Due to the continuous increase in global energy demand,photovoltaic solar energy generation and associated maintenance requirements have significantly expanded.One critical maintenance challenge in photovoltaic instal...Due to the continuous increase in global energy demand,photovoltaic solar energy generation and associated maintenance requirements have significantly expanded.One critical maintenance challenge in photovoltaic installations is detecting hot spots,localized overheating defects in solar cells that drastically reduce efficiency and can lead to permanent damage.Traditional methods for detecting these defects rely on manual inspections using thermal imaging,which are costly,labor-intensive,and impractical for large-scale installations.This research introduces an automated hybrid system based on two specialized convolutional neural networks deployed in a cascaded architecture.The first convolutional neural network efficiently detects and isolates individual solar panels from high-resolution aerial thermal images captured by drones.Subsequently,a second,more advanced convolutional neural network accurately classifies each isolated panel as either defective or healthy,effectively distinguishing genuine thermal anomalies from false positives caused by reflections or glare.Experimental validation on a real-world dataset comprising thousands of thermal images yielded exceptional accuracy,significantly reducing inspection time,costs,and the likelihood of false defect detections.This proposed system enhances the reliability and efficiency of photovoltaic plant inspections,thus contributing to improved operational performance and economic viability.展开更多
Object detection is the most fundamental but challenging issues in the field of computer vision.Object detection identifies the presence of various individual objects in an image.Great success is attained for object d...Object detection is the most fundamental but challenging issues in the field of computer vision.Object detection identifies the presence of various individual objects in an image.Great success is attained for object detection/recognition problems in the controlled environment,but still,the problem remains unsolved in the uncontrolled places,particularly,when the objects are placed in arbitrary poses in an occluded and cluttered environment.In the last few years,a lots of efforts are made by researchers to resolve this issue,because of its wide range of applications in computer vision tasks,like content-enabled image retrieval,event or activity recognition,scene understanding,and so on.This review provides a detailed survey of 50 research papers presenting the object detection techniques,like machine learning-based techniques,gradient-based techniques,Fast Region-based Convolutional Neural Network(Fast R-CNN)detector,and the foreground-based techniques.Here,the machine learning-based approaches are classified into deep learning-based approaches,random forest,Support Vector Machine(SVM),and so on.Moreover,the challenges faced by the existing techniques are explained in the gaps and issues section.The analysis based on the classification,toolset,datasets utilized,published year,and the performance metrics are discussed.The future dimension of the research is based on the gaps and issues identified from the existing research works.展开更多
基金funded by the Spanish Ministerio de Ciencia,Innovación y Universidades,grant number RTC2019-007364-3(FPGM)by the Comunidad de Madrid through the direct grant with ref.SI4/PJI/2024-00233 for the promotion of research and technology transfer at the Universidad Autónoma de Madrid。
文摘Due to the continuous increase in global energy demand,photovoltaic solar energy generation and associated maintenance requirements have significantly expanded.One critical maintenance challenge in photovoltaic installations is detecting hot spots,localized overheating defects in solar cells that drastically reduce efficiency and can lead to permanent damage.Traditional methods for detecting these defects rely on manual inspections using thermal imaging,which are costly,labor-intensive,and impractical for large-scale installations.This research introduces an automated hybrid system based on two specialized convolutional neural networks deployed in a cascaded architecture.The first convolutional neural network efficiently detects and isolates individual solar panels from high-resolution aerial thermal images captured by drones.Subsequently,a second,more advanced convolutional neural network accurately classifies each isolated panel as either defective or healthy,effectively distinguishing genuine thermal anomalies from false positives caused by reflections or glare.Experimental validation on a real-world dataset comprising thousands of thermal images yielded exceptional accuracy,significantly reducing inspection time,costs,and the likelihood of false defect detections.This proposed system enhances the reliability and efficiency of photovoltaic plant inspections,thus contributing to improved operational performance and economic viability.
文摘Object detection is the most fundamental but challenging issues in the field of computer vision.Object detection identifies the presence of various individual objects in an image.Great success is attained for object detection/recognition problems in the controlled environment,but still,the problem remains unsolved in the uncontrolled places,particularly,when the objects are placed in arbitrary poses in an occluded and cluttered environment.In the last few years,a lots of efforts are made by researchers to resolve this issue,because of its wide range of applications in computer vision tasks,like content-enabled image retrieval,event or activity recognition,scene understanding,and so on.This review provides a detailed survey of 50 research papers presenting the object detection techniques,like machine learning-based techniques,gradient-based techniques,Fast Region-based Convolutional Neural Network(Fast R-CNN)detector,and the foreground-based techniques.Here,the machine learning-based approaches are classified into deep learning-based approaches,random forest,Support Vector Machine(SVM),and so on.Moreover,the challenges faced by the existing techniques are explained in the gaps and issues section.The analysis based on the classification,toolset,datasets utilized,published year,and the performance metrics are discussed.The future dimension of the research is based on the gaps and issues identified from the existing research works.