期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Geomechanical analysis of the influence of CO2 injection location on fault stability 被引量:7
1
作者 Victor Vilarrasa Roman Makhnenko Sohrab Gheibi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第6期805-818,共14页
Large amounts of carbon dioxide(CO2) should be injected in deep saline formations to mitigate climate change,implying geomechanical challenges that require further understanding.Pressure build-up induced by CO2injecti... Large amounts of carbon dioxide(CO2) should be injected in deep saline formations to mitigate climate change,implying geomechanical challenges that require further understanding.Pressure build-up induced by CO2injection will decrease the effective stresses and may affect fault stability.Geomechanical effects of overpressure induced by CO2injection either in the hanging wall or in the foot wall on fault stability are investigated.CO2injection in the presence of a low-permeable fault induces pressurization of the storage formation between the injection well and the fault.The low permeability of the fault hinders fluid flow across it and leads to smaller overpressure on the other side of the fault.This variability in the fluid pressure distribution gives rise to differential total stress changes around the fault that reduce its stability.Despite a significant pressure build-up induced by the fault,caprock stability around the injection well is not compromised and thus,CO2leakage across the caprock is unlikely to happen.The decrease in fault stability is similar regardless of the side of the fault where CO2is injected.Simulation results show that fault core permeability has a significant effect on fault stability,becoming less affected for high-permeable faults.An appropriate pressure management will allow storing large quantities of CO2without inducing fault reactivation. 展开更多
关键词 Carbon dioxide(CO_2) injection GEOMECHANICS fault stability Induced seismicity fault permeability
在线阅读 下载PDF
Gouge stability controlled by temperature elevation and obsidian addition in basaltic faults and implications for moonquakes 被引量:1
2
作者 Shutian Cao Fengshou Zhang +4 位作者 Mengke An Derek Elsworth Manchao He Hai Liu Luanxiao Zhao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第9期1273-1282,共10页
Basalt is a major component of the earth and moon crust.Mineral composition and temperature influence frictional instability and thus the potential for seismicity on basaltic faults.We performed velocitystepping shear... Basalt is a major component of the earth and moon crust.Mineral composition and temperature influence frictional instability and thus the potential for seismicity on basaltic faults.We performed velocitystepping shear experiments on basalt gouges at a confining pressure of 100 MPa,temperatures in the range of 100-400℃ and with varied obsidian mass fractions of 0-100%under wet/dry conditions to investigate the frictional strength and stability of basaltic faults.We observe a transition from velocity-neutral to velocity-weakening behaviors with increasing obsidian content.The frictional stability response of the mixed obsidian/basalt gouges is characterized by a transition from velocitystrengthening to velocity-weakening at 200℃ and another transition to velocity-strengthening at temperatures>300℃.Conversely,frictional strengths of the obsidian-bearing gouges are insensitive to temperature and wet/dry conditions.These results suggest that obsidian content dominates the potential seismic response of basaltic faults with the effect of temperature controlling the range of seismogenic depths.Thus,shallow moonquakes tend to occur in the lower lunar crust due to the corresponding anticipated higher glass content and a projected temperature range conducive to velocity-weakening behavior.These observations contribute to a better understanding of the nucleation mechanism of shallow seismicity in basaltic faults. 展开更多
关键词 fault stability Basaltic fault Temperature elevation Obsidian content Shallow moonquakes
在线阅读 下载PDF
The influence of the disturbing effect of roadways through faults on the faults' stability and slip characteristics
3
作者 Shuaifeng Lu Andrew Chan +3 位作者 Xiaolin Wang Shanyong Wang Zhijun Wan Jingyi Cheng 《Deep Underground Science and Engineering》 2024年第4期399-412,共14页
In order to mitigate the risk of geological disasters induced by fault activation when roadways intersect reverse faults in coal mining,this paper uses a combination of mechanical models with PFC2D software.A mechanic... In order to mitigate the risk of geological disasters induced by fault activation when roadways intersect reverse faults in coal mining,this paper uses a combination of mechanical models with PFC2D software.A mechanical model is introduced to represent various fault angles,followed by a series of PFC2D loading and unloading tests to validate the model and investigate fault instability and crack propagation under different excavation rates and angles.The results show that(1)the theoretical fault model,impacted by roadway advancing,shows a linear reduction in horizontal stress at a rate of-2.01 MPa/m,while vertical stress increases linearly at 4.02 MPa/m.(2)Atfield excavation speeds of 2.4,4.8,7.2,and 9.6 m/day,the vertical loading rates for the model are 2.23,4.47,6.70,and 8.93 Pa/s,respectively.(3)Roadway advancement primarily causes tensile-compressive failures in front of the roadway,with a decrease in tensile cracks as the stress rate increases.(4)An increase in the fault angle leads to denser cracking on the fault plane,with negligible cracking near the fault itself.The dominant crack orientation is approximately 90°,aligned with the vertical stress. 展开更多
关键词 excavation speed fault stability loading and unloading test roadway crossing faults
原文传递
Evaluation of fault stability and seismic potential for Hutubi underground gas storage due to seasonal injection and extraction
4
作者 Cexuan Liu Fengshou Zhang +3 位作者 Quan Wang Bin Wang Qi Zhang Bin Xu 《Underground Space》 SCIE EI CSCD 2023年第6期74-85,共12页
The Hutubi gas field was put into production in 1998 and then converted into an underground gas storage(UGS)facility in 2013,and since then a cluster of earthquakes associated with seasonal injection and extraction ac... The Hutubi gas field was put into production in 1998 and then converted into an underground gas storage(UGS)facility in 2013,and since then a cluster of earthquakes associated with seasonal injection and extraction activities have been recorded nearby.To evaluate the fault stability and seismic potential,we established a pseudo-3D geomechanical model to simulate the process of seasonal injection and extraction.Reservoir pore pressures from 1998 to 2019 were obtained through multiphase reservoir simulation and validated by history matching the field injection and production data.We then imported pore pressures into the geomechanical model to simulate the poroelastic perturbation on faults for over 20 years.The fidelity of this model was validated by comparing the simulated surface deformation with global positioning system(GPS)measured data.We used Coulomb failure stress(CFS)as the indicator for the likelihood of fault slippage.The simulation results show that the location of the induced earthquake cluster was within the positive Coulomb stress perturbation(DCFS)area,in which fault slippage was promoted.In addition,DCFS at the earthquake location kept increasing after the injection began.These findings could explain the induced earthquakes with the Coulomb failure stress theory.Furthermore,we conducted a parameter sensitivity study on the dominant factors such as the maximum operating pressure(MOP),frictional coefficient,and dip angle of the pre-existing fault.The results indicate that the magnitude of DCFS caused by seasonal injection and extraction decreases with distance;MOPs are constrained to 32.9,36.2,and 39.5 MPa according to different DCFS thresholds;the critical dip angle ranges are 0-20°and 80°-100°;and strengthening the fault friction can either increase or decrease the seismic potential.This study can help determine the MOP for Hutubi underground gas storage(HTB UGS)and provide a framework for simulating the potential causes of induced seismicity for other sites. 展开更多
关键词 Underground gas storage fault stability Seismic potential GPS Induced earthquake Coulomb stress perturbation
在线阅读 下载PDF
Frictional stability of Longmaxi shale gouges and its implication for deep seismic potential in the southeastern Sichuan Basin 被引量:5
5
作者 Fengshou Zhang Li Cui +2 位作者 Mengke An Derek Elsworth Changrong He 《Deep Underground Science and Engineering》 2022年第1期3-14,共12页
Microearthquakes accompanying shale gas recovery highlight the importance of exploring the frictional and stability properties of shale gouges.Aiming to reveal the influencing factors on fault stability,this paper exp... Microearthquakes accompanying shale gas recovery highlight the importance of exploring the frictional and stability properties of shale gouges.Aiming to reveal the influencing factors on fault stability,this paper explores the impact of mineral compositions,effective stress and temperature on the frictional stability of Longmaxi shale gouges in deep reservoirs located in the Luzhou area,southeastern Sichuan Basin.Eleven shear experiments were conducted to define the frictional strength and stability of five shale gouges.The specific experimental conditions were as follows:temperatures:90–270°C;a confining stress:95 MPa;and pore fluid pressures:25–55 MPa.The results show that all five shale gouges generally display high frictional strength with friction coefficients ranging from 0.60 to 0.70 at the aforementioned experiment condition of pressures,and temperatures.Frictional stability is significantly affected by temperature and mineral compositions,but is insensitive to variation in pore fluid pressures.Fault instability is enhanced at higher temperatures(especially at>200°C)and with higher tectosilicate/carbonate contents.The results demonstrate that the combined effect of mineral composition and temperature is particularly important for induced seismicity during hydraulic fracturing in deep shale reservoirs. 展开更多
关键词 deep shale reservoir hydraulic fracturing hydrothermal condition induced seismicity mineral composition shale fault stability
原文传递
Effects of strain states on stability of retained austenite in medium Mn steels 被引量:3
6
作者 Mei Xu Yong-gang Yang +3 位作者 Jia-yong Chen Di Tang Hai-tao Jiang Zhen-li Mi 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2017年第11期1125-1130,共6页
Based on uniaxial tensile and plane strain deformation tests, the effects of strain states on the stability of RA (retained austenite) in medium Mn steels, which were subjected to IA (intercritical annealing) and ... Based on uniaxial tensile and plane strain deformation tests, the effects of strain states on the stability of RA (retained austenite) in medium Mn steels, which were subjected to IA (intercritical annealing) and Q&P (quenching and partitioning) processing, were investigated. The volume fractions of RA before and after deformation were measured at different equivalent strains. The transformation behaviors of RA were also investigated. The stability of RA differed across two different transformation stages at the plane strain state: the stability was much lower in the first stage than in the second stage. For the uniaxial ten sion strain state, the stability of RA corresponded only to a single transformation stage. The main reason was that there were two types of transformations from RA in the medium Mn steel for the plane strain state. One type was that the martensite originated in the strain-induced stacking faults (SISF). The other type was the strain-induced directly twin martensite at a certain equivalent strain. However, for the uniax- ial tension state, only the strain-induced twin martensite was observed. Dislocation lines and dislocation tangles were also observed in specimens deformed at different strain states. In addition, complex micro- structures of stacking faults and lath-like phases were observed within a grain at the plane strain state. 展开更多
关键词 Medium Mn steel Strain state Retained austenite stability Stacking fault Twin martensite
原文传递
Analysis of microseismic activity in rock mass controlled by fault in deep metal mine 被引量:2
7
作者 Liu Jianpo Liu Zhaosheng +2 位作者 Wang Shaoquan Shi Changyan Li Yuanhui 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第2期235-239,共5页
Aiming at evaluating the stability of a rock mass near a fault,a microseismic(MS) monitoring system was established in Hongtoushan copper mine.The distribution of displacement and log(/),the relationship between MS ac... Aiming at evaluating the stability of a rock mass near a fault,a microseismic(MS) monitoring system was established in Hongtoushan copper mine.The distribution of displacement and log(/),the relationship between MS activity and the exploitation process,and the stability of the rock mass controlled by a fault were studied.The results obtained from microseismic data showed that MS events were mainly concentrated al the footwall of the fault.When the distance to the fault exceeded 20 m,the rock mass reached a relatively stable state.MS activity is closely related to the mining process.Under the strong disturbance from blasting,the initiation and propagation of cracks is much faster.MS activity belongs in the category of aftershocks after large scale excavation.The displacement and log(C/) obtained from MS events can reflect the difference in physical and mechanical behavior of different areas within the rock mass,which is useful in judging the integrity and degradation of the rock mass. 展开更多
关键词 Deep mining fault Microseism(MS) stability
在线阅读 下载PDF
Influence of hysteretic stress path behavior on seal integrity during gas storage operation in a depleted reservoir 被引量:5
8
作者 Pierre Jeanne Yingqi Zhang Jonny Rutqvist 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第4期886-899,共14页
In this study,we numerically investigate the influence of hysteretic stress path behavior on the seal integrity during underground gas storage operations in a depleted reservoir.Our study area is the Honor Rancho Unde... In this study,we numerically investigate the influence of hysteretic stress path behavior on the seal integrity during underground gas storage operations in a depleted reservoir.Our study area is the Honor Rancho Underground Storage Facility in Los Angeles County(California,USA),which was converted into an underground gas storage facility in 1975 after 20 years of oil and gas production.In our simulations,the geomechanical behavior of the sand reservoir is modeled using two models:(1)a linear elastic model(non-hysteretic stress path)that does not take into consideration irreversible deformation,and(2)a plastic cap mechanical model which considers changes in rock elastic properties due to irreversible deformations caused by plastic reservoir compaction(hysteretic stress path).It shows that the irreversible compaction of the geological layer over geologic time and during the reservoir depletion can have important consequences on stress tensor orientation and magnitude.Ignoring depletion-induced irreversible compaction can lead to an over-estimation of the calculation of the maximum working reservoir pressure.Moreover,this irreversible compaction may bring the nearby faults closer to reactivation.However,regardless of the two models applied,the geomechanical analysis shows that for the estimated stress conditions applied in this study,the Honor Rancho Underground Storage Facility is being safely operated at pressures much below what would be required to compromise the seal integrity. 展开更多
关键词 Gas storage Stress path Geomechanical simulation Caprock integrity fault stability Modified cam-clay model Honor rancho underground storage facility
在线阅读 下载PDF
Frictional behavior of quartz gouge during slide-hold-slide considering normal stress oscillation 被引量:2
9
作者 Kang Tao Wengang Dang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第3期108-121,共14页
Slide-hold-slide(SHS)test is an essential experimental approach for studying the frictional stability of faults.The origin SHS framework was established based on a consistent constant normal stress,which cannot truly ... Slide-hold-slide(SHS)test is an essential experimental approach for studying the frictional stability of faults.The origin SHS framework was established based on a consistent constant normal stress,which cannot truly reflect the stress disturbance around fault zones.In this paper,we conducted a series of'dynamic SHS tests',which includes normal stress oscillations in the relaxation stage with different oscillation amplitudes and frequencies on synthetic quartz gouge using a double direct shear assembly.The experimental results reveal that the amplitude of the normal load oscillation has a remarkable effect on the frictional relaxation and healing patterns.However,the frequency of the normal load oscillation has a minor effect.Additionally,the shear loading rate is proportional to the normal loading rate during the relaxation stage,and the normal stiffness of the quartz layer remains nearly constant under various loading conditions.The creep rate during the hold phase is not obviously affected by the normal load oscillation,while the precursory slip is also sensitive to the oscillation amplitude.This study provides insights into the evolution of frictional stability in discontinuities and is beneficial for controlling relative disasters in fault zones. 展开更多
关键词 Slide-hold-slide test Normal load oscillation Frictional healing fault stability
在线阅读 下载PDF
In situ stress state and seismic hazard in the Dayi seismic gap of the Longmenshan thrust belt 被引量:8
10
作者 Bing LI Furen XIE +8 位作者 Jinshui HUANG Xiwei XU Qiliang GUO Guangwei ZHANG Junshan XU Jianxin WANG Dawei JIANG Jian WANG Lifeng DING 《Science China Earth Sciences》 SCIE EI CSCD 2022年第7期1388-1398,共11页
In the Longmenshan thrust belt,the Dayi seismic gap,an area with few earthquakes,is located between the ruptures of the 2008 Wenchuan Earthquake and the 2013 Lushan Earthquake,with a length of approximately 40–60 km.... In the Longmenshan thrust belt,the Dayi seismic gap,an area with few earthquakes,is located between the ruptures of the 2008 Wenchuan Earthquake and the 2013 Lushan Earthquake,with a length of approximately 40–60 km.To date,however,the extent of the seismic hazard of the Dayi seismic gap and whether this gap is under high stress are still hotly debated.To further evaluate the seismic hazard of the Dayi seismic gap with regard to stress,two boreholes(1,000 and 500 m deep)were arranged to carry out hydraulic fracturing in situ stress measurement on either side of the Shuangshi-Dachuan fault zone.This zone has a high seismic hazard and the capacity to undergo surface rupture.Through the analogy of this new data with stability analysis using Byerlee’s Law and existing stress measurement data collected before strong earthquakes,the results show that the area surrounding the Shuangshi-Dachuan fault zone in the Dayi seismic gap(Dachuan Town)is in a state of high in situ stress,and has the conditions necessary for friction slip,with the potential hazard of moderate to strong earthquakes.Our results are the first to reveal the in situ stress profile at a depth of 1,000 m in the Dayi seismic gap,and provide new data for comprehensive evaluation of the seismic hazard in this seismic gap,which is of great significance to explore the mechanism of earthquake occurrence and to help mitigate future disaster. 展开更多
关键词 Dayi seismic gap Wenchuan Earthquake Lushan Earthquake In situ stress state Byerlee criterion fault stability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部