期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Effects of Un-transposed UHV Transmission Line on Fault Analysis of Power Systems
1
作者 王安宁 陈青 周占平 《Transactions of Tianjin University》 EI CAS 2008年第3期231-234,共4页
The conventional fault analysis method based on symmetrical components supposes that the three-phase parameters of un-transposed transmission line are symmetrical in case of fault. The errors caused by the method with... The conventional fault analysis method based on symmetrical components supposes that the three-phase parameters of un-transposed transmission line are symmetrical in case of fault. The errors caused by the method with the symmetrical distributed parameter circuit model as the equivalent circuit of the un-transposed ultra high voltage(UHV) transmission line were studied under both normal operation and fault,and the corresponding problems arising were pointed out. By contrast with electromagnetic transient and power electronics(EMTPE) simulation results with the asymmetrical distributed parameter circuit model of un-transposed line, it is shown that the conventional method cannot show the existence of negative and zero sequences before fault happening and there are many errors on voltage and current after fault happening which are different with fault types. The error ranges of voltage and current are 2.13%-81.13% and -7.82%- -86.15%, respectively. 展开更多
关键词 EMTPE fault calculation SIMULATION un-transposed UHV transmission line
在线阅读 下载PDF
Efficient Calculation and Component Analysis of Fault Current in MMC-HVDC Grid
2
作者 Lixu Chen Jun Yan +2 位作者 Xiufang Jia Chengyong Zhao Jianzhong Xu 《CSEE Journal of Power and Energy Systems》 2025年第4期1744-1754,共11页
The investigation of the pole-to-pole(p2p)DC short-circuit fault current in a modular multilevel converter(MMC)based high-voltage direct current(HVDC)grid is of vital importance for protection design and parameter opt... The investigation of the pole-to-pole(p2p)DC short-circuit fault current in a modular multilevel converter(MMC)based high-voltage direct current(HVDC)grid is of vital importance for protection design and parameter optimization.Existing calculation methods for the p2p fault current primarily rely on differential equations based on the RLC equivalent of the MMC station and the RL model of DC transmission lines.Some of them also take the AC in-feed currents into account.However,these approaches all carry heavy burdens for the complex formation and solving processes of equations,and they can only obtain the numerical solution of the fault current.The analytic solution of explicit physical meaning cannot be acquired at present because of the complex coupling relationship among MMC terminals.To address these issues,this paper builds a simplified and generalized fault equivalence model for the DC grid under a p2p fault.This is due to the fact that the terminals having long electrical distances from the fault point have less impact on the fault current.Next,not only the efficient and accurate fault current calculation is achieved,but also the approximate superposition-based analytical solution of the fault current is derived.The component analysis of the fault current and the sensitivity analysis of the components are provided as well.The calculation method and the analysis are both validated in PSCAD/EMTDC. 展开更多
关键词 Analytical solution component analysis DC grid fault current calculation modular multilevel converter(MMC)
原文传递
DC Fault Current Calculation Method and Transient Characteristics of True Bipolar MMC-HVDC Systems
3
作者 Botong Li Yichao Liu +3 位作者 Bin Li Wenxin Wang Weijie Wen Xiaolong Chen 《CSEE Journal of Power and Energy Systems》 2025年第4期1704-1716,共13页
In this paper,the calculation method and transient characteristics of asymmetric faults in the DC side of a true bipolar system are studied.First,two typical MMC fault equivalent methods are analyzed,and comparison sh... In this paper,the calculation method and transient characteristics of asymmetric faults in the DC side of a true bipolar system are studied.First,two typical MMC fault equivalent methods are analyzed,and comparison shows that active RLC equivalent branches are more suitable for fault analyses of a true bipolar system.Second,considering the influence of mutual impedance between the poles in DC side,a DC fault current calculation method for a true bipolar systems is proposed.Finally,the characteristics of transient electrical quantities including fault current and DC voltage in the process of DC faults in true bipolar systems are analyzed and summarized to provide references for the design of DC line insulation and relay protection schemes. 展开更多
关键词 DC faults fault current calculation method transient characteristics true bipolar MMC-HVDC systems
原文传递
Asymmetrical Fault Current Calculation Method and Influencing Factors Analysis of Droop-Controlled Inverters 被引量:3
4
作者 Huimin Zhao Zhikang Shuai +3 位作者 Jun Ge An Luo Weimin Wu Z.John Shen 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2024年第2期562-573,共12页
Since the fault dynamic of droop-controlled inverter is different from synchronous generators (SGs), protection devices may become invalid, and the fault overcurrent may damage power electronic devices and threaten th... Since the fault dynamic of droop-controlled inverter is different from synchronous generators (SGs), protection devices may become invalid, and the fault overcurrent may damage power electronic devices and threaten the safety of the microgrid. Therefore, it is imperative to conduct a comprehensive fault analysis of the inverter to guide the design of protection schemes. However, due to the complexity of droop control strategy, existing literatures have simplified asymmetric fault analysis of droop-controlled inverters to varying degrees. Therefore, accurate fault analysis of a droop-controlled inverter is needed. In this paper, by analyzing the control system, an accurate fault model is established. Based on this, a calculation method for instantaneous asymmetrical fault current is proposed. In addition, the current components and current characteristics are analyzed. It was determined that fault currents are affected by control loops, fault types, fault distance and nonlinear limiters. In particular, the influences of limiters on the fault model, fault current calculation and fault current characteristics were analyzed. Through detailed analysis, it was found that dynamics of the control loop cannot be ignored, the fault type and fault distance determine fault current level, and part of the limiters will totally change the fault current trend. Finally, calculation and experimental results verify the correctness of the proposed method. 展开更多
关键词 Asymmetrical fault analysis droop control fault current calculation method LIMITER transient fault characteristics
原文传递
Grounding Faults in Series-connected-based Offshore Wind Farms:DC Link Current Control
5
作者 Gaopeng Guo Kunpeng Zha +3 位作者 Yuefeng Yang Fan Zhang Jiaxin Wang Weikun Xie 《CSEE Journal of Power and Energy Systems》 2025年第5期2128-2136,共9页
In series-connected-based offshore wind farms(SCOWFs),the bulky offshore platform,step-up transformer,and high voltage and large-scale converters can be eliminated.In SC-OWFs,grounding fault is an inevitable issue.In ... In series-connected-based offshore wind farms(SCOWFs),the bulky offshore platform,step-up transformer,and high voltage and large-scale converters can be eliminated.In SC-OWFs,grounding fault is an inevitable issue.In this study,the mathematical model of DC link in SC-OWFs is established.On this basis,this paper reveals characteristic of grounding faults in SC-OWFs and proposes a DC link current control strategy,consisting of feedback and feedforward control.Based on DC link current control and protection method,faulty part isolation from SC-OWF can be realized,and unfaulty part will operate normally.Finally,simulation and experimental results prove feasibility of the proposed DC control strategy and fault current calculation method. 展开更多
关键词 DC current control fault current calculation grounding fault series-connected-based offshore wind farms
原文传递
Single-phase-to-ground Fault Detection with Distributed Parameters Analysis in Non-direct Grounded Systems 被引量:25
6
作者 Baowen Liu Hongzhong Ma +1 位作者 Honghua Xu Ping Ju 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2019年第1期139-147,共9页
The fast and accurate detection of the single-phaseto-ground fault is of great significance for the reliability and safety of the power supply.In this paper,novel algorithms for distribution network protection were pr... The fast and accurate detection of the single-phaseto-ground fault is of great significance for the reliability and safety of the power supply.In this paper,novel algorithms for distribution network protection were proposed with distributed parameters analysis in non-direct grounded systems.At first,novel generating mechanisms of zero-sequence voltage and residual current were proposed.Then the compositions of residue parameters,including residual current and residual admittances,were decomposed in detail.After that,an improved algorithm for a fault resistance calculation of a single phase-to-earth fault was also proposed,and the algorithm is much more convenient as it only needs to measure the variation of the zero-sequence voltage and does not need the prerequisites of the faulty feeder selection.Furthermore,the fault feeder can also be selected by an improved calculation algorithm of zero-sequence admittance of the faulty feeder,which cannot be affected by the asymmetry of the network.Theoretical analysis and the MATALB/Simulink simulation results demonstrate the effectiveness of the proposed algorithms. 展开更多
关键词 fault resistance calculation fault feeder selection non-direct grounded system residual parameters residual current zero-sequence voltage
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部