期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Trading in Fast-ChangingMarkets withMeta-Reinforcement Learning
1
作者 Yutong Tian Minghan Gao +1 位作者 Qiang Gao Xiao-Hong Peng 《Intelligent Automation & Soft Computing》 2024年第2期175-188,共14页
How to find an effective trading policy is still an open question mainly due to the nonlinear and non-stationary dynamics in a financial market.Deep reinforcement learning,which has recently been used to develop tradi... How to find an effective trading policy is still an open question mainly due to the nonlinear and non-stationary dynamics in a financial market.Deep reinforcement learning,which has recently been used to develop trading strategies by automatically extracting complex features from a large amount of data,is struggling to deal with fastchanging markets due to sample inefficiency.This paper applies the meta-reinforcement learning method to tackle the trading challenges faced by conventional reinforcement learning(RL)approaches in non-stationary markets for the first time.In our work,the history trading data is divided into multiple task data and for each of these data themarket condition is relatively stationary.Then amodel agnosticmeta-learning(MAML)-based tradingmethod involving a meta-learner and a normal learner is proposed.A trading policy is learned by the meta-learner across multiple task data,which is then fine-tuned by the normal learner through a small amount of data from a new market task before trading in it.To improve the adaptability of the MAML-based method,an ordered multiplestep updating mechanism is also proposed to explore the changing dynamic within a task market.The simulation results demonstrate that the proposed MAML-based trading methods can increase the annualized return rate by approximately 180%,200%,and 160%,increase the Sharpe ratio by 180%,90%,and 170%,and decrease the maximum drawdown by 30%,20%,and 40%,compared to the traditional RL approach in three stock index future markets,respectively. 展开更多
关键词 Algorithmic trading reinforcement learning fast-changing market meta-reinforcement learning
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部