期刊文献+
共找到1,275篇文章
< 1 2 64 >
每页显示 20 50 100
Geo-environmental modeling of soil erosion risk:Insights from Random Forest and Gradient Boost Tree analysis in the Darjeeling Himalayan landscape
1
作者 KABIRUL Islam 《Journal of Mountain Science》 2025年第9期3289-3311,共23页
The Darjeeling Himalayan region,characterized by its complex topography and vulnerability to multiple environmental hazards,faces significant challenges including landslides,earthquakes,flash floods,and soil loss that... The Darjeeling Himalayan region,characterized by its complex topography and vulnerability to multiple environmental hazards,faces significant challenges including landslides,earthquakes,flash floods,and soil loss that critically threaten ecosystem stability.Among these challenges,soil erosion emerges as a silent disaster-a gradual yet relentless process whose impacts accumulate over time,progressively degrading landscape integrity and disrupting ecological sustainability.Unlike catastrophic events with immediate visibility,soil erosion’s most devastating consequences often manifest decades later through diminished agricultural productivity,habitat fragmentation,and irreversible biodiversity loss.This study developed a scalable predictive framework employing Random Forest(RF)and Gradient Boosting Tree(GBT)machine learning models to assess and map soil erosion susceptibility across the region.A comprehensive geo-database was developed incorporating 11 erosion triggering factors:slope,elevation,rainfall,drainage density,topographic wetness index,normalized difference vegetation index,curvature,soil texture,land use,geology,and aspect.A total of 2,483 historical soil erosion locations were identified and randomly divided into two sets:70%for model building and 30%for validation purposes.The models revealed distinct spatial patterns of erosion risks,with GBT classifying 60.50%of the area as very low susceptibility,while RF identified 28.92%in this category.Notable differences emerged in high-risk zone identification,with GBT highlighting 7.42%and RF indicating 2.21%as very high erosion susceptibility areas.Both models demonstrated robust predictive capabilities,with GBT achieving 80.77%accuracy and 0.975 AUC,slightly outperforming RF’s 79.67%accuracy and 0.972 AUC.Analysis of predictor variables identified elevation,slope,rainfall and NDVI as the primary factors influencing erosion susceptibility,highlighting the complex interrelationship between geo-environmental factors and erosion processes.This research offers a strategic framework for targeted conservation and sustainable land management in the fragile Himalayan region,providing valuable insights to help policymakers implement effective soil erosion mitigation strategies and support long-term environmental sustainability. 展开更多
关键词 Soil erosion Susceptibility Darjeeling Himalaya Machine learning random Forest Gradient Boost tree Geo-environmental factors Variance Inflation Factor
原文传递
High-Secured Image LSB Steganography Using AVL-Tree with Random RGB Channel Substitution
2
作者 Murad Njoum Rossilawati Sulaiman +1 位作者 Zarina Shukur Faizan Qamar 《Computers, Materials & Continua》 SCIE EI 2024年第10期183-211,共29页
Random pixel selection is one of the image steganography methods that has achieved significant success in enhancing the robustness of hidden data.This property makes it difficult for steganalysts’powerful data extrac... Random pixel selection is one of the image steganography methods that has achieved significant success in enhancing the robustness of hidden data.This property makes it difficult for steganalysts’powerful data extraction tools to detect the hidden data and ensures high-quality stego image generation.However,using a seed key to generate non-repeated sequential numbers takes a long time because it requires specific mathematical equations.In addition,these numbers may cluster in certain ranges.The hidden data in these clustered pixels will reduce the image quality,which steganalysis tools can detect.Therefore,this paper proposes a data structure that safeguards the steganographic model data and maintains the quality of the stego image.This paper employs the AdelsonVelsky and Landis(AVL)tree data structure algorithm to implement the randomization pixel selection technique for data concealment.The AVL tree algorithm provides several advantages for image steganography.Firstly,it ensures balanced tree structures,which leads to efficient data retrieval and insertion operations.Secondly,the self-balancing nature of AVL trees minimizes clustering by maintaining an even distribution of pixels,thereby preserving the stego image quality.The data structure employs the pixel indicator technique for Red,Green,and Blue(RGB)channel extraction.The green channel serves as the foundation for building a balanced binary tree.First,the sender identifies the colored cover image and secret data.The sender will use the two least significant bits(2-LSB)of RGB channels to conceal the data’s size and associated information.The next step is to create a balanced binary tree based on the green channel.Utilizing the channel pixel indicator on the LSB of the green channel,we can conceal bits in the 2-LSB of the red or blue channel.The first four levels of the data structure tree will mask the data size,while subsequent levels will conceal the remaining digits of secret data.After embedding the bits in the binary tree level by level,the model restores the AVL tree to create the stego image.Ultimately,the receiver receives this stego image through the public channel,enabling secret data recovery without stego or crypto keys.This method ensures that the stego image appears unsuspicious to potential attackers.Without an extraction algorithm,a third party cannot extract the original secret information from an intercepted stego image.Experimental results showed high levels of imperceptibility and security. 展开更多
关键词 Image steganography pixel random selection(PRS) AVL tree peak signal-to-noise ratio(PSNR) IMPERCEPTIBILITY capacity
在线阅读 下载PDF
Overfitting in Machine Learning:A Comparative Analysis of Decision Trees and Random Forests
3
作者 Erblin Halabaku Eliot Bytyçi 《Intelligent Automation & Soft Computing》 2024年第6期987-1006,共20页
Machine learning has emerged as a pivotal tool in deciphering and managing this excess of information in an era of abundant data.This paper presents a comprehensive analysis of machine learning algorithms,focusing on ... Machine learning has emerged as a pivotal tool in deciphering and managing this excess of information in an era of abundant data.This paper presents a comprehensive analysis of machine learning algorithms,focusing on the structure and efficacy of random forests in mitigating overfitting—a prevalent issue in decision tree models.It also introduces a novel approach to enhancing decision tree performance through an optimized pruning method called Adaptive Cross-Validated Alpha CCP(ACV-CCP).This method refines traditional cost complexity pruning by streamlining the selection of the alpha parameter,leveraging cross-validation within the pruning process to achieve a reliable,computationally efficient alpha selection that generalizes well to unseen data.By enhancing computational efficiency and balancing model complexity,ACV-CCP allows decision trees to maintain predictive accuracy while minimizing overfitting,effectively narrowing the performance gap between decision trees and random forests.Our findings illustrate how ACV-CCP contributes to the robustness and applicability of decision trees,providing a valuable perspective on achieving computationally efficient and generalized machine learning models. 展开更多
关键词 Artificial intelligence decision tree random forest PRUNE OVERFITTING
在线阅读 下载PDF
Iceberg Draft Prediction Using Several Tree-Based Machine Learning Models
4
作者 AZIMI Hamed SHIRI Hodjat 《Journal of Ocean University of China》 2025年第5期1269-1288,共20页
The Arctic region is experiencing accelerated sea ice melt and increased iceberg detachment from glaciers due to climate change.These drifting icebergs present a risk and engineering challenge for subsea installations... The Arctic region is experiencing accelerated sea ice melt and increased iceberg detachment from glaciers due to climate change.These drifting icebergs present a risk and engineering challenge for subsea installations traversing shallow waters,where ice-berg keels may reach the seabed,potentially damaging subsea structures.Consequently,costly and time-intensive iceberg manage-ment operations,such as towing and rerouting,are undertaken to safeguard subsea and offshore infrastructure.This study,therefore,explores the application of extra tree regression(ETR)as a robust solution for estimating iceberg draft,particularly in the preliminary phases of decision-making for iceberg management projects.Nine ETR models were developed using parameters influencing iceberg draft.Subsequent analyses identified the most effective models and significant input variables.Uncertainty analysis revealed that the superior ETR model tended to overestimate iceberg drafts;however,it achieved the highest precision,correlation,and simplicity in estimation.Comparison with decision tree regression,random forest regression,and empirical methods confirmed the superior perfor-mance of ETR in predicting iceberg drafts. 展开更多
关键词 sea-bottom founded structures iceberg draft extra tree regression decision tree regression random forest regression
在线阅读 下载PDF
Predicting the Heave Displacement of a Nonbuoyant Wave Energy Converter Using Tree-Based Ensemble Machine Learning Models
5
作者 SANTHOSH Nagulan VINU KUMAR Shettahalli Mantaiah SAKTHIVEL MURUGAN Erusagounder 《Journal of Ocean University of China》 2025年第4期897-908,共12页
Scientists have introduced new methods for capturing energy from ocean waves.Specifically,scientists have focused on a type of wave energy converter(WEC)that is nonbuoyant(i.e.,a body that cannot float).Typically,the ... Scientists have introduced new methods for capturing energy from ocean waves.Specifically,scientists have focused on a type of wave energy converter(WEC)that is nonbuoyant(i.e.,a body that cannot float).Typically,the WEC is most effective when it is in resonance,which occurs when the natural frequency of the WEC aligns with that of the ocean waves.Therefore,accurately predicting the movement of the WEC is crucial for adjusting its system to resonate with the incoming waves for optimal performance.In this study,artificial intelligence techniques,such as random forest,extra trees(ET),and support vector machines,are created to forecast the vertical movement of a nonbuoyant WEC.The developed models require two variables as input,namely,the water wave height and its time period.A total of approximately 4500 data points,which include nonlinear water wave height and duration ob-tained from a laboratory experiment,are used as the input for these models,with the resulting vertical movement as the output.When comparing the three models based on their processing speed and accuracy,the ET model stands out as the most efficient.Ultimately,the ET model is tested using data from a real ocean setting. 展开更多
关键词 wave energy converter RESONANCE random forest support vector machines extra trees
在线阅读 下载PDF
Mapping landslide susceptibility at the Three Gorges Reservoir, China, using gradient boosting decision tree,random forest and information value models 被引量:14
6
作者 CHEN Tao ZHU Li +3 位作者 NIU Rui-qing TRINDER C John PENG Ling LEI Tao 《Journal of Mountain Science》 SCIE CSCD 2020年第3期670-685,共16页
This work was to generate landslide susceptibility maps for the Three Gorges Reservoir(TGR) area, China by using different machine learning models. Three advanced machine learning methods, namely, gradient boosting de... This work was to generate landslide susceptibility maps for the Three Gorges Reservoir(TGR) area, China by using different machine learning models. Three advanced machine learning methods, namely, gradient boosting decision tree(GBDT), random forest(RF) and information value(InV) models, were used, and the performances were assessed and compared. In total, 202 landslides were mapped by using a series of field surveys, aerial photographs, and reviews of historical and bibliographical data. Nine causative factors were then considered in landslide susceptibility map generation by using the GBDT, RF and InV models. All of the maps of the causative factors were resampled to a resolution of 28.5 m. Of the 486289 pixels in the area,28526 pixels were landslide pixels, and 457763 pixels were non-landslide pixels. Finally, landslide susceptibility maps were generated by using the three machine learning models, and their performances were assessed through receiver operating characteristic(ROC) curves, the sensitivity, specificity,overall accuracy(OA), and kappa coefficient(KAPPA). The results showed that the GBDT, RF and In V models in overall produced reasonable accurate landslide susceptibility maps. Among these three methods, the GBDT method outperforms the other two machine learning methods, which can provide strong technical support for producing landslide susceptibility maps in TGR. 展开更多
关键词 MAPPING LANDSLIDE SUSCEPTIBILITY Gradient BOOSTING DECISION tree random forest Information value model Three Gorges Reservoir
原文传递
An Adaptive Rapidly-Exploring Random Tree 被引量:23
7
作者 Binghui Li Badong Chen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第2期283-294,共12页
Sampling-based planning algorithms play an important role in high degree-of-freedom motion planning(MP)problems,in which rapidly-exploring random tree(RRT)and the faster bidirectional RRT(named RRT-Connect)algorithms ... Sampling-based planning algorithms play an important role in high degree-of-freedom motion planning(MP)problems,in which rapidly-exploring random tree(RRT)and the faster bidirectional RRT(named RRT-Connect)algorithms have achieved good results in many planning tasks.However,sampling-based methods have the inherent defect of having difficultly in solving planning problems with narrow passages.Therefore,several algorithms have been proposed to overcome these drawbacks.As one of the improved algorithms,Rapidlyexploring random vines(RRV)can achieve better results,but it may perform worse in cluttered environments and has a certain environmental selectivity.In this paper,we present a new improved planning method based on RRT-Connect and RRV,named adaptive RRT-Connect(ARRT-Connect),which deals well with the narrow passage environments while retaining the ability of RRT algorithms to plan paths in other environments.The proposed planner is shown to be adaptable to a variety of environments and can accomplish path planning in a short time. 展开更多
关键词 Narrow passage path planning rapidly-exploring random tree(RRT)-Connect sampling-based algorithm
在线阅读 下载PDF
Mapping of cropland,cropping patterns and crop types by combining optical remote sensing images with decision tree classifier and random forest 被引量:8
8
作者 Aqil Tariq Jianguo Yan +2 位作者 Alexandre S.Gagnon Mobushir Riaz Khan Faisal Mumtaz 《Geo-Spatial Information Science》 SCIE EI CSCD 2023年第3期302-320,共19页
Mapping and monitoring the distribution of croplands and crop types support policymakers and international organizations by reducing the risks to food security,notably from climate change and,for that purpose,remote s... Mapping and monitoring the distribution of croplands and crop types support policymakers and international organizations by reducing the risks to food security,notably from climate change and,for that purpose,remote sensing is routinely used.However,identifying specific crop types,cropland,and cropping patterns using space-based observations is challenging because different crop types and cropping patterns have similarity spectral signatures.This study applied a methodology to identify cropland and specific crop types,including tobacco,wheat,barley,and gram,as well as the following cropping patterns:wheat-tobacco,wheat-gram,wheat-barley,and wheat-maize,which are common in Gujranwala District,Pakistan,the study region.The methodology consists of combining optical remote sensing images from Sentinel-2 and Landsat-8 with Machine Learning(ML)methods,namely a Decision Tree Classifier(DTC)and a Random Forest(RF)algorithm.The best time-periods for differentiating cropland from other land cover types were identified,and then Sentinel-2 and Landsat 8 NDVI-based time-series were linked to phenological parameters to determine the different crop types and cropping patterns over the study region using their temporal indices and ML algorithms.The methodology was subsequently evaluated using Landsat images,crop statistical data for 2020 and 2021,and field data on cropping patterns.The results highlight the high level of accuracy of the methodological approach presented using Sentinel-2 and Landsat-8 images,together with ML techniques,for mapping not only the distribution of cropland,but also crop types and cropping patterns when validated at the county level.These results reveal that this methodology has benefits for monitoring and evaluating food security in Pakistan,adding to the evidence base of other studies on the use of remote sensing to identify crop types and cropping patterns in other countries. 展开更多
关键词 Sentinel-2 random Forest CROPLAND crop types cropping patterns Decision tree Classifier
原文传递
Prediction of hot-rolled strip crown based on Boruta and extremely randomized trees algorithms 被引量:4
9
作者 Li Wang Song-lin He +1 位作者 Zhi-ting Zhao Xian-du Zhang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2023年第5期1022-1031,共10页
The quality of hot-rolled steel strip is directly affected by the strip crown.Traditional machine learning models have shown limitations in accurately predicting the strip crown,particularly when dealing with imbalanc... The quality of hot-rolled steel strip is directly affected by the strip crown.Traditional machine learning models have shown limitations in accurately predicting the strip crown,particularly when dealing with imbalanced data.This limitation results in poor production quality and efficiency,leading to increased production costs.Thus,a novel strip crown prediction model that uses the Boruta and extremely randomized trees(Boruta-ERT)algorithms to address this issue was proposed.To improve the accuracy of our model,we utilized the synthetic minority over-sampling technique to balance the imbalance data sets.The Boruta-ERT prediction model was then used to select features and predict the strip crown.With the 2160 mm hot rolling production lines of a steel plant serving as the research object,the experimental results showed that 97.01% of prediction data have an absolute error of less than 8 lm.This level of accuracy met the control requirements for strip crown and demonstrated significant benefits for the improvement in production quality of steel strip. 展开更多
关键词 Hot-rolled strip Data improvement Strip crown Feature selection Boruta algorithm Extremely randomized trees algorithm
原文传递
MINIMUM CONGESTION SPANNING TREES IN BIPARTITE AND RANDOM GRAPHS 被引量:1
10
作者 M.I. Ostrovskii 《Acta Mathematica Scientia》 SCIE CSCD 2011年第2期634-640,共7页
The first problem considered in this article reads: is it possible to find upper estimates for the spanning tree congestion in bipartite graphs, which are better than those for general graphs? It is proved that ther... The first problem considered in this article reads: is it possible to find upper estimates for the spanning tree congestion in bipartite graphs, which are better than those for general graphs? It is proved that there exists a bipartite version of the known graph with spanning tree congestion of order n3/2, where n is the number of vertices. The second problem is to estimate spanning tree congestion of random graphs. It is proved that the standard model of random graphs cannot be used to find graphs whose spanning tree congestion has order greater than n3/2. 展开更多
关键词 Bipartite graph random graph minimum congestion spanning tree
在线阅读 下载PDF
Navigation Method Based on Improved Rapid Exploration Random Tree Star-Smart(RRT^(*)-Smart) and Deep Reinforcement Learning 被引量:2
11
作者 ZHANG Jue LI Xiangjian +3 位作者 LIU Xiaoyan LI Nan YANG Kaiqiang ZHU Heng 《Journal of Donghua University(English Edition)》 CAS 2022年第5期490-495,共6页
A large number of logistics operations are needed to transport fabric rolls and dye barrels to different positions in printing and dyeing plants, and increasing labor cost is making it difficult for plants to recruit ... A large number of logistics operations are needed to transport fabric rolls and dye barrels to different positions in printing and dyeing plants, and increasing labor cost is making it difficult for plants to recruit workers to complete manual operations. Artificial intelligence and robotics, which are rapidly evolving, offer potential solutions to this problem. In this paper, a navigation method dedicated to solving the issues of the inability to pass smoothly at corners in practice and local obstacle avoidance is presented. In the system, a Gaussian fitting smoothing rapid exploration random tree star-smart(GFS RRT^(*)-Smart) algorithm is proposed for global path planning and enhances the performance when the robot makes a sharp turn around corners. In local obstacle avoidance, a deep reinforcement learning determiner mixed actor critic(MAC) algorithm is used for obstacle avoidance decisions. The navigation system is implemented in a scaled-down simulation factory. 展开更多
关键词 rapid exploration random tree star smart(RRT*-Smart) Gaussian fitting deep reinforcement learning(DRL) mixed actor critic(MAC)
在线阅读 下载PDF
Random walks in generalized delayed recursive trees
12
作者 孙伟刚 张静远 陈关荣 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第10期654-660,共7页
Recently a great deal of effort has been made to explicitly determine the mean first-passage time (MFPT) between two nodes averaged over all pairs of nodes on a fractal network. In this paper, we first propose a fam... Recently a great deal of effort has been made to explicitly determine the mean first-passage time (MFPT) between two nodes averaged over all pairs of nodes on a fractal network. In this paper, we first propose a family of generalized delayed recursive trees characterized by two parameters, where the existing nodes have a time delay to produce new nodes. We then study the MFPT of random walks on this kind of recursive tree and investigate the effect of the time delay on the MFPT. By relating random walks to electrical networks, we obtain an exact formula for the MFPT and verify it by numerical calculations. Based on the obtained results, we further show that the MFPT of delayed recursive trees is much shorter, implying that the efficiency of random walks is much higher compared with the non-delayed counterpart. Our study provides a deeper understanding of random walks on delayed fractal networks. 展开更多
关键词 mean first-passage time random walk delayed recursive tree
原文传递
Feature Selection Using Tree Model and Classification Through Convolutional Neural Network for Structural Damage Detection 被引量:1
13
作者 Zihan Jin Jiqiao Zhang +3 位作者 Qianpeng He Silang Zhu Tianlong Ouyang Gongfa Chen 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2024年第3期498-518,共21页
Structural damage detection(SDD)remains highly challenging,due to the difficulty in selecting the optimal damage features from a vast amount of information.In this study,a tree model-based method using decision tree a... Structural damage detection(SDD)remains highly challenging,due to the difficulty in selecting the optimal damage features from a vast amount of information.In this study,a tree model-based method using decision tree and random forest was employed for feature selection of vibration response signals in SDD.Signal datasets were obtained by numerical experiments and vibration experiments,respectively.Dataset features extracted using this method were input into a convolutional neural network to determine the location of structural damage.Results indicated a 5%to 10%improvement in detection accuracy compared to using original datasets without feature selection,demonstrating the feasibility of this method.The proposed method,based on tree model and classification,addresses the issue of extracting effective information from numerous vibration response signals in structural health monitoring. 展开更多
关键词 Feature selection Structural damage detection Decision tree random forest Convolutional neural network
原文传递
Prediction of mechanical properties of cold rolled strip based on improved extreme random tree
14
作者 Yun-bao Zhao Yong Song +1 位作者 Fei-fei Li Xian-le Yan 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2023年第2期293-304,共12页
Taking the 2130 cold rolling production line of a steel mill as the research object,feature dimensionality reduction and decoupling processing were realized by fusing random forest and factor analysis,which reduced th... Taking the 2130 cold rolling production line of a steel mill as the research object,feature dimensionality reduction and decoupling processing were realized by fusing random forest and factor analysis,which reduced the generation of weak decision trees while ensured its diversity.The base learner used a weighted voting mechanism to replace the traditional average method,which improved the prediction accuracy.Finally,the analysis method of the correlation between steel grades was proposed to solve the problem of unstable prediction accuracy of multiple steel grades.The experimental results show that the improved prediction model of mechanical properties has high accuracy:the prediction accuracy of yield strength and tensile strength within the error of±20 MPa reaches 93.20%and 97.62%,respectively,and that of the elongation rate under the error of±5%has reached 96.60%. 展开更多
关键词 Cold strip rolling Mechanical property prediction Extreme random tree Factor analysis random forest Correlation analysis Steel grade
原文传递
Balance in Random Trees
15
作者 Azer Akhmedov Warren Shreve 《Open Journal of Discrete Mathematics》 2014年第4期97-108,共12页
We prove that a random labeled (unlabeled) tree is balanced. We also prove that random labeled and unlabeled trees are strongly &#107-balanced for any &#107 &#8805 &#51. Definition: Color the vertices ... We prove that a random labeled (unlabeled) tree is balanced. We also prove that random labeled and unlabeled trees are strongly &#107-balanced for any &#107 &#8805 &#51. Definition: Color the vertices of graph &#71 with two colors. Color an edge with the color of its endpoints if they are colored with the same color. Edges with different colored endpoints are left uncolored. &#71 is said to be balanced if neither the number of vertices nor and the number of edges of the two different colors differs by more than one. 展开更多
关键词 random trees BALANCE Equicolorable GRAPHS
暂未订购
Global optimization of manipulator base placement by means of rapidly-exploring random tree
16
作者 赵京 Hu Weijian +1 位作者 Shang Hong Du Bin 《High Technology Letters》 EI CAS 2016年第1期24-29,共6页
Due to the interrelationship between the base placement of the manipulator and its operation object,it is significant to analyze the accessibility and workspace of manipulators for the optimization of their base locat... Due to the interrelationship between the base placement of the manipulator and its operation object,it is significant to analyze the accessibility and workspace of manipulators for the optimization of their base location.A new method is presented to optimize the base placement of manipulators through motion planning optimization and location optimization in the feasible area for manipulators.Firstly,research problems and contents are outlined.And then the feasible area for the manipulator base installation is discussed.Next,index depended on the joint movements and used to evaluate the kinematic performance of manipulators is defined.Although the mentioned indices in last section are regarded as the cost function of the latter,rapidly-exploring random tree(RRT) and rapidly-exploring random tree*(RRT*) algorithms are analyzed.And then,the proposed optimization method of manipulator base placement is studied by means of simulation research based on kinematic performance criteria.Finally,the conclusions could be proved effective from the simulation results. 展开更多
关键词 base placement rapidly-exploring random tree (RRT) rapidly-exploring random tree (RRT*) OPTIMIZATION
在线阅读 下载PDF
Counting and Randomly Generating <i>k</i>-Ary Trees
17
作者 James F. Korsh 《Applied Mathematics》 2021年第12期1210-1215,共6页
k-ary trees are one of the most basic data structures in Computer Science. A new method is presented to determine how many there are with n nodes. This method gives additional insight into their structure and provides... k-ary trees are one of the most basic data structures in Computer Science. A new method is presented to determine how many there are with n nodes. This method gives additional insight into their structure and provides a new algo-rithm to efficiently generate such a tree randomly. 展开更多
关键词 Combinatorial Problems k-Ary trees random Generation
在线阅读 下载PDF
Efficiency-Controllable Random Walks on a Class of Recursive Scale-Free Trees with a Deep Trap
18
作者 李玲 关佶红 周水庚 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第3期13-16,共4页
Controls, especially effficiency controls on dynamical processes, have become major challenges in many complex systems. We study an important dynamical process, random walk, due to its wide range of applications for m... Controls, especially effficiency controls on dynamical processes, have become major challenges in many complex systems. We study an important dynamical process, random walk, due to its wide range of applications for modeling the transporting or searching process. For lack of control methods for random walks in various structures, a control technique is presented for a class of weighted treelike scale-free networks with a deep trap at a hub node. The weighted networks are obtained from original models by introducing a weight parameter. We compute analytically the mean first passage time (MFPT) as an indicator for quantitatively measurinM the et^ciency of the random walk process. The results show that the MFPT increases exponentially with the network size, and the exponent varies with the weight parameter. The MFPT, therefore, can be controlled by the weight parameter to behave superlinearly, linearly, or sublinearly with the system size. This work provides further useful insights into controllinM eftlciency in scale-free complex networks. 展开更多
关键词 Efficiency-Controllable random Walks on a Class of Recursive Scale-Free trees with a Deep Trap
原文传递
An approach to estimate tree height using PolInSAR data constructed by the Sentinel-1 dual-pol SAR data and RVoG model
19
作者 Yin Zhang Ding-Feng Duan 《Journal of Electronic Science and Technology》 EI CAS CSCD 2024年第3期69-79,共11页
We estimate tree heights using polarimetric interferometric synthetic aperture radar(PolInSAR)data constructed by the dual-polarization(dual-pol)SAR data and random volume over the ground(RVoG)model.Considering the Se... We estimate tree heights using polarimetric interferometric synthetic aperture radar(PolInSAR)data constructed by the dual-polarization(dual-pol)SAR data and random volume over the ground(RVoG)model.Considering the Sentinel-1 SAR dual-pol(SVV,vertically transmitted and vertically received and SVH,vertically transmitted and horizontally received)configuration,one notes that S_(HH),the horizontally transmitted and horizontally received scattering element,is unavailable.The S_(HH)data were constructed using the SVH data,and polarimetric SAR(PolSAR)data were obtained.The proposed approach was first verified in simulation with satisfactory results.It was next applied to construct PolInSAR data by a pair of dual-pol Sentinel-1A data at Duke Forest,North Carolina,USA.According to local observations and forest descriptions,the range of estimated tree heights was overall reasonable.Comparing the heights with the ICESat-2 tree heights at 23 sampling locations,relative errors of 5 points were within±30%.Errors of 8 points ranged from 30%to 40%,but errors of the remaining 10 points were>40%.The results should be encouraged as error reduction is possible.For instance,the construction of PolSAR data should not be limited to using SVH,and a combination of SVH and SVV should be explored.Also,an ensemble of tree heights derived from multiple PolInSAR data can be considered since tree heights do not vary much with time frame in months or one season. 展开更多
关键词 Constructed polarimetric SAR data Dual polarization Sentinel-1 SAR data Polarimetric interferometric SAR random volume over the ground model tree height estimation
在线阅读 下载PDF
基于SMOTE平衡数据的极端随机树岩性识别 被引量:1
20
作者 曹志民 张丽 +1 位作者 郑兵 韩建 《吉林大学学报(地球科学版)》 北大核心 2025年第4期1372-1386,共15页
在油气勘探和地质工程中,精确的岩性识别对于资源评估和开采具有重要意义。由于地质数据的固有复杂性及岩性样本的不平衡问题,传统方法在岩性识别中面临诸多挑战。本文提出一种合成少数类过采样技术(synthetic minority over-sampling t... 在油气勘探和地质工程中,精确的岩性识别对于资源评估和开采具有重要意义。由于地质数据的固有复杂性及岩性样本的不平衡问题,传统方法在岩性识别中面临诸多挑战。本文提出一种合成少数类过采样技术(synthetic minority over-sampling technique,SMOTE)结合极端随机树进行岩性识别的方法。首先,通过SMOTE增强少数类样本的表征,提高训练数据的平衡性;其次,利用极端随机树的高效性和强泛化能力构建岩性分类模型。实验结果表明:极端随机树的识别准确率为85.54%,相比其他机器学习方法梯度提升决策树(gradient boosting decision tree,GBDT)、极端梯度提升(extreme gradient boosting,XGBoost)、轻量级梯度提升机(light gradient boosting machine,LightGBM)和随机森林分别提高了5.58%、2.55%、2.35%和2.08%;SMOTE采样后,降低了样本不平衡引起的预测偏差,各模型中少数岩性类别的整体识别精度显著提高,提升了各模型的整体性能,极端随机树性能最优,识别准确率提升到86.62%,相比GBDT、XGBoost、LightGBM和随机森林分别提高了4.71%、2.56%、1.55%和2.02%,验证了SMOTE结合极端随机树的有效性。 展开更多
关键词 岩性识别 机器学习 随机森林 极端随机树 平衡数据
在线阅读 下载PDF
上一页 1 2 64 下一页 到第
使用帮助 返回顶部