehnder interferometers for neural network computations,the system represents a transformative approach to AI hardware design.Demonstrated through multimodal gesture and gait analysis,the NSEC system achieves high classification accuracies of 96.77%for gestures and 98.31%for gaits,ultra-low latency(<10 ns),and minimal energy consumption(<0.34 pJ).This groundbreaking system bridges the gap between AI models and real-world applications,enabling efficient,privacy-preserving AI solutions for healthcare,robotics,and next-generation human-machine interfaces,marking a pivotal advancement in edge computing and AI deployment. 展开更多
关键词 Photonic integrated circuits Edge computing Aluminum nitride Neural networks Wearable sensors
在线阅读 下载PDF
Synaptic devices based on silicon carbide for neuromorphic computing 被引量:1
6
作者 Boyu Ye Xiao Liu +2 位作者 Chao Wu Wensheng Yan Xiaodong Pi 《Journal of Semiconductors》 2025年第2期38-51,共14页
To address the increasing demand for massive data storage and processing,brain-inspired neuromorphic comput-ing systems based on artificial synaptic devices have been actively developed in recent years.Among the vario... To address the increasing demand for massive data storage and processing,brain-inspired neuromorphic comput-ing systems based on artificial synaptic devices have been actively developed in recent years.Among the various materials inves-tigated for the fabrication of synaptic devices,silicon carbide(SiC)has emerged as a preferred choices due to its high electron mobility,superior thermal conductivity,and excellent thermal stability,which exhibits promising potential for neuromorphic applications in harsh environments.In this review,the recent progress in SiC-based synaptic devices is summarized.Firstly,an in-depth discussion is conducted regarding the categories,working mechanisms,and structural designs of these devices.Subse-quently,several application scenarios for SiC-based synaptic devices are presented.Finally,a few perspectives and directions for their future development are outlined. 展开更多
关键词 silicon carbide wide bandgap semiconductors synaptic devices neuromorphic computing high temperature
在线阅读 下载PDF
Fault-tolerant control for diesel engine air path system via sliding mode surface
7
作者 WU Wen-jie ZHANG Yi-xin +4 位作者 WANG Xing-jian WANG Shao-ping ZHANG Jian ZHENG Wei TAO Mo 《控制理论与应用》 北大核心 2025年第8期1570-1577,共8页
The operating environment of the diesel engine air path system is complex and may be affected by external random disturbances.Potentially leading to faults.This paper addresses the fault-tolerant control problem of th... The operating environment of the diesel engine air path system is complex and may be affected by external random disturbances.Potentially leading to faults.This paper addresses the fault-tolerant control problem of the diesel engine air path system,assuming that the system may simultaneously be affected by actuator faults and external random disturbances,a disturbance observer-based sliding mode controller is designed.Through the linear matrix inequality technique for solving observer and controller gains,optimal gain matrices can be obtained,eliminating the manual adjustment process of controller parameters and reducing the chattering phenomenon of the sliding mode surface.Finally,the effectiveness of the proposed method is verified through simulation analysis. 展开更多
关键词 disel engine air path fault-tolerant control sliding mode control disturbance observer
在线阅读 下载PDF
CBBM-WARM:A Workload-Aware Meta-Heuristic for Resource Management in Cloud Computing 被引量:1
8
作者 K Nivitha P Pabitha R Praveen 《China Communications》 2025年第6期255-275,共21页
The rapid advent in artificial intelligence and big data has revolutionized the dynamic requirement in the demands of the computing resource for executing specific tasks in the cloud environment.The process of achievi... The rapid advent in artificial intelligence and big data has revolutionized the dynamic requirement in the demands of the computing resource for executing specific tasks in the cloud environment.The process of achieving autonomic resource management is identified to be a herculean task due to its huge distributed and heterogeneous environment.Moreover,the cloud network needs to provide autonomic resource management and deliver potential services to the clients by complying with the requirements of Quality-of-Service(QoS)without impacting the Service Level Agreements(SLAs).However,the existing autonomic cloud resource managing frameworks are not capable in handling the resources of the cloud with its dynamic requirements.In this paper,Coot Bird Behavior Model-based Workload Aware Autonomic Resource Management Scheme(CBBM-WARMS)is proposed for handling the dynamic requirements of cloud resources through the estimation of workload that need to be policed by the cloud environment.This CBBM-WARMS initially adopted the algorithm of adaptive density peak clustering for workloads clustering of the cloud.Then,it utilized the fuzzy logic during the process of workload scheduling for achieving the determining the availability of cloud resources.It further used CBBM for potential Virtual Machine(VM)deployment that attributes towards the provision of optimal resources.It is proposed with the capability of achieving optimal QoS with minimized time,energy consumption,SLA cost and SLA violation.The experimental validation of the proposed CBBMWARMS confirms minimized SLA cost of 19.21%and reduced SLA violation rate of 18.74%,better than the compared autonomic cloud resource managing frameworks. 展开更多
关键词 autonomic resource management cloud computing coot bird behavior model SLA violation cost WORKLOAD
在线阅读 下载PDF
Providing Robust and Low-Cost Edge Computing in Smart Grid:An Energy Harvesting Based Task Scheduling and Resource Management Framework 被引量:1
9
作者 Xie Zhigang Song Xin +1 位作者 Xu Siyang Cao Jing 《China Communications》 2025年第2期226-240,共15页
Recently,one of the main challenges facing the smart grid is insufficient computing resources and intermittent energy supply for various distributed components(such as monitoring systems for renewable energy power sta... Recently,one of the main challenges facing the smart grid is insufficient computing resources and intermittent energy supply for various distributed components(such as monitoring systems for renewable energy power stations).To solve the problem,we propose an energy harvesting based task scheduling and resource management framework to provide robust and low-cost edge computing services for smart grid.First,we formulate an energy consumption minimization problem with regard to task offloading,time switching,and resource allocation for mobile devices,which can be decoupled and transformed into a typical knapsack problem.Then,solutions are derived by two different algorithms.Furthermore,we deploy renewable energy and energy storage units at edge servers to tackle intermittency and instability problems.Finally,we design an energy management algorithm based on sampling average approximation for edge computing servers to derive the optimal charging/discharging strategies,number of energy storage units,and renewable energy utilization.The simulation results show the efficiency and superiority of our proposed framework. 展开更多
关键词 edge computing energy harvesting energy storage unit renewable energy sampling average approximation task scheduling
在线阅读 下载PDF
DeepSeek vs.ChatGPT vs.Claude:A comparative study for scientific computing and scientific machine learning tasks 被引量:1
10
作者 Qile Jiang Zhiwei Gao George Em Karniadakis 《Theoretical & Applied Mechanics Letters》 2025年第3期194-206,共13页
Large language models(LLMs)have emerged as powerful tools for addressing a wide range of problems,including those in scientific computing,particularly in solving partial differential equations(PDEs).However,different ... Large language models(LLMs)have emerged as powerful tools for addressing a wide range of problems,including those in scientific computing,particularly in solving partial differential equations(PDEs).However,different models exhibit distinct strengths and preferences,resulting in varying levels of performance.In this paper,we compare the capabilities of the most advanced LLMs—DeepSeek,ChatGPT,and Claude—along with their reasoning-optimized versions in addressing computational challenges.Specifically,we evaluate their proficiency in solving traditional numerical problems in scientific computing as well as leveraging scientific machine learning techniques for PDE-based problems.We designed all our experiments so that a nontrivial decision is required,e.g,defining the proper space of input functions for neural operator learning.Our findings show that reasoning and hybrid-reasoning models consistently and significantly outperform non-reasoning ones in solving challenging problems,with ChatGPT o3-mini-high generally offering the fastest reasoning speed. 展开更多
关键词 Large language models(LLM) Scientific computing Scientific machine learning Physics-informed neural network
在线阅读 下载PDF
A Latency-Aware and Fault-Tolerant Framework for Resource Scheduling and Data Management in Fog-Enabled Smart City Transportation Systems
11
作者 Ibrar Afzal Noor ul Amin +1 位作者 Zulfiqar Ahmad Abdulmohsen Algarni 《Computers, Materials & Continua》 SCIE EI 2025年第1期1377-1399,共23页
Thedeployment of the Internet of Things(IoT)with smart sensors has facilitated the emergence of fog computing as an important technology for delivering services to smart environments such as campuses,smart cities,and ... Thedeployment of the Internet of Things(IoT)with smart sensors has facilitated the emergence of fog computing as an important technology for delivering services to smart environments such as campuses,smart cities,and smart transportation systems.Fog computing tackles a range of challenges,including processing,storage,bandwidth,latency,and reliability,by locally distributing secure information through end nodes.Consisting of endpoints,fog nodes,and back-end cloud infrastructure,it provides advanced capabilities beyond traditional cloud computing.In smart environments,particularly within smart city transportation systems,the abundance of devices and nodes poses significant challenges related to power consumption and system reliability.To address the challenges of latency,energy consumption,and fault tolerance in these environments,this paper proposes a latency-aware,faulttolerant framework for resource scheduling and data management,referred to as the FORD framework,for smart cities in fog environments.This framework is designed to meet the demands of time-sensitive applications,such as those in smart transportation systems.The FORD framework incorporates latency-aware resource scheduling to optimize task execution in smart city environments,leveraging resources from both fog and cloud environments.Through simulation-based executions,tasks are allocated to the nearest available nodes with minimum latency.In the event of execution failure,a fault-tolerantmechanism is employed to ensure the successful completion of tasks.Upon successful execution,data is efficiently stored in the cloud data center,ensuring data integrity and reliability within the smart city ecosystem. 展开更多
关键词 Fog computing smart cities smart transportation data management fault tolerance resource scheduling
在线阅读 下载PDF
Fault-tolerant control for swarm systems:A geometric-based PDE planning approach
12
作者 Yacun Guan Bin Jiang +1 位作者 Youmin Zhang Yun Chen 《Journal of Automation and Intelligence》 2025年第3期177-184,共8页
This paper investigates the issue of fault-tolerant control for swarm systems subject to switched graphs,actuator faults and obstacles.A geometric-based partial differential equation(PDE)framework is proposed to unify... This paper investigates the issue of fault-tolerant control for swarm systems subject to switched graphs,actuator faults and obstacles.A geometric-based partial differential equation(PDE)framework is proposed to unify collision-free trajectory generation and fault-tolerant control.To deal with the fault-induced force imbalances,the Riemannian metric is proposed to coordinate nominal controllers and the global one.Then,Riemannianbased trajectory length optimization is solved by gradient's dynamic model-heat flow PDE,under which a feasible trajectory satisfying motion constraints is achieved to guide the faulty system.Such virtual control force emerges autonomously through this metric adjustments.Further,the tracking error is rigorously proven to be exponential boundedness.Simulation results confirm the validity of these theoretical findings. 展开更多
关键词 Swarm systems Geometric-based PDE fault-tolerant control Motion-planning
在线阅读 下载PDF
A Comprehensive Study of Resource Provisioning and Optimization in Edge Computing
13
作者 Sreebha Bhaskaran Supriya Muthuraman 《Computers, Materials & Continua》 2025年第6期5037-5070,共34页
Efficient resource provisioning,allocation,and computation offloading are critical to realizing lowlatency,scalable,and energy-efficient applications in cloud,fog,and edge computing.Despite its importance,integrating ... Efficient resource provisioning,allocation,and computation offloading are critical to realizing lowlatency,scalable,and energy-efficient applications in cloud,fog,and edge computing.Despite its importance,integrating Software Defined Networks(SDN)for enhancing resource orchestration,task scheduling,and traffic management remains a relatively underexplored area with significant innovation potential.This paper provides a comprehensive review of existing mechanisms,categorizing resource provisioning approaches into static,dynamic,and user-centric models,while examining applications across domains such as IoT,healthcare,and autonomous systems.The survey highlights challenges such as scalability,interoperability,and security in managing dynamic and heterogeneous infrastructures.This exclusive research evaluates how SDN enables adaptive policy-based handling of distributed resources through advanced orchestration processes.Furthermore,proposes future directions,including AI-driven optimization techniques and hybrid orchestrationmodels.By addressing these emerging opportunities,thiswork serves as a foundational reference for advancing resource management strategies in next-generation cloud,fog,and edge computing ecosystems.This survey concludes that SDN-enabled computing environments find essential guidance in addressing upcoming management opportunities. 展开更多
关键词 Cloud computing edge computing fog computing resource provisioning resource allocation computation offloading optimization techniques software defined network
在线阅读 下载PDF
A comprehensive survey of orbital edge computing:Systems,applications,and algorithms
14
作者 Zengshan YIN Changhao WU +4 位作者 Chongbin GUO Yuanchun LI Mengwei XU Weiwei GAO Chuanxiu CHI 《Chinese Journal of Aeronautics》 2025年第7期310-339,共30页
The number of satellites,especially those operating in Low-Earth Orbit(LEO),has been exploding in recent years.Additionally,the burgeoning development of Artificial Intelligence(AI)software and hardware has opened up ... The number of satellites,especially those operating in Low-Earth Orbit(LEO),has been exploding in recent years.Additionally,the burgeoning development of Artificial Intelligence(AI)software and hardware has opened up new industrial opportunities in both air and space,with satellite-powered computing emerging as a new computing paradigm:Orbital Edge Computing(OEC).Compared to terrestrial edge computing,the mobility of LEO satellites and their limited communication,computation,and storage resources pose challenges in designing task-specific scheduling algorithms.Previous survey papers have largely focused on terrestrial edge computing or the integration of space and ground technologies,lacking a comprehensive summary of OEC architecture,algorithms,and case studies.This paper conducts a comprehensive survey and analysis of OEC's system architecture,applications,algorithms,and simulation tools,providing a solid background for researchers in the field.By discussing OEC use cases and the challenges faced,potential research directions for future OEC research are proposed. 展开更多
关键词 Orbital edge computing Ubiquitous computing Large-scale satellite constellations computation offloading
原文传递
Fault-Tolerant Control of the Piston Position via Pressure Sensor and Its Estimation for Mini Motion Package of Electro-Hydraulic Actuator
15
作者 Huy Q.Tran Tan Nguyen Van Cheolkeun Ha 《Computers, Materials & Continua》 2025年第10期1053-1072,共20页
Hydraulic-electric systems are widely utilized in various applications.However,over time,these systems may encounter random faults such as loose cables,ambient environmental noise,or sensor aging,leading to inaccurate... Hydraulic-electric systems are widely utilized in various applications.However,over time,these systems may encounter random faults such as loose cables,ambient environmental noise,or sensor aging,leading to inaccurate sensor readings.These faults may result in system instability or compromise safety.In this paper,we propose a fault compensation control system to mitigate the effects of sensor faults and ensure system safety.Specifically,we utilize the pressure sensor within the system to implement the control process and evaluate performance based on the piston position.First,we develop a mathematical model to identify optimal parameters for the fault estimation model based on the Lyapunov stability principle.Next,we design an unknown input observer that estimates the state vector and detects pressure sensor faults using a linear matrix inequality optimization algorithm.The estimated pressure faults are incorporated into the fault compensation control system to counteract their effects via a fault residual coefficient.The discrepancy between the feedback state and the estimated state determines this coefficient.We assess the piston position’s performance through pressure control to evaluate the proposed model’s effectiveness.Finally,the system simulation results are analyzed to validate the efficiency of the proposed model.When a pressure sensor fault occurs,the proposed approach effectively minimizes position control errors,enhancing overall system stability.When a pressure sensor fault occurs,the proposed model compensates for the fault to mitigate the impact of pressure problem,thereby enhancing the position control quality of the EHA system.The fault compensation method ensures over 90%system performance,with its effectiveness becoming more evident under pressure sensor faults. 展开更多
关键词 fault-tolerant control fault estimation unknown input observer electro-hydraulic actuator
在线阅读 下载PDF
Comparative study of IoT-and AI-based computing disease detection approaches
16
作者 Wasiur Rhmann Jalaluddin Khan +8 位作者 Ghufran Ahmad Khan Zubair Ashraf Babita Pandey Mohammad Ahmar Khan Ashraf Ali Amaan Ishrat Abdulrahman Abdullah Alghamdi Bilal Ahamad Mohammad Khaja Shaik 《Data Science and Management》 2025年第1期94-106,共13页
The emergence of different computing methods such as cloud-,fog-,and edge-based Internet of Things(IoT)systems has provided the opportunity to develop intelligent systems for disease detection.Compared to other machin... The emergence of different computing methods such as cloud-,fog-,and edge-based Internet of Things(IoT)systems has provided the opportunity to develop intelligent systems for disease detection.Compared to other machine learning models,deep learning models have gained more attention from the research community,as they have shown better results with a large volume of data compared to shallow learning.However,no comprehensive survey has been conducted on integrated IoT-and computing-based systems that deploy deep learning for disease detection.This study evaluated different machine learning and deep learning algorithms and their hybrid and optimized algorithms for IoT-based disease detection,using the most recent papers on IoT-based disease detection systems that include computing approaches,such as cloud,edge,and fog.Their analysis focused on an IoT deep learning architecture suitable for disease detection.It also recognizes the different factors that require the attention of researchers to develop better IoT disease detection systems.This study can be helpful to researchers interested in developing better IoT-based disease detection and prediction systems based on deep learning using hybrid algorithms. 展开更多
关键词 Deep learning Internet of Things(IoT) Cloud computing Fog computing Edge computing
在线阅读 下载PDF
Efficient rock joint detection from large-scale 3D point clouds using vectorization and parallel computing approaches
17
作者 Yunfeng Ge Zihao Li +2 位作者 Huiming Tang Qian Chen Zhongxu Wen 《Geoscience Frontiers》 2025年第5期1-15,共15页
The application of three-dimensional(3D)point cloud parametric analyses on exposed rock surfaces,enabled by Light Detection and Ranging(LiDAR)technology,has gained significant popularity due to its efficiency and the ... The application of three-dimensional(3D)point cloud parametric analyses on exposed rock surfaces,enabled by Light Detection and Ranging(LiDAR)technology,has gained significant popularity due to its efficiency and the high quality of data it provides.However,as research extends to address more regional and complex geological challenges,the demand for algorithms that are both robust and highly efficient in processing large datasets continues to grow.This study proposes an advanced rock joint identification algorithm leveraging artificial neural networks(ANNs),incorporating parallel computing and vectorization of high-performance computing.The algorithm utilizes point cloud attributes—specifically point normal and point curvatures-as input parameters for ANNs,which classify data into rock joints and non-rock joints.Subsequently,individual rock joints are extracted using the density-based spatial clustering of applications with noise(DBSCAN)technique.Principal component analysis(PCA)is subsequently employed to calculate their orientations.By fully utilizing the computational power of parallel computing and vectorization,the algorithm increases the running speed by 3–4 times,enabling the processing of large-scale datasets within seconds.This breakthrough maximizes computational efficiency while maintaining high accuracy(compared with manual measurement,the deviation of the automatic measurement is within 2°),making it an effective solution for large-scale rock joint detection challenges.©2025 China University of Geosciences(Beijing)and Peking University. 展开更多
关键词 Rock joints Pointclouds Artificialneuralnetwork High-performance computing Parallel computing VECTORIZATION
在线阅读 下载PDF
Fault-tolerant control of wheeled mobile robots with prescribed trajectory tracking performance
18
作者 Jin-Xi Zhang Tianyou Chai 《Journal of Automation and Intelligence》 2025年第2期73-81,共9页
The problem of trajectory tracking for a class of differentially driven wheeled mobile robots(WMRs)under partial loss of the effectiveness of the actuated wheels is investigated in this paper.Such actuator faults may ... The problem of trajectory tracking for a class of differentially driven wheeled mobile robots(WMRs)under partial loss of the effectiveness of the actuated wheels is investigated in this paper.Such actuator faults may cause the loss of strong controllability of the WMR,such that the conventional fault-tolerant control strategies unworkable.In this paper,a new mixed-gain adaption scheme is devised,which is adopted to adapt the gain of a decoupling prescribed performance controller to adaptively compensate for the loss of the effectiveness of the actuators.Different from the existing gain adaption technique which depends on both the barrier functions and their partial derivatives,ours involves only the barrier functions.This yields a lower magnitude of the resulting control signals.Our controller accomplishes trajectory tracking of the WMR with the prescribed rate and accuracy even in the faulty case,and the control design relies on neither the information of the WMR dynamics and the actuator faults nor the tools for function approximation,parameter identification,and fault detection or estimation.The comparative simulation results justify the theoretical findings. 展开更多
关键词 fault-tolerant control Prescribed performance Trajectory tracking Wheeled mobile robots
在线阅读 下载PDF
Nano device fabrication for in-memory and in-sensor reservoir computing
19
作者 Yinan Lin Xi Chen +4 位作者 Qianyu Zhang Junqi You Renjing Xu Zhongrui Wang Linfeng Sun 《International Journal of Extreme Manufacturing》 2025年第1期46-71,共26页
Recurrent neural networks(RNNs)have proven to be indispensable for processing sequential and temporal data,with extensive applications in language modeling,text generation,machine translation,and time-series forecasti... Recurrent neural networks(RNNs)have proven to be indispensable for processing sequential and temporal data,with extensive applications in language modeling,text generation,machine translation,and time-series forecasting.Despite their versatility,RNNs are frequently beset by significant training expenses and slow convergence times,which impinge upon their deployment in edge AI applications.Reservoir computing(RC),a specialized RNN variant,is attracting increased attention as a cost-effective alternative for processing temporal and sequential data at the edge.RC’s distinctive advantage stems from its compatibility with emerging memristive hardware,which leverages the energy efficiency and reduced footprint of analog in-memory and in-sensor computing,offering a streamlined and energy-efficient solution.This review offers a comprehensive explanation of RC’s underlying principles,fabrication processes,and surveys recent progress in nano-memristive device based RC systems from the viewpoints of in-memory and in-sensor RC function.It covers a spectrum of memristive device,from established oxide-based memristive device to cutting-edge material science developments,providing readers with a lucid understanding of RC’s hardware implementation and fostering innovative designs for in-sensor RC systems.Lastly,we identify prevailing challenges and suggest viable solutions,paving the way for future advancements in in-sensor RC technology. 展开更多
关键词 reservoir computing memristive device fabrication compute-in-memory in-sensor computing
在线阅读 下载PDF
Review of Fault Diagnosis and Fault-tolerant Control Technologies for Permanent-magnet Synchronous Machine
20
作者 Ping Zheng Wei Liu +2 位作者 Yiteng Gao Chengde Tong Yi Sui 《CES Transactions on Electrical Machines and Systems》 2025年第3期320-339,共20页
Permanent-magnet synchronous machines(PMSMs)are widely used in robotics,rail transportation,and electric vehicles owing to their high power density,high efficiency,and high power factor.However,PMSMs often operate in ... Permanent-magnet synchronous machines(PMSMs)are widely used in robotics,rail transportation,and electric vehicles owing to their high power density,high efficiency,and high power factor.However,PMSMs often operate in harsh environments,where critical components such as windings and permanent magnets(PMs)are susceptible to failures.These faults can lead to a significant degradation in performance,posing substantial challenges to the reliable operation of PMSMs.This paper presents a comprehensive review of common fault types in PMSMs,along with their corresponding fault diagnosis and fault-tolerant control strategies.The underlying mechanisms of typical faults are systematically analyzed,followed by a detailed comparison of various diagnostic and fault-tolerant control methods to evaluate their respective advantages and limitations.Finally,the review concludes by identifying key research gaps in PMSM fault diagnosis and fault-tolerant control,while proposing potential future directions for advancing this field. 展开更多
关键词 Permanent-magnet synchronous machine(PMSM) Fault detection Fault diagnosis fault-tolerant
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部