The strike-slip fault system in the central Tarim Craton controls a complex petroleum system with estimated reserves exceeding 1×10^(9)t,the fault-related fractures are important for hydrocarbon accumulation.In t...The strike-slip fault system in the central Tarim Craton controls a complex petroleum system with estimated reserves exceeding 1×10^(9)t,the fault-related fractures are important for hydrocarbon accumulation.In this paper,the basic parameters such as density and width of fractures are counted and classified,and the effects of fractures on reservoirs are analyzed.The results show that:(1)Structural fractures and stylolite were widely developed in Halahatang area and experienced at least three stages of activity based on the infilling materials and crosscutting relationship.(2)Fracture density,width,aperture,and dip angle vary in different wells,but the relationship between the above parameters and the distance to the fault core indicates the fracture differences in the fault damage zone and further provides a method to divide the inner units in the fault damage zone.In addition,oil and gas wells with high production mainly concentrate in the inner unit.(3)The infilling materials and degree of fractures vary.Fractures formed in the early stage are more filled and less open,while the fractures formed in the late stage are relatively less filled and more open.(4)Fractures improve porosity to a certain extent but greatly increase permeability,especially in the inner zone of fault damage zone with large quantity,multiple inclinations,less filling and large width.These features contribute to the formation of a higher-quality reservoir,further improving oil and gas production.This paper provides a quantitative characterization method for the study of strike-slip fault-related fracture-caved reservoirs,and points out that fault damage zone,especially the inner zone of the fault damage zone,is the potential goal for oil and gas exploration.展开更多
Natural fractures controlled by faults in ultradeep carbonate strata play substantial roles as both fluid migration channels and storage spaces.However,characterizing the heterogeneous distribution of underground frac...Natural fractures controlled by faults in ultradeep carbonate strata play substantial roles as both fluid migration channels and storage spaces.However,characterizing the heterogeneous distribution of underground fractures within the complex three-dimensional geometry of strike-slip fault zones remains challenging.This study investigates the characteristics of natural fractures controlled by strike-slip faults in the fractured Middle and Lower Ordovician reservoirs of the central and northern Tarim Basin,China.Seismics,cores,and image logs were integrated to quantitatively analyze the intensity and dip angle of natural fractures and findings were verified using published sandbox simulations.The carbonate reservoir contains three main types of natural fractures:tectonic fractures,abnormal high-pressure-related fractures,and stylolites.Strike-slip faults control the distribution and characteristics of tectonic fractures across various scales.Generally,both fracture intensity and porosity exhibit a decreasing trend as the distance from the main fault surface increases.Compared with those in non-stepover zones along a strike-slip fault,natural fractures and faults in stepover zones are more developed along the fault strike,with significantly greater development intensity in central stepover regions than that at its two ends.Furthermore,strike-slip faults influence the dip angles of both natural fractures and secondary faults.The proportion of medium-to-low-dip angle fractures and faults in the stepover zone is greater than that in the non-stepover zone.Additionally,the proportion of medium-to low-dip angle fractures and faults in the middle of the stepover is greater than that at both ends.Therefore,strike-slip fault structures control the dip angle of natural fracture and the heterogeneity of secondary fault and fracture intensity.The linking damage zone in the stepover contains a larger volume of fractured rocks,making it a promising petroleum exploration target.The development of stepovers and the orientation of present-day in-situ stress substantially influence the productivity of fractured reservoirs controlled by strike-slip faults.The analysis in this study reveals that reservoir productivity increases as the angle between the strike-slip fault segment and the maximum horizontal principal stress decreases.This study provides valuable insights for quantitatively evaluating fracture heterogeneity in fractured reservoirs and establishing optimized selection criteria for favorable targets in fault-related fractured reservoirs.展开更多
To address the issue of extensive deformation in the Tabaiyi Tunnel caused by the fault zone,nuclear magnetic resonance(NMR)technology was employed to analyze the physical and mechanical properties of waterabsorbing m...To address the issue of extensive deformation in the Tabaiyi Tunnel caused by the fault zone,nuclear magnetic resonance(NMR)technology was employed to analyze the physical and mechanical properties of waterabsorbing mudstone.This analysis aimed to understand the mechanism behind the significant deformations.Drawing from the principle of excavation stress compensation,a support scheme featuring NPR anchorcables and an asymmetric truss support system was devised.To validate the scheme,numerical analysis using a combination of the Discrete Element Method(DEM)-Finite Element Method(FEM)was conducted.Additionally,similar material model tests and engineering measurements were carried out.Field experiments were also performed to evaluate the NPR anchor-cable and truss support system,focusing on anchor cable forces,pressures between the truss and surrounding rock,pressures between the initial support and secondary lining,as well as the magnitude of settlement and convergence deformation in the surrounding rock.The results indicate that the waterinduced expansion of clay minerals,resulting from damage caused by fissure water,accelerated the softening of the mudstone's internal structure,leading to significant deformations in the Tabaiyi Tunnel under high tectonic stress.The original support design fell short as the length of the anchor rods was smaller than the expansion depth of the plastic zone.As a result,the initial support structure bore the entire load from the surrounding rock,and a non-coupled deformation contact was observed between the double-arch truss and the surrounding rock.The adoption of NPR asymmetric anchor-cable support effectively restrained the expansion and asymmetric distribution characteristics of the plastic zone.Considering the mechanical degradation caused by water absorption in mudstone,the rigid constraint provided by the truss proved crucial for controlling the stability of the surrounding rock.These research findings hold significant implications for managing large deformations in soft rock tunnels situated within fractured zones under high tectonic stress conditions.展开更多
Recent exploration has highlighted the critical role of strike-slip faults in shaping ultra-deep carbonate reservoirs in the Tarim Basin.This study integrates satellite imagery,UAV photogrammetry,outcrop surveys and m...Recent exploration has highlighted the critical role of strike-slip faults in shaping ultra-deep carbonate reservoirs in the Tarim Basin.This study integrates satellite imagery,UAV photogrammetry,outcrop surveys and microscopic analysis to investigate the architecture of these faults and their impact on reservoir petrophysical properties.The strike-slip faults exhibit cores consisting of calcite bands,fault breccias and fractures,while the damage zones are predominantly fractured.Thicker fault cores and fault zones are associated with more extensive reservoir development.Individual strike-slip fault zones are primarily characterized by two sets of fractures intersecting the fault at small angles.When two fault systems interact,the dominant pattern is two sets of fractures intersecting the main fault at small angles and one set at larger angles,facilitating the formation of large-scale reservoirs.We propose a model for the fault core,which primarily consists of a calcite band and fault breccias.These breccias are composed of original host rock,calcite cement and quartz,which exhibit poor physical properties,while fractures and vugs show favorable reservoir characteristics.This model offers valuable insights into the development of fault-controlled reservoirs,particularly in the Tarim Basin.展开更多
The mineralogy and texture of granite have been found to have a pronounced effect on its mechanical behavior.However,the precise manner in which the texture of granite affects the shear behavior of fractures remains e...The mineralogy and texture of granite have been found to have a pronounced effect on its mechanical behavior.However,the precise manner in which the texture of granite affects the shear behavior of fractures remains enigmatic.In this study,fine-grained granite(FG)and coarse-grained granite(CG)were used to create tensile fractures with surface roughness(i.e.joint roughness coefficient(JRC))within the range of 5.48-8.34 and 12.68-16.5,respectively.The pre-fractured specimens were then subjected to direct shear tests under normal stresses of 1-30 MPa.The results reveal that shear strengths are smaller and stick-slip behaviors are more intense for FG fractures than for CG fractures,which is attributed to the different conditions of the shear surface constrained by the grain size.The smaller grain size in FG contributes to the smoother fracture surface and lower shear strength.The negative friction rate parameter a-b for both CG and FG fractures and the larger shear stiffness for FG than for CG fractures can account for the more intense stick-slip behaviors in FG fractures.The relative crack density for the post-shear CG fractures is greater than that of the FG fractures under the same normal stress,both of which decrease with the distance away from the shear surface following the power law.Moreover,the damage of CG fracture extends to a larger extent beneath the surface compared with the FG fracture.Our findings demonstrate that the grain size of the host rock exerts a significant influence on the fracture roughness,and thus should be incorporated into the assessment of fault slip behavior to better understand the role of mineralogy and texture in seismic activities.展开更多
This study comprehensively uses various methods such as production dynamic analysis,fluid inclusion thermometry and carbon-oxygen isotopic compositions testing,based on outcrop,core,well-logging,3D seismic,geochemistr...This study comprehensively uses various methods such as production dynamic analysis,fluid inclusion thermometry and carbon-oxygen isotopic compositions testing,based on outcrop,core,well-logging,3D seismic,geochemistry experiment and production test data,to systematically explore the control mechanisms of structure and fluid on the scale,quality,effectiveness and connectivity of ultra-deep fault-controlled carbonate fractured-vuggy reservoirs in the Tarim Basin.The results show that reservoir scale is influenced by strike-slip fault scale,structural position,and mechanical stratigraphy.Larger faults tend to correspond to larger reservoir scales.The reservoir scale of contractional overlaps is larger than that of extensional overlaps,while pure strike-slip segments are small.The reservoir scale is enhanced at fault intersection,bend,and tip segments.Vertically,the heterogeneity of reservoir development is controlled by mechanical stratigraphy,with strata of higher brittleness indices being more conducive to the development of fractured-vuggy reservoirs.Multiple phases of strike-slip fault activity and fluid alterations contribute to fractured-vuggy reservoir effectiveness evolution and heterogeneity.Meteoric water activity during the Late Caledonian to Early Hercynian period was the primary phase of fractured-vuggy reservoir formation.Hydrothermal activity in the Late Hercynian period further intensified the heterogeneity of effective reservoir space distribution.The study also reveals that fractured-vuggy reservoir connectivity is influenced by strike-slip fault structural position and present in-situ stress field.The reservoir connectivity of extensional overlaps is larger than that of pure strike-slip segments,while contractional overlaps show worse reservoir connectivity.Additionally,fractured-vuggy reservoirs controlled by strike-slip faults that are nearly parallel to the present in-situ stress direction exhibit excellent connectivity.Overall,high-quality reservoirs are distributed at the fault intersection of extensional overlaps,the central zones of contractional overlaps,pinnate fault zones at intersection,bend,and tip segments of pure strike-slip segments.Vertically,they are concentrated in mechanical stratigraphy with high brittleness indices.展开更多
Secondary/minor structures occurring along the main fault surfaces are important indicators for judging the kinematic characteristics of faults.However,many factors can lead to the formation of these structures,which ...Secondary/minor structures occurring along the main fault surfaces are important indicators for judging the kinematic characteristics of faults.However,many factors can lead to the formation of these structures,which results in the difficulty for rapid judgment and application in the fields.A series of secondary faults/fractures developed due to the movement of main faults are the most important and widespread phenomena in the scope of brittle deformation.The morphology of the main fault surfaces is various,and former researchers mainly discussed the structures on the main even fault surfaces. However,the fluctuation of fault surfaces is the intrinsic character of the faults,and the intersection between the main fault and secondary faults/fractures can produce a series of kinematic indicators on the main fault surfaces.Based on previous studies and our observations,i.e.the structural traces of the P,R,R',T and X shears/faults along the main faults,some indicators which are rarely reported previously,are described in the paper.Furthermore,their reliabilities are also discussed,and more practical and reliable criteria are brought forward.We suggest that the simple application of congruous and incongruous steps without knowing their exact origins should be abandoned in the fields,and several types of indicators along one fault surface should be checked with each other as much as possible.Meanwhile,the origins of some other arcuate indicators on the fault surfaces are also discussed,and new models are brought forward.展开更多
Physical model tests have been conducted by various researchers to investigate fault rupture propagation and ground deformation induced by bedrock faulting. However, the effects of pre-existing fracture on ground defo...Physical model tests have been conducted by various researchers to investigate fault rupture propagation and ground deformation induced by bedrock faulting. However, the effects of pre-existing fracture on ground deformation are not fully understood. In this work, six centrifuge tests are reported to investigate the influence of pre-existing fracture on ground deformation induced by normal faulting in sand, clay and nine-layered soil with interbedded sand and clay layers. Shear box tests were conducted to develop a filter paper technique, which was adopted in soil model preparation to simulate the effects of pre-existing fracture in centrifuge tests. Centrifuge test results show that ground deformation mechanism in clay, sand and nine-layered soil strata is classified as a stationary zone, a shearing zone and a rigid body zone. Inclination of the strain localization is governed by the dilatancy of soil material. Moreover, the pre-existing fracture provides a preferential path for ground deformation and results in a scarp at the ground surface in sand. On the contrary, fault ruptures are observed at the ground surface in clay and nine-layered soil strata.展开更多
To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fract...To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fractures,this study considered the combined impact of geological-engineering factors on conductivity.Using reservoir production parameters and the discrete elementmethod,multispherical proppants were constructed.Additionally,a 3D fracture model,based on the specified conditions of the L block,employed coupled(Computational Fluid Dynamics)CFD-DEM(Discrete ElementMethod)for joint simulations to quantitatively analyze the transport and placement patterns of multispherical proppants in intersecting fractures.Results indicate that turbulent kinetic energy is an intrinsic factor affecting proppant transport.Moreover,the efficiency of placement and migration distance of low-sphericity quartz sand constructed by the DEM in the main fracture are significantly reduced compared to spherical ceramic proppants,with a 27.7%decrease in the volume fraction of the fracture surface,subsequently affecting the placement concentration and damaging fracture conductivity.Compared to small-angle fractures,controlling artificial and natural fractures to expand at angles of 45°to 60°increases the effective support length by approximately 20.6%.During hydraulic fracturing of gas wells,ensuring the fracture support area and post-closure conductivity can be achieved by controlling the sphericity of proppants and adjusting the perforation direction to control the direction of artificial fractures.展开更多
The experimental results of 3-D fracture under compression are introduced in brief and the theory of stress criterion of 3-D fracture is studied. Methods to imitate initial fractures are developed. It is pointed that ...The experimental results of 3-D fracture under compression are introduced in brief and the theory of stress criterion of 3-D fracture is studied. Methods to imitate initial fractures are developed. It is pointed that there are important defects in the extreme value (EV) method ever proposed by Palaniswamy and Knauss. The major defect lies in that only two Euler angles (2EA) are considered, but another one is neglected. If the variation of all the three Euler angles (3EA) are considered, one can get better result which is consistent with the observation of faulting that extends on curved surfaces but not on planes. The method of evaluating maximal normal stress direction vector (NSDV) is proposed and further proved to be equivalent to the 3EA method. It is proved that the NSDV method can be further optimized to the method of composition of the first principal differential plane (CFPDP). The results from CFPDP method can fit the curved surfaces of initial growth observed in the experiments of 3-D fracture. The CFPDP method can also be used to interpret the 3-D fractures of the slipping section between the asperities in the buried fault plane that is modeled as ellipse crack. The results of 3-D fracture can be applied to interpreting the related problems of faulting including the mechanism of a lot of shatter rocks with different dimensions, the cause of earthquakes occurred at the edge of plate under low shear stress, and the mechanism of anisotropy caused by the extensive dilatancy anisotropy (EDA) cracks.展开更多
In this paper, the analysis of faults with different scales and orientations reveals that the distribution of fractures always develops toward a higher degree of similarity with faults, and a method for calculating th...In this paper, the analysis of faults with different scales and orientations reveals that the distribution of fractures always develops toward a higher degree of similarity with faults, and a method for calculating the multiscale areal fracture density is proposed using fault-fracture self-similarity theory. Based on the fracture parameters observed in cores and thin sections, the initial apertures of multiscale fractures are determined using the constraint method with a skewed distribution. Through calculations and statistical analyses of in situ stresses in combination with physical experiments on rocks, a numerical geomechanical model of the in situ stress field is established. The fracture opening ability under the in situ stress field is subsequently analyzed. Combining the fracture aperture data and areal fracture density at different scales, a calculation model is proposed for the prediction of multiscale and multiperiod fracture parameters, including the fracture porosity, the magnitude and direction of maximum permeability and the flow conductivity. Finally, based on the relationships among fracture aperture,density, and the relative values of fracture porosity and permeability, a fracture development pattern is determined.展开更多
Three-dimensional coherent cube is an extremely effective new technique for interpreting seismic data. It has obvious advantages in many aspects compared with the conventional 3D data volume, such as recognizing fault...Three-dimensional coherent cube is an extremely effective new technique for interpreting seismic data. It has obvious advantages in many aspects compared with the conventional 3D data volume, such as recognizing faults and fractures, interpreting ancient channels, and edge detection of oil-gas reservoir. Coherent cube is to condense and extract information around a certain point in 3D data volume, and then highlight the original characteristics of the geologic body at this point. Therefore, in terms of its essence, coherent cube is a special seismic attribute cube and those points having rather small coherent value are related to the discontinuity of geologic body. In practical production, people often interpret horizontal slices or layer slices of coherent cube, and this provides advantageous foundations for resolving special problems in oil-gas exploration.……展开更多
Faults and fractures of multiple scales are frequently induced and generated in compressional structural system. Comprehensive identification of these potential faults and fractures that cannot be distinguished direct...Faults and fractures of multiple scales are frequently induced and generated in compressional structural system. Comprehensive identification of these potential faults and fractures that cannot be distinguished directly from seismic profile of the complex structures is still an unanswered problem. Based on the compressional structural geometry and kinematics theories as well as the structural interpretation from seismic data, a set of techniques is established for the identification of potential faults and fractures in compressional structures. Firstly, three-dimensional(3D) patterns and characteristics of the faults directly interpreted from seismic profile were illustrated by 3D structural model. Then, the unfolding index maps, the principal structural curvature maps, and tectonic stress field maps were obtained from structural restoration. Moreover, potential faults and fractures in compressional structures were quantitatively identified relying on comprehensive analysis of these three maps. Successful identification of the potential faults and fractures in Mishrif limestone formation and in Asmari dolomite formation of Buzurgan anticline in Iraq demonstrates the applicability and reliability of these techniques.展开更多
Tectonic stress fields are the key drivers of tectonic events and the evolution of regional structures.The tectonic stress field evolution of the Tanlu fault zone in Shandong Province,located in the east of the North ...Tectonic stress fields are the key drivers of tectonic events and the evolution of regional structures.The tectonic stress field evolution of the Tanlu fault zone in Shandong Province,located in the east of the North China Craton(NCC),may have preserved records of the NCC’s tectonic history.Borehole television survey and hydraulic fracturing were conducted to analyze the paleo and present tectonic stress fields.Three groups of tensile fractures were identified via borehole television,their azimuths being NNW-SSE,NW-SE and NE-SW,representing multiple stages of tectonic events.Hydraulic fracturing data indicates that the study region is experiencing NEE-SWW-oriented compression and nearly-N-Soriented extension,in accordance with strike-slip and compression.Since the Cretaceous,the orientation of the extensional stress has evolved counterclockwise and sequentially from nearly-NW-SE-oriented to NE-SW-oriented and even nearly N-S-oriented,the stress state having transitioned from strike-slip-extension to strike-slip-compression,in association with the rotating and oblique subduction of the Pacific Plate beneath the NCC,with the participation of the Indian Plate.展开更多
Prepulse combined hydraulic fracturing facilitates the development of fracture networks by integrating prepulse hydraulic loading with conventional hydraulic fracturing.The formation mechanisms of fracture networks be...Prepulse combined hydraulic fracturing facilitates the development of fracture networks by integrating prepulse hydraulic loading with conventional hydraulic fracturing.The formation mechanisms of fracture networks between hydraulic and pre-existing fractures under different prepulse loading parameters remain unclear.This research investigates the impact of prepulse loading parameters,including the prepulse loading number ratio(C),prepulse loading stress ratio(S),and prepulse loading frequency(f),on the formation of fracture networks between hydraulic and pre-existing fractures,using both experimental and numerical methods.The results suggest that low prepulse loading stress ratios and high prepulse loading number ratios are advantageous loading modes.Multiple hydraulic fractures are generated in the specimen under the advantageous loading modes,facilitating the development of a complex fracture network.Fatigue damage occurs in the specimen at the prepulse loading stage.The high water pressure at the secondary conventional hydraulic fracturing promotes the growth of hydraulic fractures along the damage zones.This allows the hydraulic fractures to propagate deeply and interact with pre-existing fractures.Under advantageous loading conditions,multiple hydraulic fractures can extend to pre-existing fractures,and these hydraulic fractures penetrate or propagate along pre-existing fractures.Especially when the approach angle is large,the damage range in the specimen during the prepulse loading stage increases,resulting in the formation of more hydraulic fractures.展开更多
BACKGROUND In pediatric age group patients(<18 years old)treated operatively for distal radius/both bone fractures extending imaging beyond the initial postoperative period-particularly in uncomplicated cases-appea...BACKGROUND In pediatric age group patients(<18 years old)treated operatively for distal radius/both bone fractures extending imaging beyond the initial postoperative period-particularly in uncomplicated cases-appears to provide limited additional benefit.AIM To determine the necessary number of follow-up X-rays to use resources efficiently.METHODS Participants included in this study are pediatric age group patients who were treated operatively for distal radius/both bone fractures and were identified from a prospected collected data from the operating room database between the years 2009 and 2017.The data in the study included patients who had distal radius fractures and underwent fixation surgery(n=88).RESULTS When assessing the difference in the odds of conducting 1 or less X-ray compared to 2 or more X-rays in regard to the type of fixation,the only significant difference is the closed reduction fixation method.Patients who underwent closed reduction method procedure have significantly lower odds of having 2 more X-rays compared to those who didn’t have closed reduction method.Open reduction,internal fixation,and other fixation methods(close reduction and internal fixation,debridement,or epiphysiodesis)have higher odds of having two or more X-rays compared to patients who did not receive these methods;however,these odds are not statistically significant.CONCLUSION The findings of this study reveal notable absence of a statistically significant association between the frequency of postoperative X-rays and the outcome of children with distal radius fractures.展开更多
Grouting is a widely used approach to reinforce broken surrounding rock mass during the construction of underground tunnels in fault fracture zones,and its reinforcement effectiveness is highly affected by geostress.I...Grouting is a widely used approach to reinforce broken surrounding rock mass during the construction of underground tunnels in fault fracture zones,and its reinforcement effectiveness is highly affected by geostress.In this study,a numerical manifold method(NMM)based simulator has been developed to examine the impact of geostress conditions on grouting reinforcement during tunnel excavation.To develop this simulator,a detection technique for identifying slurry migration channels and an improved fluid-solid coupling(FeS)framework,which considers the influence of fracture properties and geostress states,is developed and incorporated into a zero-thickness cohesive element(ZE)based NMM(Co-NMM)for simulating tunnel excavation.Additionally,to simulate coagulation of injected slurry,a bonding repair algorithm is further proposed based on the ZE model.To verify the accuracy of the proposed simulator,a series of simulations about slurry migration in single fractures and fracture networks are numerically reproduced,and the results align well with analytical and laboratory test results.Furthermore,these numerical results show that neglecting the influence of geostress condition can lead to a serious over-estimation of slurry migration range and reinforcement effectiveness.After validations,a series of simulations about tunnel grouting reinforcement and tunnel excavation in fault fracture zones with varying fracture densities under different geostress conditions are conducted.Based on these simula-tions,the influence of geostress conditions and the optimization of grouting schemes are discussed.展开更多
With the increasing demand for energy,traditional oil resources are facing depletion and insufficient supply.Many countries are rapidly turning to the development of unconventional oil and gas resources.Among them,sha...With the increasing demand for energy,traditional oil resources are facing depletion and insufficient supply.Many countries are rapidly turning to the development of unconventional oil and gas resources.Among them,shale oil and gas reservoirs have become the focus of unconventional oil and gas resources exploration and development.Based on the characteristics of shale oil and gas reservoirs,supercritical CO_(2) fracturing is more conducive to improving oil recovery than other fracturing technologies.In this paper,the mechanism of fracture initiation and propagation of supercritical CO_(2) in shale is analyzed,including viscosity effect,surface tension effect,permeation diffusion effect of supercritical CO_(2),and dissolution-adsorption effect between CO_(2) and shale.The effects of natural factors,such as shale properties,bedding plane and natural fractures,and controllable factors,proppant,temperature,pressure,CO_(2) concentration and injection rate on fracture initiation and propagation are clarified.The methods of supercritical CO_(2) fracturing process,thickener and proppant optimization to improve the efficiency of supercritical CO_(2) fracturing are discussed.In addition,some new technologies of supercritical CO_(2) fracturing are introduced.The challenges and prospects in the current research are also summarized.For example,supercritical CO_(2) is prone to filtration when passing through porous media,and it is difficult to form a stable flow state.Therefore,in order to achieve stable fracturing fluid suspension and effectively support fractu res,it is urge nt to explo re new fracturing fluid additives or improve fracturing fluid formulations combined with the research of new proppants.This paper is of great significance for understanding the behavior mechanism of supercritical CO_(2) in shale and optimizing fracturing technology.展开更多
The real-time monitoring of fracture propagation during hydraulic fracturing is crucial for obtaining a deeper understanding of fracture morphology and optimizing hydraulic fracture designs.Accurate measurements of ke...The real-time monitoring of fracture propagation during hydraulic fracturing is crucial for obtaining a deeper understanding of fracture morphology and optimizing hydraulic fracture designs.Accurate measurements of key fracture parameters,such as the fracture height and width,are particularly important to ensure efficient oilfield development and precise fracture diagnosis.This study utilized the optical frequency domain reflectometer(OFDR)technique in physical simulation experiments to monitor fractures during indoor true triaxial hydraulic fracturing experiments.The results indicate that the distributed fiber optic strain monitoring technology can efficiently capture the initiation and expansion of fractures.In horizontal well monitoring,the fiber strain waterfall plot can be used to interpret the fracture width,initiation location,and expansion speed.The fiber response can be divided into three stages:strain contraction convergence,strain band formation,and postshutdown strain rate reversal.When the fracture does not contact the fiber,a dual peak strain phenomenon occurs in the fiber and gradually converges as the fracture approaches.During vertical well monitoring in adjacent wells,within the effective monitoring range of the fiber,the axial strain produced by the fiber can represent the fracture height with an accuracy of 95.6%relative to the actual fracture height.This study provides a new perspective on real-time fracture monitoring.The response patterns of fiber-induced strain due to fractures can help us better understand and assess the dynamic fracture behavior,offering significant value for the optimization of oilfield development and fracture diagnostic techniques.展开更多
基金supported by the Natural Science Foundation of China-Youth Foundation(42402163)Natural Science Foundation of Sichuan Province of China(2024NSFSC0814)Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance(2020CX010101).
文摘The strike-slip fault system in the central Tarim Craton controls a complex petroleum system with estimated reserves exceeding 1×10^(9)t,the fault-related fractures are important for hydrocarbon accumulation.In this paper,the basic parameters such as density and width of fractures are counted and classified,and the effects of fractures on reservoirs are analyzed.The results show that:(1)Structural fractures and stylolite were widely developed in Halahatang area and experienced at least three stages of activity based on the infilling materials and crosscutting relationship.(2)Fracture density,width,aperture,and dip angle vary in different wells,but the relationship between the above parameters and the distance to the fault core indicates the fracture differences in the fault damage zone and further provides a method to divide the inner units in the fault damage zone.In addition,oil and gas wells with high production mainly concentrate in the inner unit.(3)The infilling materials and degree of fractures vary.Fractures formed in the early stage are more filled and less open,while the fractures formed in the late stage are relatively less filled and more open.(4)Fractures improve porosity to a certain extent but greatly increase permeability,especially in the inner zone of fault damage zone with large quantity,multiple inclinations,less filling and large width.These features contribute to the formation of a higher-quality reservoir,further improving oil and gas production.This paper provides a quantitative characterization method for the study of strike-slip fault-related fracture-caved reservoirs,and points out that fault damage zone,especially the inner zone of the fault damage zone,is the potential goal for oil and gas exploration.
基金supported by the National Natural Science Foundation of China(No.U21B2062)funding from the Chinese Scholarship Council(CSC)and the American Association of Petroleum Geologists Foundation Grantsin-Aid Program.
文摘Natural fractures controlled by faults in ultradeep carbonate strata play substantial roles as both fluid migration channels and storage spaces.However,characterizing the heterogeneous distribution of underground fractures within the complex three-dimensional geometry of strike-slip fault zones remains challenging.This study investigates the characteristics of natural fractures controlled by strike-slip faults in the fractured Middle and Lower Ordovician reservoirs of the central and northern Tarim Basin,China.Seismics,cores,and image logs were integrated to quantitatively analyze the intensity and dip angle of natural fractures and findings were verified using published sandbox simulations.The carbonate reservoir contains three main types of natural fractures:tectonic fractures,abnormal high-pressure-related fractures,and stylolites.Strike-slip faults control the distribution and characteristics of tectonic fractures across various scales.Generally,both fracture intensity and porosity exhibit a decreasing trend as the distance from the main fault surface increases.Compared with those in non-stepover zones along a strike-slip fault,natural fractures and faults in stepover zones are more developed along the fault strike,with significantly greater development intensity in central stepover regions than that at its two ends.Furthermore,strike-slip faults influence the dip angles of both natural fractures and secondary faults.The proportion of medium-to-low-dip angle fractures and faults in the stepover zone is greater than that in the non-stepover zone.Additionally,the proportion of medium-to low-dip angle fractures and faults in the middle of the stepover is greater than that at both ends.Therefore,strike-slip fault structures control the dip angle of natural fracture and the heterogeneity of secondary fault and fracture intensity.The linking damage zone in the stepover contains a larger volume of fractured rocks,making it a promising petroleum exploration target.The development of stepovers and the orientation of present-day in-situ stress substantially influence the productivity of fractured reservoirs controlled by strike-slip faults.The analysis in this study reveals that reservoir productivity increases as the angle between the strike-slip fault segment and the maximum horizontal principal stress decreases.This study provides valuable insights for quantitatively evaluating fracture heterogeneity in fractured reservoirs and establishing optimized selection criteria for favorable targets in fault-related fractured reservoirs.
基金financially supported by the Innovation Fund Research Project of State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and Technology(Grant No.SKLGDUEK202201)。
文摘To address the issue of extensive deformation in the Tabaiyi Tunnel caused by the fault zone,nuclear magnetic resonance(NMR)technology was employed to analyze the physical and mechanical properties of waterabsorbing mudstone.This analysis aimed to understand the mechanism behind the significant deformations.Drawing from the principle of excavation stress compensation,a support scheme featuring NPR anchorcables and an asymmetric truss support system was devised.To validate the scheme,numerical analysis using a combination of the Discrete Element Method(DEM)-Finite Element Method(FEM)was conducted.Additionally,similar material model tests and engineering measurements were carried out.Field experiments were also performed to evaluate the NPR anchor-cable and truss support system,focusing on anchor cable forces,pressures between the truss and surrounding rock,pressures between the initial support and secondary lining,as well as the magnitude of settlement and convergence deformation in the surrounding rock.The results indicate that the waterinduced expansion of clay minerals,resulting from damage caused by fissure water,accelerated the softening of the mudstone's internal structure,leading to significant deformations in the Tabaiyi Tunnel under high tectonic stress.The original support design fell short as the length of the anchor rods was smaller than the expansion depth of the plastic zone.As a result,the initial support structure bore the entire load from the surrounding rock,and a non-coupled deformation contact was observed between the double-arch truss and the surrounding rock.The adoption of NPR asymmetric anchor-cable support effectively restrained the expansion and asymmetric distribution characteristics of the plastic zone.Considering the mechanical degradation caused by water absorption in mudstone,the rigid constraint provided by the truss proved crucial for controlling the stability of the surrounding rock.These research findings hold significant implications for managing large deformations in soft rock tunnels situated within fractured zones under high tectonic stress conditions.
基金supported by the National Natural Science Foundation of China(Grant No.U21B2062).
文摘Recent exploration has highlighted the critical role of strike-slip faults in shaping ultra-deep carbonate reservoirs in the Tarim Basin.This study integrates satellite imagery,UAV photogrammetry,outcrop surveys and microscopic analysis to investigate the architecture of these faults and their impact on reservoir petrophysical properties.The strike-slip faults exhibit cores consisting of calcite bands,fault breccias and fractures,while the damage zones are predominantly fractured.Thicker fault cores and fault zones are associated with more extensive reservoir development.Individual strike-slip fault zones are primarily characterized by two sets of fractures intersecting the fault at small angles.When two fault systems interact,the dominant pattern is two sets of fractures intersecting the main fault at small angles and one set at larger angles,facilitating the formation of large-scale reservoirs.We propose a model for the fault core,which primarily consists of a calcite band and fault breccias.These breccias are composed of original host rock,calcite cement and quartz,which exhibit poor physical properties,while fractures and vugs show favorable reservoir characteristics.This model offers valuable insights into the development of fault-controlled reservoirs,particularly in the Tarim Basin.
基金the National Natural Science Foundation of China(Grant No.52309130)the Natural Science Foundation of Shandong Province(Grant No.ZR2022QD004).
文摘The mineralogy and texture of granite have been found to have a pronounced effect on its mechanical behavior.However,the precise manner in which the texture of granite affects the shear behavior of fractures remains enigmatic.In this study,fine-grained granite(FG)and coarse-grained granite(CG)were used to create tensile fractures with surface roughness(i.e.joint roughness coefficient(JRC))within the range of 5.48-8.34 and 12.68-16.5,respectively.The pre-fractured specimens were then subjected to direct shear tests under normal stresses of 1-30 MPa.The results reveal that shear strengths are smaller and stick-slip behaviors are more intense for FG fractures than for CG fractures,which is attributed to the different conditions of the shear surface constrained by the grain size.The smaller grain size in FG contributes to the smoother fracture surface and lower shear strength.The negative friction rate parameter a-b for both CG and FG fractures and the larger shear stiffness for FG than for CG fractures can account for the more intense stick-slip behaviors in FG fractures.The relative crack density for the post-shear CG fractures is greater than that of the FG fractures under the same normal stress,both of which decrease with the distance away from the shear surface following the power law.Moreover,the damage of CG fracture extends to a larger extent beneath the surface compared with the FG fracture.Our findings demonstrate that the grain size of the host rock exerts a significant influence on the fracture roughness,and thus should be incorporated into the assessment of fault slip behavior to better understand the role of mineralogy and texture in seismic activities.
基金Supported by the National Natural Science Foundation of China(U21B2062).
文摘This study comprehensively uses various methods such as production dynamic analysis,fluid inclusion thermometry and carbon-oxygen isotopic compositions testing,based on outcrop,core,well-logging,3D seismic,geochemistry experiment and production test data,to systematically explore the control mechanisms of structure and fluid on the scale,quality,effectiveness and connectivity of ultra-deep fault-controlled carbonate fractured-vuggy reservoirs in the Tarim Basin.The results show that reservoir scale is influenced by strike-slip fault scale,structural position,and mechanical stratigraphy.Larger faults tend to correspond to larger reservoir scales.The reservoir scale of contractional overlaps is larger than that of extensional overlaps,while pure strike-slip segments are small.The reservoir scale is enhanced at fault intersection,bend,and tip segments.Vertically,the heterogeneity of reservoir development is controlled by mechanical stratigraphy,with strata of higher brittleness indices being more conducive to the development of fractured-vuggy reservoirs.Multiple phases of strike-slip fault activity and fluid alterations contribute to fractured-vuggy reservoir effectiveness evolution and heterogeneity.Meteoric water activity during the Late Caledonian to Early Hercynian period was the primary phase of fractured-vuggy reservoir formation.Hydrothermal activity in the Late Hercynian period further intensified the heterogeneity of effective reservoir space distribution.The study also reveals that fractured-vuggy reservoir connectivity is influenced by strike-slip fault structural position and present in-situ stress field.The reservoir connectivity of extensional overlaps is larger than that of pure strike-slip segments,while contractional overlaps show worse reservoir connectivity.Additionally,fractured-vuggy reservoirs controlled by strike-slip faults that are nearly parallel to the present in-situ stress direction exhibit excellent connectivity.Overall,high-quality reservoirs are distributed at the fault intersection of extensional overlaps,the central zones of contractional overlaps,pinnate fault zones at intersection,bend,and tip segments of pure strike-slip segments.Vertically,they are concentrated in mechanical stratigraphy with high brittleness indices.
基金funded by the National Basic Research Progam of China(Nos. 2007CB411306 and 2001CB409810)China Geological Survey(No.1212010611806)the National Natural Science Foundation of China(No.40702032)
文摘Secondary/minor structures occurring along the main fault surfaces are important indicators for judging the kinematic characteristics of faults.However,many factors can lead to the formation of these structures,which results in the difficulty for rapid judgment and application in the fields.A series of secondary faults/fractures developed due to the movement of main faults are the most important and widespread phenomena in the scope of brittle deformation.The morphology of the main fault surfaces is various,and former researchers mainly discussed the structures on the main even fault surfaces. However,the fluctuation of fault surfaces is the intrinsic character of the faults,and the intersection between the main fault and secondary faults/fractures can produce a series of kinematic indicators on the main fault surfaces.Based on previous studies and our observations,i.e.the structural traces of the P,R,R',T and X shears/faults along the main faults,some indicators which are rarely reported previously,are described in the paper.Furthermore,their reliabilities are also discussed,and more practical and reliable criteria are brought forward.We suggest that the simple application of congruous and incongruous steps without knowing their exact origins should be abandoned in the fields,and several types of indicators along one fault surface should be checked with each other as much as possible.Meanwhile,the origins of some other arcuate indicators on the fault surfaces are also discussed,and new models are brought forward.
基金Project supported by the Earthquake Administration of Beijing Municipality and the National Development and Reform Commission of ChinaProject(IRT1125) supported by the program for Changjiang Scholars and Innovative Research Team in University, China
文摘Physical model tests have been conducted by various researchers to investigate fault rupture propagation and ground deformation induced by bedrock faulting. However, the effects of pre-existing fracture on ground deformation are not fully understood. In this work, six centrifuge tests are reported to investigate the influence of pre-existing fracture on ground deformation induced by normal faulting in sand, clay and nine-layered soil with interbedded sand and clay layers. Shear box tests were conducted to develop a filter paper technique, which was adopted in soil model preparation to simulate the effects of pre-existing fracture in centrifuge tests. Centrifuge test results show that ground deformation mechanism in clay, sand and nine-layered soil strata is classified as a stationary zone, a shearing zone and a rigid body zone. Inclination of the strain localization is governed by the dilatancy of soil material. Moreover, the pre-existing fracture provides a preferential path for ground deformation and results in a scarp at the ground surface in sand. On the contrary, fault ruptures are observed at the ground surface in clay and nine-layered soil strata.
基金funded by the project of the Major Scientific and Technological Projects of CNOOC in the 14th Five-Year Plan(No.KJGG2022-0701)the CNOOC Research Institute(No.2020PFS-03).
文摘To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fractures,this study considered the combined impact of geological-engineering factors on conductivity.Using reservoir production parameters and the discrete elementmethod,multispherical proppants were constructed.Additionally,a 3D fracture model,based on the specified conditions of the L block,employed coupled(Computational Fluid Dynamics)CFD-DEM(Discrete ElementMethod)for joint simulations to quantitatively analyze the transport and placement patterns of multispherical proppants in intersecting fractures.Results indicate that turbulent kinetic energy is an intrinsic factor affecting proppant transport.Moreover,the efficiency of placement and migration distance of low-sphericity quartz sand constructed by the DEM in the main fracture are significantly reduced compared to spherical ceramic proppants,with a 27.7%decrease in the volume fraction of the fracture surface,subsequently affecting the placement concentration and damaging fracture conductivity.Compared to small-angle fractures,controlling artificial and natural fractures to expand at angles of 45°to 60°increases the effective support length by approximately 20.6%.During hydraulic fracturing of gas wells,ensuring the fracture support area and post-closure conductivity can be achieved by controlling the sphericity of proppants and adjusting the perforation direction to control the direction of artificial fractures.
基金supported by National Natural Science Foundation of China(No. 41090292)
文摘The experimental results of 3-D fracture under compression are introduced in brief and the theory of stress criterion of 3-D fracture is studied. Methods to imitate initial fractures are developed. It is pointed that there are important defects in the extreme value (EV) method ever proposed by Palaniswamy and Knauss. The major defect lies in that only two Euler angles (2EA) are considered, but another one is neglected. If the variation of all the three Euler angles (3EA) are considered, one can get better result which is consistent with the observation of faulting that extends on curved surfaces but not on planes. The method of evaluating maximal normal stress direction vector (NSDV) is proposed and further proved to be equivalent to the 3EA method. It is proved that the NSDV method can be further optimized to the method of composition of the first principal differential plane (CFPDP). The results from CFPDP method can fit the curved surfaces of initial growth observed in the experiments of 3-D fracture. The CFPDP method can also be used to interpret the 3-D fractures of the slipping section between the asperities in the buried fault plane that is modeled as ellipse crack. The results of 3-D fracture can be applied to interpreting the related problems of faulting including the mechanism of a lot of shatter rocks with different dimensions, the cause of earthquakes occurred at the edge of plate under low shear stress, and the mechanism of anisotropy caused by the extensive dilatancy anisotropy (EDA) cracks.
基金supported by the Fundamental Research Funds for the Central Universities (2652017308)the National Natural Science Foundation of China (Grant Nos. 41372139 and 41072098)the National Science and Technology Major Project of China (2016ZX05046-003-001 and 2016ZX05034-004003)
文摘In this paper, the analysis of faults with different scales and orientations reveals that the distribution of fractures always develops toward a higher degree of similarity with faults, and a method for calculating the multiscale areal fracture density is proposed using fault-fracture self-similarity theory. Based on the fracture parameters observed in cores and thin sections, the initial apertures of multiscale fractures are determined using the constraint method with a skewed distribution. Through calculations and statistical analyses of in situ stresses in combination with physical experiments on rocks, a numerical geomechanical model of the in situ stress field is established. The fracture opening ability under the in situ stress field is subsequently analyzed. Combining the fracture aperture data and areal fracture density at different scales, a calculation model is proposed for the prediction of multiscale and multiperiod fracture parameters, including the fracture porosity, the magnitude and direction of maximum permeability and the flow conductivity. Finally, based on the relationships among fracture aperture,density, and the relative values of fracture porosity and permeability, a fracture development pattern is determined.
文摘Three-dimensional coherent cube is an extremely effective new technique for interpreting seismic data. It has obvious advantages in many aspects compared with the conventional 3D data volume, such as recognizing faults and fractures, interpreting ancient channels, and edge detection of oil-gas reservoir. Coherent cube is to condense and extract information around a certain point in 3D data volume, and then highlight the original characteristics of the geologic body at this point. Therefore, in terms of its essence, coherent cube is a special seismic attribute cube and those points having rather small coherent value are related to the discontinuity of geologic body. In practical production, people often interpret horizontal slices or layer slices of coherent cube, and this provides advantageous foundations for resolving special problems in oil-gas exploration.……
基金Project(2014CB239205)supported by the National Basic Research Program of ChinaProject(20011ZX05030-005-003)supported by the National Science and Technology Major Project of China
文摘Faults and fractures of multiple scales are frequently induced and generated in compressional structural system. Comprehensive identification of these potential faults and fractures that cannot be distinguished directly from seismic profile of the complex structures is still an unanswered problem. Based on the compressional structural geometry and kinematics theories as well as the structural interpretation from seismic data, a set of techniques is established for the identification of potential faults and fractures in compressional structures. Firstly, three-dimensional(3D) patterns and characteristics of the faults directly interpreted from seismic profile were illustrated by 3D structural model. Then, the unfolding index maps, the principal structural curvature maps, and tectonic stress field maps were obtained from structural restoration. Moreover, potential faults and fractures in compressional structures were quantitatively identified relying on comprehensive analysis of these three maps. Successful identification of the potential faults and fractures in Mishrif limestone formation and in Asmari dolomite formation of Buzurgan anticline in Iraq demonstrates the applicability and reliability of these techniques.
基金supported by the National Natural Science Foundation of China(Grant No.41574088)the Key Program of Chinese Central Government for Basic Scientific Research Operations in Commonwealth Research Institutes(Grant No.ZDJ2019-16)。
文摘Tectonic stress fields are the key drivers of tectonic events and the evolution of regional structures.The tectonic stress field evolution of the Tanlu fault zone in Shandong Province,located in the east of the North China Craton(NCC),may have preserved records of the NCC’s tectonic history.Borehole television survey and hydraulic fracturing were conducted to analyze the paleo and present tectonic stress fields.Three groups of tensile fractures were identified via borehole television,their azimuths being NNW-SSE,NW-SE and NE-SW,representing multiple stages of tectonic events.Hydraulic fracturing data indicates that the study region is experiencing NEE-SWW-oriented compression and nearly-N-Soriented extension,in accordance with strike-slip and compression.Since the Cretaceous,the orientation of the extensional stress has evolved counterclockwise and sequentially from nearly-NW-SE-oriented to NE-SW-oriented and even nearly N-S-oriented,the stress state having transitioned from strike-slip-extension to strike-slip-compression,in association with the rotating and oblique subduction of the Pacific Plate beneath the NCC,with the participation of the Indian Plate.
基金financially supported by,the Fundamental Research Funds for the Central Universities(Grant No.2023QN1064)the China Postdoctoral Science Foundation(Grant No.2023M733772)Jiangsu Funding Program for Excellent Postdoctoral Talent(Grant No.2023ZB847)。
文摘Prepulse combined hydraulic fracturing facilitates the development of fracture networks by integrating prepulse hydraulic loading with conventional hydraulic fracturing.The formation mechanisms of fracture networks between hydraulic and pre-existing fractures under different prepulse loading parameters remain unclear.This research investigates the impact of prepulse loading parameters,including the prepulse loading number ratio(C),prepulse loading stress ratio(S),and prepulse loading frequency(f),on the formation of fracture networks between hydraulic and pre-existing fractures,using both experimental and numerical methods.The results suggest that low prepulse loading stress ratios and high prepulse loading number ratios are advantageous loading modes.Multiple hydraulic fractures are generated in the specimen under the advantageous loading modes,facilitating the development of a complex fracture network.Fatigue damage occurs in the specimen at the prepulse loading stage.The high water pressure at the secondary conventional hydraulic fracturing promotes the growth of hydraulic fractures along the damage zones.This allows the hydraulic fractures to propagate deeply and interact with pre-existing fractures.Under advantageous loading conditions,multiple hydraulic fractures can extend to pre-existing fractures,and these hydraulic fractures penetrate or propagate along pre-existing fractures.Especially when the approach angle is large,the damage range in the specimen during the prepulse loading stage increases,resulting in the formation of more hydraulic fractures.
文摘BACKGROUND In pediatric age group patients(<18 years old)treated operatively for distal radius/both bone fractures extending imaging beyond the initial postoperative period-particularly in uncomplicated cases-appears to provide limited additional benefit.AIM To determine the necessary number of follow-up X-rays to use resources efficiently.METHODS Participants included in this study are pediatric age group patients who were treated operatively for distal radius/both bone fractures and were identified from a prospected collected data from the operating room database between the years 2009 and 2017.The data in the study included patients who had distal radius fractures and underwent fixation surgery(n=88).RESULTS When assessing the difference in the odds of conducting 1 or less X-ray compared to 2 or more X-rays in regard to the type of fixation,the only significant difference is the closed reduction fixation method.Patients who underwent closed reduction method procedure have significantly lower odds of having 2 more X-rays compared to those who didn’t have closed reduction method.Open reduction,internal fixation,and other fixation methods(close reduction and internal fixation,debridement,or epiphysiodesis)have higher odds of having two or more X-rays compared to patients who did not receive these methods;however,these odds are not statistically significant.CONCLUSION The findings of this study reveal notable absence of a statistically significant association between the frequency of postoperative X-rays and the outcome of children with distal radius fractures.
基金This work was supported by the Guangdong Basic and Applied Basic Research Foundation(Grant No.2021A1515110304)the Na-tional Natural Science Foundation of China(Grant Nos.42077246 and 52278412).
文摘Grouting is a widely used approach to reinforce broken surrounding rock mass during the construction of underground tunnels in fault fracture zones,and its reinforcement effectiveness is highly affected by geostress.In this study,a numerical manifold method(NMM)based simulator has been developed to examine the impact of geostress conditions on grouting reinforcement during tunnel excavation.To develop this simulator,a detection technique for identifying slurry migration channels and an improved fluid-solid coupling(FeS)framework,which considers the influence of fracture properties and geostress states,is developed and incorporated into a zero-thickness cohesive element(ZE)based NMM(Co-NMM)for simulating tunnel excavation.Additionally,to simulate coagulation of injected slurry,a bonding repair algorithm is further proposed based on the ZE model.To verify the accuracy of the proposed simulator,a series of simulations about slurry migration in single fractures and fracture networks are numerically reproduced,and the results align well with analytical and laboratory test results.Furthermore,these numerical results show that neglecting the influence of geostress condition can lead to a serious over-estimation of slurry migration range and reinforcement effectiveness.After validations,a series of simulations about tunnel grouting reinforcement and tunnel excavation in fault fracture zones with varying fracture densities under different geostress conditions are conducted.Based on these simula-tions,the influence of geostress conditions and the optimization of grouting schemes are discussed.
文摘With the increasing demand for energy,traditional oil resources are facing depletion and insufficient supply.Many countries are rapidly turning to the development of unconventional oil and gas resources.Among them,shale oil and gas reservoirs have become the focus of unconventional oil and gas resources exploration and development.Based on the characteristics of shale oil and gas reservoirs,supercritical CO_(2) fracturing is more conducive to improving oil recovery than other fracturing technologies.In this paper,the mechanism of fracture initiation and propagation of supercritical CO_(2) in shale is analyzed,including viscosity effect,surface tension effect,permeation diffusion effect of supercritical CO_(2),and dissolution-adsorption effect between CO_(2) and shale.The effects of natural factors,such as shale properties,bedding plane and natural fractures,and controllable factors,proppant,temperature,pressure,CO_(2) concentration and injection rate on fracture initiation and propagation are clarified.The methods of supercritical CO_(2) fracturing process,thickener and proppant optimization to improve the efficiency of supercritical CO_(2) fracturing are discussed.In addition,some new technologies of supercritical CO_(2) fracturing are introduced.The challenges and prospects in the current research are also summarized.For example,supercritical CO_(2) is prone to filtration when passing through porous media,and it is difficult to form a stable flow state.Therefore,in order to achieve stable fracturing fluid suspension and effectively support fractu res,it is urge nt to explo re new fracturing fluid additives or improve fracturing fluid formulations combined with the research of new proppants.This paper is of great significance for understanding the behavior mechanism of supercritical CO_(2) in shale and optimizing fracturing technology.
基金supported by the National Natural Science Foundation of China(Grant No.52104060)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2021QE015).
文摘The real-time monitoring of fracture propagation during hydraulic fracturing is crucial for obtaining a deeper understanding of fracture morphology and optimizing hydraulic fracture designs.Accurate measurements of key fracture parameters,such as the fracture height and width,are particularly important to ensure efficient oilfield development and precise fracture diagnosis.This study utilized the optical frequency domain reflectometer(OFDR)technique in physical simulation experiments to monitor fractures during indoor true triaxial hydraulic fracturing experiments.The results indicate that the distributed fiber optic strain monitoring technology can efficiently capture the initiation and expansion of fractures.In horizontal well monitoring,the fiber strain waterfall plot can be used to interpret the fracture width,initiation location,and expansion speed.The fiber response can be divided into three stages:strain contraction convergence,strain band formation,and postshutdown strain rate reversal.When the fracture does not contact the fiber,a dual peak strain phenomenon occurs in the fiber and gradually converges as the fracture approaches.During vertical well monitoring in adjacent wells,within the effective monitoring range of the fiber,the axial strain produced by the fiber can represent the fracture height with an accuracy of 95.6%relative to the actual fracture height.This study provides a new perspective on real-time fracture monitoring.The response patterns of fiber-induced strain due to fractures can help us better understand and assess the dynamic fracture behavior,offering significant value for the optimization of oilfield development and fracture diagnostic techniques.