A combined logic- and model-based approach to fault detection and identification (FDI) in a suction foot control system of a wall-climbing robot is presented in this paper. For the control system, some fault models ...A combined logic- and model-based approach to fault detection and identification (FDI) in a suction foot control system of a wall-climbing robot is presented in this paper. For the control system, some fault models are derived by kinematics analysis. Moreover, the logic relations of the system states are known in advance. First, a fault tree is used to analyze the system by evaluating the basic events (elementary causes), which can lead to a root event (a particular fault). Then, a multiple-model adaptive estimation algorithm is used to detect and identify the model-known faults. Finally, based on the system states of the robot and the results of the estimation, the model-unknown faults are also identified using logical reasoning. Experiments show that the proposed approach based on the combination of logical reasoning and model estimating is efficient in the FDI of the robot.展开更多
A new theory- the fuzzy probability logic theory is presented , This theory incorpo- rates the genterally-used fuzzy logic and the traditionally-used probability logic theory in attempt to emulate the rational fault d...A new theory- the fuzzy probability logic theory is presented , This theory incorpo- rates the genterally-used fuzzy logic and the traditionally-used probability logic theory in attempt to emulate the rational fault diagnosis under uncertainty. According to the theory , an inference model , named as FSL , is thus designed to be devoted to the building of a fault diagnosis expert system for rotating machinery (ROSLES) . The system is put into operation on a vibration simula- tor stand for 300 MW turbine generator set ( 1 : 1 0) and satisfactory results are gained.展开更多
基金supported by the Hi-tech Research and Development Program of China (No.2006AA420203)
文摘A combined logic- and model-based approach to fault detection and identification (FDI) in a suction foot control system of a wall-climbing robot is presented in this paper. For the control system, some fault models are derived by kinematics analysis. Moreover, the logic relations of the system states are known in advance. First, a fault tree is used to analyze the system by evaluating the basic events (elementary causes), which can lead to a root event (a particular fault). Then, a multiple-model adaptive estimation algorithm is used to detect and identify the model-known faults. Finally, based on the system states of the robot and the results of the estimation, the model-unknown faults are also identified using logical reasoning. Experiments show that the proposed approach based on the combination of logical reasoning and model estimating is efficient in the FDI of the robot.
文摘A new theory- the fuzzy probability logic theory is presented , This theory incorpo- rates the genterally-used fuzzy logic and the traditionally-used probability logic theory in attempt to emulate the rational fault diagnosis under uncertainty. According to the theory , an inference model , named as FSL , is thus designed to be devoted to the building of a fault diagnosis expert system for rotating machinery (ROSLES) . The system is put into operation on a vibration simula- tor stand for 300 MW turbine generator set ( 1 : 1 0) and satisfactory results are gained.