The mathematical model for online controlling hot rolled steel cooling on run-out table (ROT for abbreviation) was analyzed, and water cooling is found to be the main cooling mode for hot rolled steel. The calculati...The mathematical model for online controlling hot rolled steel cooling on run-out table (ROT for abbreviation) was analyzed, and water cooling is found to be the main cooling mode for hot rolled steel. The calculation of the drop in strip temperature by both water cooling and air cooling is summed up to obtain the change of heat transfer coefficient. It is found that the learning coefficient of heat transfer coefficient is the kernel coefficient of coiler temperature control (CTC) model tuning. To decrease the deviation between the calculated steel temperature and the measured one at coiler entrance, a laminar cooling control self-learning strategy is used. Using the data acquired in the field, the results of the self-learning model used in the field were analyzed. The analyzed results show that the self-learning function is effective.展开更多
Owing to a lack of gaugemeter and the variety of steel grades and standards in some plate mills, the longand short-term self-learning models of rolling force based on gauge soft-measuring with high precision were brou...Owing to a lack of gaugemeter and the variety of steel grades and standards in some plate mills, the longand short-term self-learning models of rolling force based on gauge soft-measuring with high precision were brought up. The soft-measuring method and target value locked method were used in these models to confirm the actual exit gauge of passes, and thick layer division and exponential smoothing method were used to dispose the deformation resistance parameter, which could be calculated from the actual data of the rolling process. The correlative mathematical methods can also be adapted to self-learning with gaugemeter. The models were applied to the process control system of AGC (automatic gauge control) reconstruction on 2800 mm finishing mill of Anyang steel and favorable effect was obtained.展开更多
On the basis of a simulated bright continuous annealing experimental machine, a process control model for heating system was built. The heating model was simplified and self-learning parameters were normalized to enha...On the basis of a simulated bright continuous annealing experimental machine, a process control model for heating system was built. The heating model was simplified and self-learning parameters were normalized to enhance the precision of temperature control. By means of the division of temperature layers and the exponential smoothing disposal of the annealing experimental data, the self-learning of the heating model was carried out. Through exponentially smoothing the deviation of self-learning parameters of the heated phase in heating process, dynamic modifications of self-learning parameters and heating electric current were carried out, and the precision of temperature control was confirmed. The application indicated that the process control model for the heating system can control temperature with high precision, and the deviation can be controlled within 8 ℃.展开更多
In machine learning,positive-unlabelled(PU)learning is a special case within semi-supervised learning.In positiveunlabelled learning,the training set contains some positive examples and a set of unlabelled examples fr...In machine learning,positive-unlabelled(PU)learning is a special case within semi-supervised learning.In positiveunlabelled learning,the training set contains some positive examples and a set of unlabelled examples from both the positive and negative classes.Positive-unlabelled learning has gained attention in many domains,especially in time-series data,in which the obtainment of labelled data is challenging.Examples which originate from the negative class are especially difficult to acquire.Self-learning is a semi-supervised method capable of PU learning in time-series data.In the self-learning approach,observations are individually added from the unlabelled data into the positive class until a stopping criterion is reached.The model is retrained after each addition with the existent labels.The main problem in self-learning is to know when to stop the learning.There are multiple,different stopping criteria in the literature,but they tend to be inaccurate or challenging to apply.This publication proposes a novel stopping criterion,which is called Peak evaluation using perceptually important points,to address this problem for time-series data.Peak evaluation using perceptually important points is exceptional,as it does not have tunable hyperparameters,which makes it easily applicable to an unsupervised setting.Simultaneously,it is flexible as it does not make any assumptions on the balance of the dataset between the positive and the negative class.展开更多
To respond to the further development of college English reforms,many universities employed network-based selflearning classes to aid the traditional classroom teaching,especially in teaching listening,but as time wen...To respond to the further development of college English reforms,many universities employed network-based selflearning classes to aid the traditional classroom teaching,especially in teaching listening,but as time went by,some universities gradually gave them up.The paper intends to reflect on the employment of network-based self-learning listening classes,analyz ing the learning with and without its aid,and meanwhile introduce the need to re-employ it,and discuss how we can improve the network-based self-learning classes to help with students' listening.展开更多
This papcr presents a new genetic algorithms(GAs)-based method for self-learniag fuzzy control rules. An improved GA is used to learn to optimally select the fuzzy membership functions of the linguistic labels in the ...This papcr presents a new genetic algorithms(GAs)-based method for self-learniag fuzzy control rules. An improved GA is used to learn to optimally select the fuzzy membership functions of the linguistic labels in the condition portion of each rule, and to automatically generate fuzzy control actions under each condition. The dynamics of the controlled system is unknown to the GA. The only information for evaluating performance is a failure signal indicating that the controlled system is out of control. We compare its performance with that of other learning methods for the same problem. We also examine the ability of the algorithm to adapt to changing conditions. Simulation results show that such an approach for self-learning fuzzy control rules is both effective and robust.展开更多
针对500米口径球面射电望远镜(Five-hundred-meter Aperture Spherical radio Telescope,FAST)运行过程中存在馈源接收机安装及更换时设备精密且拆装过程复杂、馈源舱内安装空间狭小、馈源舱停靠平台处安装空间有限、连接螺栓数量多、...针对500米口径球面射电望远镜(Five-hundred-meter Aperture Spherical radio Telescope,FAST)运行过程中存在馈源接收机安装及更换时设备精密且拆装过程复杂、馈源舱内安装空间狭小、馈源舱停靠平台处安装空间有限、连接螺栓数量多、下平台尺寸重量大且安装精度要求高、更换时间长和运输困难等问题,提出FAST运行维护作业机器人总体技术解决方案。通过机器人总体技术需求分析、机器人总体技术设计、机器人关键技术研究及仿真分析,该方案可满足馈源接收机拆装过程中定位、识别、拆装和运输等应用需求,减小运行维护的时间成本和经济成本,确保FAST运行维护的安全,提高使用效率,延长FAST的全年观测时间,从而促进天文成果的产出。展开更多
Control precision of coiling temperature is one of the key factors affecting the profile shape and surface quality during the cooling process of hot rolled steel strip.For this reason,the core of temperature control p...Control precision of coiling temperature is one of the key factors affecting the profile shape and surface quality during the cooling process of hot rolled steel strip.For this reason,the core of temperature control precision is to establish an effective cooling mathematical model with self-learning function.Starting from this point,a cooling mathematical model with nonlinear structural characteristics is established in this paper for the cooling process of hot rolled steel strip.By the analysis of self-learning ability,key parameters of the mathematical model could be constantly corrected so as to improve temperature control precision and adaptive capability of the model.The site actual application results proved the stable performance and high control precision of the proposed mathematical model,which would lay a solid foundation to improve the steel product qualities.展开更多
A design idea was proposed that it was about intelligent digital welding machine with self-learning and self- regulation functions. The overall design scheme of software and hardware was provided. It was introduced th...A design idea was proposed that it was about intelligent digital welding machine with self-learning and self- regulation functions. The overall design scheme of software and hardware was provided. It was introduced that a parameter self-learning algorithm was based on large-step calibration and partial Newton interpolation. Furthermore, experimental verification was carried out with different welding technologies. The results show that weld bead is pegrect. Therefore, good welding quality and stability are obtained, and intelligent regulation is realized by parameters self-learning.展开更多
This paper presents a novel method for constructing fuzzy controllers based on a real time reinforcement genetic algorithm. This methodology introduces the real-time learning capability of neural networks into globall...This paper presents a novel method for constructing fuzzy controllers based on a real time reinforcement genetic algorithm. This methodology introduces the real-time learning capability of neural networks into globally searching process of genetic algorithm, aiming to enhance the convergence rate and real-time learning ability of genetic algorithm, which is then used to construct fuzzy controllers for complex dynamic systems without any knowledge about system dynamics and prior control experience. The cart-pole system is employed as a test bed to demonstrate the effectiveness of the proposed control scheme, and the robustness of the acquired fuzzy controller with comparable result.展开更多
为保障500 m口径球面射电望远镜(FAST)的安全稳定运行,提出基于实时信息数据的三维可视化监测方法。融合三维静态/动态建模、多源数据实时处理、Ansys仿真分析等关键技术,构建FAST高保真数字孪生模型,基于LightningChart图形库开发图形...为保障500 m口径球面射电望远镜(FAST)的安全稳定运行,提出基于实时信息数据的三维可视化监测方法。融合三维静态/动态建模、多源数据实时处理、Ansys仿真分析等关键技术,构建FAST高保真数字孪生模型,基于LightningChart图形库开发图形用户界面(graphical user interface,GUI)系统,实现设备异常信号的秒级可视化预警,故障响应时间显著缩短。该方法为大型射电望远镜及其阵列实施基于数字孪生的可视化监测提供参考。展开更多
基金Item Sponsored by National Natural Science Foundation of China(50474016)
文摘The mathematical model for online controlling hot rolled steel cooling on run-out table (ROT for abbreviation) was analyzed, and water cooling is found to be the main cooling mode for hot rolled steel. The calculation of the drop in strip temperature by both water cooling and air cooling is summed up to obtain the change of heat transfer coefficient. It is found that the learning coefficient of heat transfer coefficient is the kernel coefficient of coiler temperature control (CTC) model tuning. To decrease the deviation between the calculated steel temperature and the measured one at coiler entrance, a laminar cooling control self-learning strategy is used. Using the data acquired in the field, the results of the self-learning model used in the field were analyzed. The analyzed results show that the self-learning function is effective.
基金Item Sponsored by National Natural Science Foundation of China (50604006)
文摘Owing to a lack of gaugemeter and the variety of steel grades and standards in some plate mills, the longand short-term self-learning models of rolling force based on gauge soft-measuring with high precision were brought up. The soft-measuring method and target value locked method were used in these models to confirm the actual exit gauge of passes, and thick layer division and exponential smoothing method were used to dispose the deformation resistance parameter, which could be calculated from the actual data of the rolling process. The correlative mathematical methods can also be adapted to self-learning with gaugemeter. The models were applied to the process control system of AGC (automatic gauge control) reconstruction on 2800 mm finishing mill of Anyang steel and favorable effect was obtained.
基金Item Sponsored by National Natural Science Foundation of China (50527402)
文摘On the basis of a simulated bright continuous annealing experimental machine, a process control model for heating system was built. The heating model was simplified and self-learning parameters were normalized to enhance the precision of temperature control. By means of the division of temperature layers and the exponential smoothing disposal of the annealing experimental data, the self-learning of the heating model was carried out. Through exponentially smoothing the deviation of self-learning parameters of the heated phase in heating process, dynamic modifications of self-learning parameters and heating electric current were carried out, and the precision of temperature control was confirmed. The application indicated that the process control model for the heating system can control temperature with high precision, and the deviation can be controlled within 8 ℃.
文摘In machine learning,positive-unlabelled(PU)learning is a special case within semi-supervised learning.In positiveunlabelled learning,the training set contains some positive examples and a set of unlabelled examples from both the positive and negative classes.Positive-unlabelled learning has gained attention in many domains,especially in time-series data,in which the obtainment of labelled data is challenging.Examples which originate from the negative class are especially difficult to acquire.Self-learning is a semi-supervised method capable of PU learning in time-series data.In the self-learning approach,observations are individually added from the unlabelled data into the positive class until a stopping criterion is reached.The model is retrained after each addition with the existent labels.The main problem in self-learning is to know when to stop the learning.There are multiple,different stopping criteria in the literature,but they tend to be inaccurate or challenging to apply.This publication proposes a novel stopping criterion,which is called Peak evaluation using perceptually important points,to address this problem for time-series data.Peak evaluation using perceptually important points is exceptional,as it does not have tunable hyperparameters,which makes it easily applicable to an unsupervised setting.Simultaneously,it is flexible as it does not make any assumptions on the balance of the dataset between the positive and the negative class.
基金the National Natural Science Foundation of China(No.61375086)the Key Project of Science and Technique Plan of Beijing Municipal Commission of Education(No.KZ201210005001)+1 种基金the National Basic Research Program(973)of China(No.2012CB720000)the China Scholarship Council Program(No.201406540017)
文摘To respond to the further development of college English reforms,many universities employed network-based selflearning classes to aid the traditional classroom teaching,especially in teaching listening,but as time went by,some universities gradually gave them up.The paper intends to reflect on the employment of network-based self-learning listening classes,analyz ing the learning with and without its aid,and meanwhile introduce the need to re-employ it,and discuss how we can improve the network-based self-learning classes to help with students' listening.
文摘This papcr presents a new genetic algorithms(GAs)-based method for self-learniag fuzzy control rules. An improved GA is used to learn to optimally select the fuzzy membership functions of the linguistic labels in the condition portion of each rule, and to automatically generate fuzzy control actions under each condition. The dynamics of the controlled system is unknown to the GA. The only information for evaluating performance is a failure signal indicating that the controlled system is out of control. We compare its performance with that of other learning methods for the same problem. We also examine the ability of the algorithm to adapt to changing conditions. Simulation results show that such an approach for self-learning fuzzy control rules is both effective and robust.
文摘针对500米口径球面射电望远镜(Five-hundred-meter Aperture Spherical radio Telescope,FAST)运行过程中存在馈源接收机安装及更换时设备精密且拆装过程复杂、馈源舱内安装空间狭小、馈源舱停靠平台处安装空间有限、连接螺栓数量多、下平台尺寸重量大且安装精度要求高、更换时间长和运输困难等问题,提出FAST运行维护作业机器人总体技术解决方案。通过机器人总体技术需求分析、机器人总体技术设计、机器人关键技术研究及仿真分析,该方案可满足馈源接收机拆装过程中定位、识别、拆装和运输等应用需求,减小运行维护的时间成本和经济成本,确保FAST运行维护的安全,提高使用效率,延长FAST的全年观测时间,从而促进天文成果的产出。
基金Project supported by the National Key Technology Research and Development Program (Grant No.2006BAE03A08)
文摘Control precision of coiling temperature is one of the key factors affecting the profile shape and surface quality during the cooling process of hot rolled steel strip.For this reason,the core of temperature control precision is to establish an effective cooling mathematical model with self-learning function.Starting from this point,a cooling mathematical model with nonlinear structural characteristics is established in this paper for the cooling process of hot rolled steel strip.By the analysis of self-learning ability,key parameters of the mathematical model could be constantly corrected so as to improve temperature control precision and adaptive capability of the model.The site actual application results proved the stable performance and high control precision of the proposed mathematical model,which would lay a solid foundation to improve the steel product qualities.
文摘A design idea was proposed that it was about intelligent digital welding machine with self-learning and self- regulation functions. The overall design scheme of software and hardware was provided. It was introduced that a parameter self-learning algorithm was based on large-step calibration and partial Newton interpolation. Furthermore, experimental verification was carried out with different welding technologies. The results show that weld bead is pegrect. Therefore, good welding quality and stability are obtained, and intelligent regulation is realized by parameters self-learning.
文摘This paper presents a novel method for constructing fuzzy controllers based on a real time reinforcement genetic algorithm. This methodology introduces the real-time learning capability of neural networks into globally searching process of genetic algorithm, aiming to enhance the convergence rate and real-time learning ability of genetic algorithm, which is then used to construct fuzzy controllers for complex dynamic systems without any knowledge about system dynamics and prior control experience. The cart-pole system is employed as a test bed to demonstrate the effectiveness of the proposed control scheme, and the robustness of the acquired fuzzy controller with comparable result.
文摘为保障500 m口径球面射电望远镜(FAST)的安全稳定运行,提出基于实时信息数据的三维可视化监测方法。融合三维静态/动态建模、多源数据实时处理、Ansys仿真分析等关键技术,构建FAST高保真数字孪生模型,基于LightningChart图形库开发图形用户界面(graphical user interface,GUI)系统,实现设备异常信号的秒级可视化预警,故障响应时间显著缩短。该方法为大型射电望远镜及其阵列实施基于数字孪生的可视化监测提供参考。