Anode SnO_(2)in lithium-ion batteries suffers from volume expansion and agglomeration.Here,the SnO_(2)nanoparticles are hybrided with ZrO_(2)particles by the support of carbon nanotube networks.The obtained SnO_(2)/C/...Anode SnO_(2)in lithium-ion batteries suffers from volume expansion and agglomeration.Here,the SnO_(2)nanoparticles are hybrided with ZrO_(2)particles by the support of carbon nanotube networks.The obtained SnO_(2)/C/ZrO_(2)composite shows improved electrochemical performances.Investigations reveal that the carbon nanotubes shorten the transmission path of electrons and Li^(+) ions.Ball milling with ZrO_(2)promotes the formation of nanosized SnO_(2)to weaken the internal strain change,being beneficial to buffering volume change during electrochemical cycling afterwards.High-resolution 6.7Li NMR investigations indicate that conversion and alloying reactions are stepwise involved for SnO_(2)/C/ZrO_(2)anode.The strategy of designing SnO_(2)/C/ZrO_(2)composite from the morphology-controlled metal-organic frameworks for energy storage widens the possibility to fabricate promising materials with enhanced performances.展开更多
Owing to the features(high safety,inexpensive and environmental friendliness)of aqueous rechargeable Mg-ion batteries(ARMIBs),they have drawn extensive attention in the future energy storage systems.However,the poor M...Owing to the features(high safety,inexpensive and environmental friendliness)of aqueous rechargeable Mg-ion batteries(ARMIBs),they have drawn extensive attention in the future energy storage systems.However,the poor Mg^(2+)migration kinetics during the Mg^(2+)intercalation/extraction still hinders the progress of developing suitable cathode materials.Herein,a layered buserite Mg-Mn oxide(MMO)material with large interlayer space(~9.70A)and low-crystalline structure is studied as a high-performance cathode in ARMIBs.Compared with the counterpart,the Mg^(2+)migration kinetics of the MMO cathode can be enhanced by its unique structure(bigger interlayer spacing and low-crystalline structure).The layered buserite MMO as a high-performance ARMIBs cathode exhibits high Mg storage capacity(50 mAg^(-1):169.3 mAh g^(-1)),excellent rate capability(1000 mAg^(-1):98.3 mAh g^(-1)),and fast Mg^(2+)migration(an average diffusion coefficient:~4.21×10-^(10)cm^(2)s^(-1))in 0.5 M MgCl_(2)aqueous electrolyte.Moreover,the MMO-1//AC full battery achieved a high discharge capacity(100 mAg^(-1):111 mAh g^(-1)),and an ignored fading over 5000 cycles(1000 mAg^(-1)).Therefore,layered Mg-Mn oxide with large interlayer space may break a new path to develop the promising ARMIBs.展开更多
基金support from the National Natural Science Foundation of China(Nos.21974007 and 22090043).
文摘Anode SnO_(2)in lithium-ion batteries suffers from volume expansion and agglomeration.Here,the SnO_(2)nanoparticles are hybrided with ZrO_(2)particles by the support of carbon nanotube networks.The obtained SnO_(2)/C/ZrO_(2)composite shows improved electrochemical performances.Investigations reveal that the carbon nanotubes shorten the transmission path of electrons and Li^(+) ions.Ball milling with ZrO_(2)promotes the formation of nanosized SnO_(2)to weaken the internal strain change,being beneficial to buffering volume change during electrochemical cycling afterwards.High-resolution 6.7Li NMR investigations indicate that conversion and alloying reactions are stepwise involved for SnO_(2)/C/ZrO_(2)anode.The strategy of designing SnO_(2)/C/ZrO_(2)composite from the morphology-controlled metal-organic frameworks for energy storage widens the possibility to fabricate promising materials with enhanced performances.
基金financially supported by the Fundamental Research Funds for the Central Universities(NO.2021CDJXDJH003)Guangdong National Technology Co.,Ltd.
文摘Owing to the features(high safety,inexpensive and environmental friendliness)of aqueous rechargeable Mg-ion batteries(ARMIBs),they have drawn extensive attention in the future energy storage systems.However,the poor Mg^(2+)migration kinetics during the Mg^(2+)intercalation/extraction still hinders the progress of developing suitable cathode materials.Herein,a layered buserite Mg-Mn oxide(MMO)material with large interlayer space(~9.70A)and low-crystalline structure is studied as a high-performance cathode in ARMIBs.Compared with the counterpart,the Mg^(2+)migration kinetics of the MMO cathode can be enhanced by its unique structure(bigger interlayer spacing and low-crystalline structure).The layered buserite MMO as a high-performance ARMIBs cathode exhibits high Mg storage capacity(50 mAg^(-1):169.3 mAh g^(-1)),excellent rate capability(1000 mAg^(-1):98.3 mAh g^(-1)),and fast Mg^(2+)migration(an average diffusion coefficient:~4.21×10-^(10)cm^(2)s^(-1))in 0.5 M MgCl_(2)aqueous electrolyte.Moreover,the MMO-1//AC full battery achieved a high discharge capacity(100 mAg^(-1):111 mAh g^(-1)),and an ignored fading over 5000 cycles(1000 mAg^(-1)).Therefore,layered Mg-Mn oxide with large interlayer space may break a new path to develop the promising ARMIBs.