期刊文献+
共找到53篇文章
< 1 2 3 >
每页显示 20 50 100
Application of fractal theory in detecting low current faults of power distribution system in coal mines 被引量:5
1
作者 LIU Jian-hua LIANG Rui WANG Chong-lin FAN Di-peng 《Mining Science and Technology》 EI CAS 2009年第3期321-325,共5页
Single-phase low current grounding faults areoften seen in power distribution system of coal mines.These faults are difficult to reliably identify.We propose a new method of single-phase ground fault protection based ... Single-phase low current grounding faults areoften seen in power distribution system of coal mines.These faults are difficult to reliably identify.We propose a new method of single-phase ground fault protection based upon a discernible matrix of the fractal dimension associated with line currents.The method builds on existing selective protection methods.Faulted feeders are distinguished using differences in the zero-sequence transient current fractal dimension.The current signals were first processed through a fast Fourier transform and then the characteristics of a faulted line were identified using a discernible matrix.The method of calculation is illustrated.The results show that the method involves simple calculations, is easy to do and is highly accurate.It is, therefore, suitable for distribution networks having different neutral grounding modes. 展开更多
关键词 low current faults zero sequence transient current fractal dimension discernible matrix selective protection
在线阅读 下载PDF
Study of the Fast-Closing Switch Used for Fault Current Limiters in Power System 被引量:1
2
作者 邹积岩 董恩源 陈金祥 《Journal of Shanghai University(English Edition)》 CAS 2002年第1期92-96,共5页
This paper presents a new type of fault current limiter (FCL) based on fast closing switch, which is composed of a capacitor bank and a reactor in series. The main control component is a fast closing switch connecte... This paper presents a new type of fault current limiter (FCL) based on fast closing switch, which is composed of a capacitor bank and a reactor in series. The main control component is a fast closing switch connected in parallel with the capacitors, which is driven by the electromagnetic repulsion force. It can response the order within 1 ms. When fault occurs, the switch closes and the capacitors are bypassed, and the fault current is limited by the reactor. Simulation analysis and experiment show that the electromagnetic repulsion force actuator can meet the demand of fast closing switch, it is feasible to develop the FCL with low cost and high reliability. 展开更多
关键词 fault current limiter (FCL) electromagnetic repulsion force fast closing switch simulation.
在线阅读 下载PDF
A novel fault current limiter topology design based on liquid metal current limiter 被引量:1
3
作者 Jinjin LI Xiongying DUAN +4 位作者 Weiying XIE Zhihui HUANG Minfu LIAO Dequan WANG Xiaotao HAN 《Plasma Science and Technology》 SCIE EI CAS CSCD 2022年第8期113-123,共11页
The liquid metal current limiter(LMCL)is regarded as a viable solution for reducing the fault current in a power grid.But demonstrating the liquid metal arc plasma self-pinching process of the resistive wall,and reduc... The liquid metal current limiter(LMCL)is regarded as a viable solution for reducing the fault current in a power grid.But demonstrating the liquid metal arc plasma self-pinching process of the resistive wall,and reducing the erosion of the LMCL are challenging,not only theoretically,but also practically.In this work,a novel LMCL is designed with a resistive wall that can be connected to the current-limiting circuit inside the cavity.Specifically,a novel fault current limiter(FCL)topology is put forward where the novel LMCL is combined with a fast switch and current-limiting reactor.Further,the liquid metal self-pinch effect is modeled mathematically in three dimensions,and the gas-liquid two-phase dynamic diagrams under different short-circuit currents are obtained by simulation.The simulation results indicate that with the increase of current,the time for the liquid metal-free surface to begin depressing is reduced,and the position of the depression also changes.Different kinds of bubbles formed by the depressions gradually extend,squeeze,and break.With the increase of current,the liquid metal takes less time to break,but breaks still occur at the edge of the channel,forming arc plasma.Finally,relevant experiments are conducted for the novel FCL topology.The arcing process and current transfer process are analyzed in particular.Comparisons of the peak arc voltage,arcing time,current limiting efficiency,and electrode erosion are presented.The results demonstrate that the arc voltage of the novel FCL topology is reduced by more than 4.5times and the arcing time is reduced by more than 12%.The erosions of the liquid metal and electrodes are reduced.Moreover,the current limiting efficiency of the novel FCL topology is improved by 1%–5%.This work lays a foundation for the topology and optimal design of the LMCL. 展开更多
关键词 liquid metal current limiter(LMCL) arc plasma fault current limiter(FCL)topology
在线阅读 下载PDF
A Fault Current Limiting Hybrid DC Circuit Breaker 被引量:1
4
作者 Lei Huang Qian Zhang +1 位作者 Wenlei Liu Ruixue Liu 《Energy Engineering》 EI 2022年第2期621-636,共16页
Due to the low impedance characteristic of the high voltage direct current(HVDC)grid,the fault current rises extremely fast after a DC-side fault occurs,and this phenomenon seriously endangers the safety of the HVDC g... Due to the low impedance characteristic of the high voltage direct current(HVDC)grid,the fault current rises extremely fast after a DC-side fault occurs,and this phenomenon seriously endangers the safety of the HVDC grid.In order to suppress the rising speed of the fault current and reduce the current interruption requirements of the main breaker(MB),a fault current limiting hybrid DC circuit breaker(FCL-HCB)has been proposed in this paper,and it has the capability of bidirectional fault current limiting and fault current interruption.After the occurrence of the overcurrent in the HVDC grid,the current limiting circuit(CLC)of FCL-HCB is put into operation immediately,and whether the protected line is cut off or resumed to normal operation is decided according to the fault detection result.Compared with the traditional hybrid DC circuit breaker(HCB),the required number of semiconductor switches and the peak value of fault current after fault occurs are greatly reduced by adopting the proposed device.Extensive simulations also verify the effectiveness of the proposed FCL-HCB. 展开更多
关键词 fault current limiting hybrid DC circuit breaker(FCL-HCB) high voltage direct current(HVDC)grid fault current limiting fault current interruption DC circuit breaker
在线阅读 下载PDF
Hybrid Operation of Fault Current Limiter and Thyristor Controlled Braking Resistor 被引量:1
5
作者 Masaki Yagami Junji Tamura 《Journal of Energy and Power Engineering》 2012年第4期601-608,共8页
The effectiveness of a combination of fault current limiter and thyristor controlled braking resistor on power system stability enhancement and damping turbine shaft torsional oscillations has been studied. If both de... The effectiveness of a combination of fault current limiter and thyristor controlled braking resistor on power system stability enhancement and damping turbine shaft torsional oscillations has been studied. If both devices operate at the same bus, the stabilization control scheme can be carried out continuously and with flexibility. As a result, the fault currents are limited, and the generator disturbances and the turbine shaft torsional oscillations are converged quickly. In this paper, the effectiveness of the combination of both devices has been demonstrated by considering 3LG (three-lines-to-ground) fault in a two-machine infinite bus system. Also, temperature rise effect of both devices with various resistance values and weights has been demonstrated. Simulation results indicate a significant power system stability enhancement and damping turbine shaft torsional oscillations as well as with allowable temperature rise. 展开更多
关键词 fault current limiter thyristor controlled braking resistor fault current power system stability turbine shaft torsional oscillation temperature rise effect.
在线阅读 下载PDF
GENERATOR VIBRATION FAULT DIAGNOSIS METHOD BASED ON ROTOR VIBRATION AND STATOR WINDING PARALLEL BRANCHES CIRCULATING CURRENT CHARACTERISTICS 被引量:2
6
作者 Wan Shuting Li Heming +1 位作者 Li Yonggang Tang Guiji 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第4期592-596,共5页
Rotor vibration characteristics are first analyzed, which are that the rotor vibration of fundamental frequency will increase due to rotor winding inter-turn short circuit fault, air-gap dynamic eccentricity fault, or... Rotor vibration characteristics are first analyzed, which are that the rotor vibration of fundamental frequency will increase due to rotor winding inter-turn short circuit fault, air-gap dynamic eccentricity fault, or imbalance fault, and the vibration of the second frequency will increase when the air-gap static eccentricity fault occurs. Next, the characteristics of the stator winding parallel branches circulating current are analyzed, which are that the second harmonics circulating current will increase when the rotor winding inter-turn short circuit fault occurs, and the fundamental circulating current will increase when the air-gap eccentricity fault occurs, neither being strongly affected by the imbalance fault. Considering the differences of the rotor vibration and circulating current characteristics caused by different rotor faults, a method of generator vibration fault diagnosis, based on rotor vibration and circulating current characteristics, is developed. Finally, the rotor vibration and circulating current of a type SDF-9 generator is measured in the laboratory to verify the theoretical analysis presented above. 展开更多
关键词 Generator fault diagnosis Rotor vibration characteristic Stator winding parallel branches circulating current
在线阅读 下载PDF
Placement optimization of Multi-Type fault current limiters based on genetic algorithm
7
作者 Guofeng Jin Jie Tan +2 位作者 Lingling Liu Chuan Wang Tiejiang Yuan 《Global Energy Interconnection》 EI CAS CSCD 2021年第5期501-512,共12页
The fault current limiter(FCL)is an effective measure for improving system stability and suppressing short-circuit fault current.Because of space and economic costs,the optimum placement of FCLs is vital in industrial... The fault current limiter(FCL)is an effective measure for improving system stability and suppressing short-circuit fault current.Because of space and economic costs,the optimum placement of FCLs is vital in industrial applications.In this study,two objectives with the same dimensional measurement unit,namely,the total capital investment cost of FCLs and circuit breaker loss related to short-circuit currents,are considered.The circuit breaker loss model is developed based on the attenuation rule of the circuit breaker service life.The circuit breaker loss is used to quantify the current-limiting effect to avoid the problem of weight selection in a multi-objective problem.The IEEE 10-generator 39-bus system in New England is used to evaluate the performance of the proposed genetic algorithm(GA)method.Comparative and sensitivity analyses are performed.The results of the optimized plan are validated through simulations,indicating the significant potential of the GA for such optimization. 展开更多
关键词 fault current limiter Genetic algorithm MULTI-OBJECTIVE Circuit breaker loss Short-circuit current PLACEMENT
在线阅读 下载PDF
Bias Current Influence on the Characteristic of the Magnetic-controlled Switcher Type Fault Current Limiter
8
作者 潘艳霞 姜建国 《Journal of Shanghai Jiaotong university(Science)》 EI 2009年第3期359-364,共6页
A novel magnetic-controlled switcher type fault current limiter (FCL) for high voltage electric network is presented. The current limiting principle of the FCL and the bias current influence on the characteristic of... A novel magnetic-controlled switcher type fault current limiter (FCL) for high voltage electric network is presented. The current limiting principle of the FCL and the bias current influence on the characteristic of the FCL axe discussed. The experiments on the 220 V/50 A test model show that the FCL can limit the fault current swiftly and effectively. Under the normal state, the bias current adjustment can change the FCL voltage loss; under the fault state, the steady fault current can be easily adjusted to the preset level by bias current regulating. The experimental result is in accordance with the principle analysis and the FCL has the advantages of flexible control strategy and simple and reliable structure. 展开更多
关键词 fault current limiter (FCL) bias current fault current power systems
原文传递
Current Limiting Characteristic Analysis of Magnetic-controlled Switcher Type Fault Current Limiter
9
作者 潘艳霞 姜建国 《Journal of Donghua University(English Edition)》 EI CAS 2008年第6期626-631,共6页
A novel magnetic-controlled switcher type fault current limiter (FCL) based on the topology of the saturated iron core high temperature superconducting FCL is proposed. The magnetic field distribution of the FCL iron ... A novel magnetic-controlled switcher type fault current limiter (FCL) based on the topology of the saturated iron core high temperature superconducting FCL is proposed. The magnetic field distribution of the FCL iron core is analyzed by FEA software ANSYS. The current limiting characteristic is investigated by both 3-D field-circuit coupled simulation and Matlab. The experiments on the 220 V/50 A test model show that the FCL can limit the fault current swiftly and effectively,and the FCL has the advantages of simple and reliable structure, flexible control strategy. The simulation and experimental results prove that the theoretical expectation and current limiting performance is satisfactory for practical use. 展开更多
关键词 fault current limiter FCL ANSYS finite-element analysis (FEA) SUPERCONDUCTING
在线阅读 下载PDF
Fault Current Limiter Based on Triggered Vacuum Switch
10
《Advances in Manufacturing》 SCIE CAS 2000年第4期309-313,共5页
关键词 fault Current Limiter Based on Triggered Vacuum Switch
在线阅读 下载PDF
Fault Current Limiters and Impacts on the System Protection Behavior
11
作者 J. Jager T. Keil 《Journal of Energy and Power Engineering》 2010年第10期54-57,共4页
A deregulated power market is making short-circuit currents likely to exceed the thermal or mechanical permissible limits of switchgear. Consequently fault current limiters (FCL) become more necessary in power syste... A deregulated power market is making short-circuit currents likely to exceed the thermal or mechanical permissible limits of switchgear. Consequently fault current limiters (FCL) become more necessary in power systems. The use of FCLs has an impact on the protection schemes and functions in power systems. Thus, before FCLs can be applied in the network, the impacts on existing protection system must be understood. Depending on the current limiting technique used, today's protection concepts may have to be adapted or revised to ensure proper network protection selectivity. A relationship between fault current limiters and protection schemes should be established by taking into account both protection and network specific issues, such as the impact of different FCL technologies, existing and new protection concepts, selectivity and innovative network. This paper is presenting a frame work for accomplishing this task. 展开更多
关键词 fault current limiter first cycle behavior follow current protection system PICK-UP processing SELECTIVITY coordination.
在线阅读 下载PDF
Directional Overcurrent Relays Coordination Restoration by Reducing Minimum Fault Current Limiter Impedance
12
作者 Saadoun Abdel Aziz Mostafa DoaaKhalil Ibrahim Essam El-Din Abo El-Zahab 《Journal of Energy and Power Engineering》 2014年第6期1132-1141,共10页
FCL (fault current limiter) is used to solve relays miscoordination problem arises from DG (distributed generation) installation. In most published researches, different optimization methods are developed to obtai... FCL (fault current limiter) is used to solve relays miscoordination problem arises from DG (distributed generation) installation. In most published researches, different optimization methods are developed to obtain optimal relay settings to achieve coordination in case of not installing DG, then depending on the achieved optimal obtained relay settings, FCL impedance is deduced to ensure relays coordination restoration in case of installing DG. Based on original optimal relay settings, obtained FCL impedance is not the minimum one required to achieve relay coordination. The contribution of this paper is the generation of multi sets of original relay settings that increase the possibility of finding FCL impedance of minimum value which is lower than the calculated value based on original optimal relay settings. The proposed method achieves better economic target by reducing FCL impedance. The proposed approach is implemented and tested on IEEE-39 bus test system. 展开更多
关键词 FCL fault current limiter) IP (pickup current setting) relays coordination TDS (time-dial setting).
在线阅读 下载PDF
Transient Stability Enhancement Control for VSG Considering Power Angle Stability and Fault Current Limitation 被引量:1
13
作者 Pingjuan Ge Fan Xiao +3 位作者 Chunming Tu Qi Guo Jiayuan Gao Yufei Song 《CSEE Journal of Power and Energy Systems》 2025年第1期173-183,共11页
Virtual synchronous generators(VSGs)can provide voltage and frequency support to power systems due to their inertial and damping features.Unfortunately,power angle stability and fault current limitations are still cha... Virtual synchronous generators(VSGs)can provide voltage and frequency support to power systems due to their inertial and damping features.Unfortunately,power angle stability and fault current limitations are still challenging aspects of VSGs under large disturbances.Power angle stability and fault current limitations are indispensable for the safe operation of a VSG.However,in existing studies,these aspects are mostly solved as two independent problems.In this paper,the comprehensive transient stability enhancement(CTSE)control strategy for a VSG,considering power angle stability and fault current limitations is proposed.With a CTSE control,VSG's transient power angle stability is guaranteed.In addition,the steady-state and impulse components of the fault current are fully limited.Furthermore,CTSE control parameters adapted to different fault degrees are presented.Finally,simulation and experimental tests are performed to validate the performance of the proposed method. 展开更多
关键词 Virtual synchronous generator comprehensive transient stability enhancement power angle stability fault current limitation
原文传递
Efficient Calculation and Component Analysis of Fault Current in MMC-HVDC Grid
14
作者 Lixu Chen Jun Yan +2 位作者 Xiufang Jia Chengyong Zhao Jianzhong Xu 《CSEE Journal of Power and Energy Systems》 2025年第4期1744-1754,共11页
The investigation of the pole-to-pole(p2p)DC short-circuit fault current in a modular multilevel converter(MMC)based high-voltage direct current(HVDC)grid is of vital importance for protection design and parameter opt... The investigation of the pole-to-pole(p2p)DC short-circuit fault current in a modular multilevel converter(MMC)based high-voltage direct current(HVDC)grid is of vital importance for protection design and parameter optimization.Existing calculation methods for the p2p fault current primarily rely on differential equations based on the RLC equivalent of the MMC station and the RL model of DC transmission lines.Some of them also take the AC in-feed currents into account.However,these approaches all carry heavy burdens for the complex formation and solving processes of equations,and they can only obtain the numerical solution of the fault current.The analytic solution of explicit physical meaning cannot be acquired at present because of the complex coupling relationship among MMC terminals.To address these issues,this paper builds a simplified and generalized fault equivalence model for the DC grid under a p2p fault.This is due to the fact that the terminals having long electrical distances from the fault point have less impact on the fault current.Next,not only the efficient and accurate fault current calculation is achieved,but also the approximate superposition-based analytical solution of the fault current is derived.The component analysis of the fault current and the sensitivity analysis of the components are provided as well.The calculation method and the analysis are both validated in PSCAD/EMTDC. 展开更多
关键词 Analytical solution component analysis DC grid fault current calculation modular multilevel converter(MMC)
原文传递
Self-adaptive Action and Parameter Optimization of DC Series-parallel Power Flow Controller for Fault Current Limiting in Bipolar DC Distribution Systems
15
作者 Yangtao Liu Jianquan Liao +4 位作者 Chunsheng Guo Zipeng Tan Qianggang Wang Yuhong Wang Niancheng Zhou 《Journal of Modern Power Systems and Clean Energy》 2025年第2期732-746,共15页
DC series-parallel power flow controller(SP-PFC)is a highly efficient device to solve the problem of uncontrolled line current in the bipolar DC distribution system.However,its potential in fault current limiting is n... DC series-parallel power flow controller(SP-PFC)is a highly efficient device to solve the problem of uncontrolled line current in the bipolar DC distribution system.However,its potential in fault current limiting is not fully explored.In this paper,a self-adaptive action strategy(SAAS)and a parameter optimization method of SP-PFC in bipolar DC distribution systems are proposed.Firstly,the common-and different-mode(CDM)equivalent circuits of the bipolar DC distribution system with SP-PFC in different fault stages are established,which avoids the line coupling inductance.Based on this,the influence of different parameters and line coupling inductance on the fault current limiting capability are investigated.It is found that the SP-PFC has the best fault current limiting capability when the capacitance and inductance of filter are inversely proportional.To realize the adaptability of fault current limiting capability under different fault severities,the SAAS of SP-PFC is proposed.The validity of the CDM equivalent circuits and parameter optimization method,and the effectiveness of the SAAS are verified by simulations and experiments. 展开更多
关键词 DC distribution system series-parallel power flow controller(SP-PFC) line coupling inductance parameter optimization fault current limiting
原文传递
DC Fault Current Calculation Method and Transient Characteristics of True Bipolar MMC-HVDC Systems
16
作者 Botong Li Yichao Liu +3 位作者 Bin Li Wenxin Wang Weijie Wen Xiaolong Chen 《CSEE Journal of Power and Energy Systems》 2025年第4期1704-1716,共13页
In this paper,the calculation method and transient characteristics of asymmetric faults in the DC side of a true bipolar system are studied.First,two typical MMC fault equivalent methods are analyzed,and comparison sh... In this paper,the calculation method and transient characteristics of asymmetric faults in the DC side of a true bipolar system are studied.First,two typical MMC fault equivalent methods are analyzed,and comparison shows that active RLC equivalent branches are more suitable for fault analyses of a true bipolar system.Second,considering the influence of mutual impedance between the poles in DC side,a DC fault current calculation method for a true bipolar systems is proposed.Finally,the characteristics of transient electrical quantities including fault current and DC voltage in the process of DC faults in true bipolar systems are analyzed and summarized to provide references for the design of DC line insulation and relay protection schemes. 展开更多
关键词 DC faults fault current calculation method transient characteristics true bipolar MMC-HVDC systems
原文传递
Fault Severity Classification Based Coordination Control Strategy of Fault Current Limiter and Modular Multilevel Converter for Adaptive Fault Current Limiting
17
作者 Yangtao Liu Jianquan Liao +5 位作者 Chunsheng Guo Zipeng Tan Yuhong Wang Nengqiao Wei Niancheng Zhou Yuyan Song 《Journal of Modern Power Systems and Clean Energy》 2025年第4期1432-1443,共12页
Fault current limiting is a critical technology to en sure the safe operation of modular multilevel converter based multi-terminal direct current(MMC-MTDC)grids.This paper proposes a fault severity classification base... Fault current limiting is a critical technology to en sure the safe operation of modular multilevel converter based multi-terminal direct current(MMC-MTDC)grids.This paper proposes a fault severity classification based coordination con trol strategy of fault current limiter(FCL)and MMC for adap tive fault current limiting.The proposed strategy reduces the in vestment in FCL,and keeps the bus voltages of non-faulty lines at reasonable values.Firstly,a rapid fault circuit parameter esti mation(FCPE)method using initial fault current information is proposed.With this method,the fault distance and fault transi tion resistance can be quickly estimated,which are used for a quantitative indication of the fault severity.Subsequently,the coordination control strategy of FCL and MMC is proposed,in which the FCL action is prioritized,while the control of MMC is complementary for current limiting.Based on the proposed strategy,fault severity phase planes(FSPPs)are constructed to assess fault severity and calculate the activation time of FCL and voltage regulation factor of MMC.Therefore,the FCL acti vation and MMC control are matched to the fault severity.The effectiveness and advantages of the proposed strategy are vali dated by the simulations in PSCAD/EMTDC. 展开更多
关键词 Multi-terminal direct current(MTDC)grid adaptive fault current limiting modular multilevel converter(MMC) fault severity assessment source-grid coordination
原文传递
Distributed Model Predictive Load Frequency Control of Multi-area Power System with DFIGs 被引量:17
18
作者 Yi Zhang Xiangjie Liu Bin Qu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第1期125-135,共11页
Reliable load frequency control LFC is crucial to the operation and design of modern electric power systems. Considering the LFC problem of a four-Area interconnected power system with wind turbines, this paper presen... Reliable load frequency control LFC is crucial to the operation and design of modern electric power systems. Considering the LFC problem of a four-Area interconnected power system with wind turbines, this paper presents a distributed model predictive control DMPC based on coordination scheme. The proposed algorithm solves a series of local optimization problems to minimize a performance objective for each control area. The generation rate constraints GRCs, load disturbance changes, and the wind speed constraints are considered. Furthermore, the DMPC algorithm may reduce the impact of the randomness and intermittence of wind turbine effectively. A performance comparison between the proposed controller with and without the participation of the wind turbines is carried out. Analysis and simulation results show possible improvements on closed-loop performance, and computational burden with the physical constraints. © 2014 Chinese Association of Automation. 展开更多
关键词 Asynchronous generators Electric control equipment Electric fault currents Electric frequency control Electric load management Electric power systems Model predictive control Optimization Press load control WIND Wind turbines
在线阅读 下载PDF
Asymmetrical Fault Current Calculation Method and Influencing Factors Analysis of Droop-Controlled Inverters 被引量:2
19
作者 Huimin Zhao Zhikang Shuai +3 位作者 Jun Ge An Luo Weimin Wu Z.John Shen 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2024年第2期562-573,共12页
Since the fault dynamic of droop-controlled inverter is different from synchronous generators (SGs), protection devices may become invalid, and the fault overcurrent may damage power electronic devices and threaten th... Since the fault dynamic of droop-controlled inverter is different from synchronous generators (SGs), protection devices may become invalid, and the fault overcurrent may damage power electronic devices and threaten the safety of the microgrid. Therefore, it is imperative to conduct a comprehensive fault analysis of the inverter to guide the design of protection schemes. However, due to the complexity of droop control strategy, existing literatures have simplified asymmetric fault analysis of droop-controlled inverters to varying degrees. Therefore, accurate fault analysis of a droop-controlled inverter is needed. In this paper, by analyzing the control system, an accurate fault model is established. Based on this, a calculation method for instantaneous asymmetrical fault current is proposed. In addition, the current components and current characteristics are analyzed. It was determined that fault currents are affected by control loops, fault types, fault distance and nonlinear limiters. In particular, the influences of limiters on the fault model, fault current calculation and fault current characteristics were analyzed. Through detailed analysis, it was found that dynamics of the control loop cannot be ignored, the fault type and fault distance determine fault current level, and part of the limiters will totally change the fault current trend. Finally, calculation and experimental results verify the correctness of the proposed method. 展开更多
关键词 Asymmetrical fault analysis droop control fault current calculation method LIMITER transient fault characteristics
原文传递
Fabrication of HTS dc Bias Coil for 35 kV/90 MVA SFCL 被引量:1
20
作者 Jing-Yin Zhang Wei-Zhi Gong Zheng-Jian Cao Hui Hong Bo Tian Yang Wang Jian-Zhong Wang Xiao-Ye Niu Ying Xin 《Journal of Electronic Science and Technology of China》 2008年第2期97-100,共4页
---For a saturated iron core fault current limiter, superconductor is the only suitable material to make the dc bias coil, especially when the device is used in a high voltage power grid. Commonly, superconducting wir... ---For a saturated iron core fault current limiter, superconductor is the only suitable material to make the dc bias coil, especially when the device is used in a high voltage power grid. Commonly, superconducting wires are used to wind the dc bias coil Since the performance of the wires changes greatly under magnetic fields, the calculation of the field spatial distraction is essential to the optimization of the superconducting magnet. A superconducting coil with 141000 ampere-turns magnetizing capacity made of 17600 meters of BSCCO 2223 HTS tapes was fabricated. This coil was built for a 35 kV/90 MVA saturated iron-core fault current limiter. Computer simulations on magnetic field distribution were carried out to optimize the structural design, and experiments were done to verify the performance of the coil The configuration and the key parameters of the coil will be reported in this paper. 展开更多
关键词 HTS coil superconducting fault current limiter superconducting magnets.
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部