期刊文献+
共找到39篇文章
< 1 2 >
每页显示 20 50 100
Real-Time Spreading Thickness Monitoring of High-core Rockfill Dam Based on K-nearest Neighbor Algorithm 被引量:4
1
作者 Denghua Zhong Rongxiang Du +2 位作者 Bo Cui Binping Wu Tao Guan 《Transactions of Tianjin University》 EI CAS 2018年第3期282-289,共8页
During the storehouse surface rolling construction of a core rockfilldam, the spreading thickness of dam face is an important factor that affects the construction quality of the dam storehouse' rolling surface and... During the storehouse surface rolling construction of a core rockfilldam, the spreading thickness of dam face is an important factor that affects the construction quality of the dam storehouse' rolling surface and the overallquality of the entire dam. Currently, the method used to monitor and controlspreading thickness during the dam construction process is artificialsampling check after spreading, which makes it difficult to monitor the entire dam storehouse surface. In this paper, we present an in-depth study based on real-time monitoring and controltheory of storehouse surface rolling construction and obtain the rolling compaction thickness by analyzing the construction track of the rolling machine. Comparatively, the traditionalmethod can only analyze the rolling thickness of the dam storehouse surface after it has been compacted and cannot determine the thickness of the dam storehouse surface in realtime. To solve these problems, our system monitors the construction progress of the leveling machine and employs a real-time spreading thickness monitoring modelbased on the K-nearest neighbor algorithm. Taking the LHK core rockfilldam in Southwest China as an example, we performed real-time monitoring for the spreading thickness and conducted real-time interactive queries regarding the spreading thickness. This approach provides a new method for controlling the spreading thickness of the core rockfilldam storehouse surface. 展开更多
关键词 Core rockfill dam Dam storehouse surface construction Spreading thickness k-nearest neighbor algorithm Real-time monitor
在线阅读 下载PDF
Wireless Communication Signal Strength Prediction Method Based on the K-nearest Neighbor Algorithm
2
作者 Zhao Chen Ning Xiong +6 位作者 Yujue Wang Yong Ding Hengkui Xiang Chenjun Tang Lingang Liu Xiuqing Zou Decun Luo 《国际计算机前沿大会会议论文集》 2019年第1期238-240,共3页
Existing interference protection systems lack automatic evaluation methods to provide scientific, objective and accurate assessment results. To address this issue, this paper develops a layout scheme by geometrically ... Existing interference protection systems lack automatic evaluation methods to provide scientific, objective and accurate assessment results. To address this issue, this paper develops a layout scheme by geometrically modeling the actual scene, so that the hand-held full-band spectrum analyzer would be able to collect signal field strength values for indoor complex scenes. An improved prediction algorithm based on the K-nearest neighbor non-parametric kernel regression was proposed to predict the signal field strengths for the whole plane before and after being shield. Then the highest accuracy set of data could be picked out by comparison. The experimental results show that the improved prediction algorithm based on the K-nearest neighbor non-parametric kernel regression can scientifically and objectively predict the indoor complex scenes’ signal strength and evaluate the interference protection with high accuracy. 展开更多
关键词 INTERFERENCE protection k-nearest neighbor algorithm NON-PARAMETRIC KERNEL regression SIGNAL field STRENGTH
在线阅读 下载PDF
A Memetic Algorithm With Competition for the Capacitated Green Vehicle Routing Problem 被引量:9
3
作者 Ling Wang Jiawen Lu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第2期516-526,共11页
In this paper, a memetic algorithm with competition(MAC) is proposed to solve the capacitated green vehicle routing problem(CGVRP). Firstly, the permutation array called traveling salesman problem(TSP) route is used t... In this paper, a memetic algorithm with competition(MAC) is proposed to solve the capacitated green vehicle routing problem(CGVRP). Firstly, the permutation array called traveling salesman problem(TSP) route is used to encode the solution, and an effective decoding method to construct the CGVRP route is presented accordingly. Secondly, the k-nearest neighbor(k NN) based initialization is presented to take use of the location information of the customers. Thirdly, according to the characteristics of the CGVRP, the search operators in the variable neighborhood search(VNS) framework and the simulated annealing(SA) strategy are executed on the TSP route for all solutions. Moreover, the customer adjustment operator and the alternative fuel station(AFS) adjustment operator on the CGVRP route are executed for the elite solutions after competition. In addition, the crossover operator is employed to share information among different solutions. The effect of parameter setting is investigated using the Taguchi method of design-ofexperiment to suggest suitable values. Via numerical tests, it demonstrates the effectiveness of both the competitive search and the decoding method. Moreover, extensive comparative results show that the proposed algorithm is more effective and efficient than the existing methods in solving the CGVRP. 展开更多
关键词 Capacitated green VEHICLE ROUTING problem(CGVRP) COMPETITION k-nearest neighbor(kNN) local INTENSIFICATION memetic algorithm
在线阅读 下载PDF
An Improved Whale Optimization Algorithm for Feature Selection 被引量:4
4
作者 Wenyan Guo Ting Liu +1 位作者 Fang Dai Peng Xu 《Computers, Materials & Continua》 SCIE EI 2020年第1期337-354,共18页
Whale optimization algorithm(WOA)is a new population-based meta-heuristic algorithm.WOA uses shrinking encircling mechanism,spiral rise,and random learning strategies to update whale’s positions.WOA has merit in term... Whale optimization algorithm(WOA)is a new population-based meta-heuristic algorithm.WOA uses shrinking encircling mechanism,spiral rise,and random learning strategies to update whale’s positions.WOA has merit in terms of simple calculation and high computational accuracy,but its convergence speed is slow and it is easy to fall into the local optimal solution.In order to overcome the shortcomings,this paper integrates adaptive neighborhood and hybrid mutation strategies into whale optimization algorithms,designs the average distance from itself to other whales as an adaptive neighborhood radius,and chooses to learn from the optimal solution in the neighborhood instead of random learning strategies.The hybrid mutation strategy is used to enhance the ability of algorithm to jump out of the local optimal solution.A new whale optimization algorithm(HMNWOA)is proposed.The proposed algorithm inherits the global search capability of the original algorithm,enhances the exploitation ability,improves the quality of the population,and thus improves the convergence speed of the algorithm.A feature selection algorithm based on binary HMNWOA is proposed.Twelve standard datasets from UCI repository test the validity of the proposed algorithm for feature selection.The experimental results show that HMNWOA is very competitive compared to the other six popular feature selection methods in improving the classification accuracy and reducing the number of features,and ensures that HMNWOA has strong search ability in the search feature space. 展开更多
关键词 Whale optimization algorithm Filter and Wrapper model k-nearest neighbor method Adaptive neighborhood hybrid mutation
在线阅读 下载PDF
Research on Initialization on EM Algorithm Based on Gaussian Mixture Model 被引量:4
5
作者 Ye Li Yiyan Chen 《Journal of Applied Mathematics and Physics》 2018年第1期11-17,共7页
The EM algorithm is a very popular maximum likelihood estimation method, the iterative algorithm for solving the maximum likelihood estimator when the observation data is the incomplete data, but also is very effectiv... The EM algorithm is a very popular maximum likelihood estimation method, the iterative algorithm for solving the maximum likelihood estimator when the observation data is the incomplete data, but also is very effective algorithm to estimate the finite mixture model parameters. However, EM algorithm can not guarantee to find the global optimal solution, and often easy to fall into local optimal solution, so it is sensitive to the determination of initial value to iteration. Traditional EM algorithm select the initial value at random, we propose an improved method of selection of initial value. First, we use the k-nearest-neighbor method to delete outliers. Second, use the k-means to initialize the EM algorithm. Compare this method with the original random initial value method, numerical experiments show that the parameter estimation effect of the initialization of the EM algorithm is significantly better than the effect of the original EM algorithm. 展开更多
关键词 EM algorithm GAUSSIAN MIXTURE Model k-nearest neighbor K-MEANS algorithm INITIALIZATION
在线阅读 下载PDF
Enhancing Cancer Classification through a Hybrid Bio-Inspired Evolutionary Algorithm for Biomarker Gene Selection 被引量:1
6
作者 Hala AlShamlan Halah AlMazrua 《Computers, Materials & Continua》 SCIE EI 2024年第4期675-694,共20页
In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selec... In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selection.Themotivation for utilizingGWOandHHOstems fromtheir bio-inspired nature and their demonstrated success in optimization problems.We aimto leverage the strengths of these algorithms to enhance the effectiveness of feature selection in microarray-based cancer classification.We selected leave-one-out cross-validation(LOOCV)to evaluate the performance of both two widely used classifiers,k-nearest neighbors(KNN)and support vector machine(SVM),on high-dimensional cancer microarray data.The proposed method is extensively tested on six publicly available cancer microarray datasets,and a comprehensive comparison with recently published methods is conducted.Our hybrid algorithm demonstrates its effectiveness in improving classification performance,Surpassing alternative approaches in terms of precision.The outcomes confirm the capability of our method to substantially improve both the precision and efficiency of cancer classification,thereby advancing the development ofmore efficient treatment strategies.The proposed hybridmethod offers a promising solution to the gene selection problem in microarray-based cancer classification.It improves the accuracy and efficiency of cancer diagnosis and treatment,and its superior performance compared to other methods highlights its potential applicability in realworld cancer classification tasks.By harnessing the complementary search mechanisms of GWO and HHO,we leverage their bio-inspired behavior to identify informative genes relevant to cancer diagnosis and treatment. 展开更多
关键词 Bio-inspired algorithms BIOINFORMATICS cancer classification evolutionary algorithm feature selection gene expression grey wolf optimizer harris hawks optimization k-nearest neighbor support vector machine
在线阅读 下载PDF
An Optimization System for Intent Recognition Based on an Improved KNN Algorithm with Minimal Feature Set for Powered Knee Prosthesis
7
作者 Yao Zhang Xu Wang +6 位作者 Haohua Xiu Lei Ren Yang Han Yongxin Ma Wei Chen Guowu Wei Luquan Ren 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第6期2619-2632,共14页
In this article,a new optimization system that uses few features to recognize locomotion with high classification accuracy is proposed.The optimization system consists of three parts.First,the features of the mixed me... In this article,a new optimization system that uses few features to recognize locomotion with high classification accuracy is proposed.The optimization system consists of three parts.First,the features of the mixed mechanical signal data are extracted from each analysis window of 200 ms after each foot contact event.Then,the Binary version of the hybrid Gray Wolf Optimization and Particle Swarm Optimization(BGWOPSO)algorithm is used to select features.And,the selected features are optimized and assigned different weights by the Biogeography-Based Optimization(BBO)algorithm.Finally,an improved K-Nearest Neighbor(KNN)classifier is employed for intention recognition.This classifier has the advantages of high accuracy,few parameters as well as low memory burden.Based on data from eight patients with transfemoral amputations,the optimization system is evaluated.The numerical results indicate that the proposed model can recognize nine daily locomotion modes(i.e.,low-,mid-,and fast-speed level-ground walking,ramp ascent/decent,stair ascent/descent,and sit/stand)by only seven features,with an accuracy of 96.66%±0.68%.As for real-time prediction on a powered knee prosthesis,the shortest prediction time is only 9.8 ms.These promising results reveal the potential of intention recognition based on the proposed system for high-level control of the prosthetic knee. 展开更多
关键词 Intent recognition k-nearest neighbor algorithm Powered knee prosthesis Locomotion mode classification
在线阅读 下载PDF
A Study of EM Algorithm as an Imputation Method: A Model-Based Simulation Study with Application to a Synthetic Compositional Data
8
作者 Yisa Adeniyi Abolade Yichuan Zhao 《Open Journal of Modelling and Simulation》 2024年第2期33-42,共10页
Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear mode... Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear model is the most used technique for identifying hidden relationships between underlying random variables of interest. However, data quality is a significant challenge in machine learning, especially when missing data is present. The linear regression model is a commonly used statistical modeling technique used in various applications to find relationships between variables of interest. When estimating linear regression parameters which are useful for things like future prediction and partial effects analysis of independent variables, maximum likelihood estimation (MLE) is the method of choice. However, many datasets contain missing observations, which can lead to costly and time-consuming data recovery. To address this issue, the expectation-maximization (EM) algorithm has been suggested as a solution for situations including missing data. The EM algorithm repeatedly finds the best estimates of parameters in statistical models that depend on variables or data that have not been observed. This is called maximum likelihood or maximum a posteriori (MAP). Using the present estimate as input, the expectation (E) step constructs a log-likelihood function. Finding the parameters that maximize the anticipated log-likelihood, as determined in the E step, is the job of the maximization (M) phase. This study looked at how well the EM algorithm worked on a made-up compositional dataset with missing observations. It used both the robust least square version and ordinary least square regression techniques. The efficacy of the EM algorithm was compared with two alternative imputation techniques, k-Nearest Neighbor (k-NN) and mean imputation (), in terms of Aitchison distances and covariance. 展开更多
关键词 Compositional Data Linear Regression Model Least Square Method Robust Least Square Method Synthetic Data Aitchison Distance Maximum Likelihood Estimation Expectation-Maximization algorithm k-nearest neighbor and Mean imputation
在线阅读 下载PDF
基于快速特征逼近谱图注意力网络的滚动轴承半监督智能故障诊断研究
9
作者 宁少慧 杜越 周利东 《机床与液压》 北大核心 2025年第6期33-39,共7页
基于图注意力网络的诊断模型在故障诊断全监督任务中有较好的表现,但在半监督任务中表现欠佳。针对此问题,构建一种基于快速特征逼近谱图注意力网络的半监督滚动轴承智能故障诊断模型。通过K近邻图方法将振动信号转为可用于诊断的图数据... 基于图注意力网络的诊断模型在故障诊断全监督任务中有较好的表现,但在半监督任务中表现欠佳。针对此问题,构建一种基于快速特征逼近谱图注意力网络的半监督滚动轴承智能故障诊断模型。通过K近邻图方法将振动信号转为可用于诊断的图数据,丰富了数据特征;将图数据输入到构建的诊断模型中,学习故障信息特征,并分析不同的标签比例训练集的诊断结果。同时,分析了Sum、Mean、Max 3种池化方式和超参数对诊断模型的影响;最后,分别在两组实验轴承数据集上进行验证。结果表明:所提模型可以有效地捕获图的全局模式,降低计算复杂度,在全监督诊断任务中其诊断准确率可以保持在99%以上;在标签比例为10%的半监督任务中,其诊断准确率仍能保持在93.5%,所提诊断模型在半监督任务中有良好表现。 展开更多
关键词 轴承 故障诊断 快速特征逼近谱图注意力网络 K近邻图算法
在线阅读 下载PDF
基于快速学习图卷积网络的滚动轴承故障诊断研究
10
作者 宁少慧 董振才 +1 位作者 戎有志 周利东 《机床与液压》 北大核心 2025年第12期53-59,共7页
图神经网络跨层的递归邻域扩展为训练大型密集图带来时间方面的挑战,导致轴承故障诊断的训练效率不高。针对此问题,提出一种基于快速学习图卷积网络方法并将其应用于滚动轴承故障诊断中。利用快速傅里叶变换(FFT)将采集的轴承故障时域... 图神经网络跨层的递归邻域扩展为训练大型密集图带来时间方面的挑战,导致轴承故障诊断的训练效率不高。针对此问题,提出一种基于快速学习图卷积网络方法并将其应用于滚动轴承故障诊断中。利用快速傅里叶变换(FFT)将采集的轴承故障时域信号转化为频域数据,再利用K近邻(KNN)算法将频域信号转换为图数据,以图数据显示频域特征,极大丰富了输入信息;引入快速学习图卷积网络(Fast-GCN)模型,通过重要性采样对故障特征进行学习;最后,利用Log-Softmax函数输出最终分类结果,从而实现滚动轴承单一故障的分类。实验结果表明:所提模型在保证故障分类准确率的前提下,诊断速度显著提升,甚至比图卷积神经网络(GCN)的诊断速度增加了约1倍,且所提方法具有良好的半监督诊断性能与泛化能力。 展开更多
关键词 滚动轴承 故障诊断 K近邻(KNN)算法 快速傅里叶变换(FFT) 快速学习图卷积网络(fast-GCN)
在线阅读 下载PDF
虚拟电厂一致性分布式经济调度的两阶段改进策略
11
作者 卓怀宇 王桂兰 +1 位作者 周国亮 杨恺 《计算机应用研究》 北大核心 2025年第10期3076-3083,共8页
针对虚拟电厂经济调度的快速响应要求,以及现有研究普遍未考虑领导者节点选取与收敛效率之间关联的现状,提出一种加快算法收敛的一致性分布式经济调度两阶段改进策略。通过改进K-shell方法和引入双层邻居优化项,建立策略中领导者节点选... 针对虚拟电厂经济调度的快速响应要求,以及现有研究普遍未考虑领导者节点选取与收敛效率之间关联的现状,提出一种加快算法收敛的一致性分布式经济调度两阶段改进策略。通过改进K-shell方法和引入双层邻居优化项,建立策略中领导者节点选取方法K*和双层邻居优化一致性变量更新公式,并基于两种通信拓扑进行仿真与分析。仿真结果表明:所提策略在两种通信拓扑下收敛效率较基准算法提升约54%,节点故障鲁棒性、负荷突变收敛性优于基准算法,具备即插即用特性、更优经济性与分布式优势,所选收敛系数ε取值合理、容差μ取值需根据调度精度要求动态调整。综上所述,两阶段改进策略可有效提升收敛效率,兼具即插即用、经济性、分布式、鲁棒性等特性优势,适用于虚拟电厂经济调度场景。 展开更多
关键词 虚拟电厂 分布式经济调度 快速响应 双层邻居优化项 一致性理论 节点关键性
在线阅读 下载PDF
Predictive modeling of geophysical anomalies in the metasediments of Bugaji area, part of Malumfashi Schist Belt, North-Western Nigeria
12
作者 Abdullah Musa Ali Mubarak Muhammad 《Earth Energy Science》 2025年第3期242-255,共14页
The Bugaji area,situated within the Malumfashi Schist Belt of northwestern Nigeria,primarily consists of metasediments that include quartzo-feldspathic and pelitic schists,and gneiss.However,this area poses a challeng... The Bugaji area,situated within the Malumfashi Schist Belt of northwestern Nigeria,primarily consists of metasediments that include quartzo-feldspathic and pelitic schists,and gneiss.However,this area poses a challenge in mineral exploration due to limited outcrop exposures and complex subsurface structures.Hence,there is the need for exhaustive geophysical studies and supplementary approaches to accurately delineate lithologies and structures.Therefore,this study combines field mapping and geophysical techniques with artificial intelligence(AI)modeling,comprising supervised learning algorithms,to overcome this exploration problem.Utilizing sophisticated AI techniques,specifically the Random Forest Classifier and K-Nearest Neighbor algorithms,geophysical data(gravity,magnetic,and radiometric measurements)were processed and analyzed.The AI model effectively filled data gaps,and identified potential lithological variations and prospective mineralization zones based on geophysical signatures derived from the integrated dataset.The AI modeling's commendable average accuracy of 85%in predicting values underscores its efficacy in interpreting geophysical data.The success of random forest in the geological mapping process can be attributed to its ability to handle high-dimensional data,capture non-linear relationships between input variables,and mitigate overfitting.The integrated approach enhanced our understanding of subsurface geology in the Bugaji area. 展开更多
关键词 METASEDIMENTS Geophysical anomalies Bugaji area Gravity Magnetic and Radiometric measurements Random Forest Classifier and k-nearest neighbor algorithms
在线阅读 下载PDF
Optimizing Clear Air Turbulence Forecasts Using the K-Nearest Neighbor Algorithm
13
作者 Aoqi GU Ye WANG 《Journal of Meteorological Research》 CSCD 2024年第6期1064-1077,共14页
The complexity and unpredictability of clear air turbulence(CAT)pose significant challenges to aviation safety.Accurate prediction of turbulence events is crucial for reducing flight accidents and economic losses.Howe... The complexity and unpredictability of clear air turbulence(CAT)pose significant challenges to aviation safety.Accurate prediction of turbulence events is crucial for reducing flight accidents and economic losses.However,traditional turbulence prediction methods,such as ensemble forecasting techniques,have certain limitations:they only consider turbulence data from the most recent period,making it difficult to capture the nonlinear relationships present in turbulence.This study proposes a turbulence forecasting model based on the K-nearest neighbor(KNN)algorithm,which uses a combination of eight CAT diagnostic features as the feature vector and introduces CAT diagnostic feature weights to improve prediction accuracy.The model calculates the results of seven years of CAT diagnostics from 125 to 500 hPa obtained from the ECMWF fifth-generation reanalysis dataset(ERA5)as feature vector inputs and combines them with the labels of Pilot Reports(PIREP)annotated data,where each sample contributes to the prediction result.By measuring the distance between the current CAT diagnostic variable and other variables,the model determines the climatically most similar neighbors and identifies the turbulence intensity category caused by the current variable.To evaluate the model’s performance in diagnosing high-altitude turbulence over Colorado,PIREP cases were randomly selected for analysis.The results show that the weighted KNN(W-KNN)model exhibits higher skill in turbulence prediction,and outperforms traditional prediction methods and other machine learning models(e.g.,Random Forest)in capturing moderate or greater(MOG)level turbulence.The performance of the model was confirmed by evaluating the receiver operating characteristic(ROC)curve,maximum True Skill Statistic(maxTSS=0.552),and reliability plot.A robust score(area under the curve:AUC=0.86)was obtained,and the model demonstrated sensitivity to seasonal and annual climate fluctuations. 展开更多
关键词 clear air turbulence k-nearest neighbor(KNN)algorithm the ECMWF fifth-generation reanalysis dataset(ERA5) turbulence prediction
原文传递
云计算中保护数据隐私的快速多关键词语义排序搜索方案 被引量:20
14
作者 杨旸 刘佳 +1 位作者 蔡圣暐 杨书略 《计算机学报》 EI CSCD 北大核心 2018年第6期1346-1359,共14页
可搜索加密技术主要解决在云服务器不完全可信的情况下,支持用户在密文上进行搜索.该文提出了一种快速的多关键词语义排序搜索方案.首先,该文首次将域加权评分的概念引入文档的评分当中,对标题、摘要等不同域中的关键词赋予不同的权重... 可搜索加密技术主要解决在云服务器不完全可信的情况下,支持用户在密文上进行搜索.该文提出了一种快速的多关键词语义排序搜索方案.首先,该文首次将域加权评分的概念引入文档的评分当中,对标题、摘要等不同域中的关键词赋予不同的权重加以区分.其次,对检索关键词进行语义拓展,计算语义相似度,将语义相似度、域加权评分和相关度分数三者结合,构造了更加准确的文档索引.然后,针对现有的MRSE(Multi-keyword Ranked Search over Encrypted cloud data)方案效率不高的缺陷,将创建的文档向量分块,生成维数较小的标记向量.通过对文档标记向量和查询标记向量的匹配,有效地过滤了大量的无关文档,减少了计算文档相关度分数和排序的时间,提高了搜索的效率.最后,在加密文档向量时,将文档向量分段,每一段与对应维度的矩阵相乘,使得构建索引的时间减少,进一步提高了方案的效率.理论分析和实验结果表明:该方案实现了快速的多关键词语义模糊排序搜索,在保障数据隐私安全的同时,有效地提高了检索效率,减少了创建索引的时间,并返回更加满足用户需求的排序结果. 展开更多
关键词 云计算 可搜索加密 语义相似度 域加权评分 快速KNN(k-nearest neighbor)算法
在线阅读 下载PDF
K近邻的自适应谱聚类快速算法 被引量:4
15
作者 范敏 王芬 +2 位作者 李泽明 李志勇 张晓波 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第6期147-152,共6页
谱聚类算法建立在谱图划分理论基础上,与传统的聚类算法相比,它具有能在任意形状的样本空间上聚类且收敛于全局最优解的优点。然而,谱聚类算法涉及如何选取合适的尺度参数σ构造相似度矩阵的问题。并且,在处理大规模数据集时,聚类的过... 谱聚类算法建立在谱图划分理论基础上,与传统的聚类算法相比,它具有能在任意形状的样本空间上聚类且收敛于全局最优解的优点。然而,谱聚类算法涉及如何选取合适的尺度参数σ构造相似度矩阵的问题。并且,在处理大规模数据集时,聚类的过程需要较大的时间和内存开销。研究从构造相似度矩阵入手,以传统NJW算法为基础,提出一种基于K近邻的自适应谱聚类快速算法FA-SC。该算法能自动确定尺度参数σ;同时,对输入数据集分块处理,并用基于K近邻的稀疏相似度矩阵保存样本信息,减少计算的内存开销,提高了运行速度。通过实验,与传统谱聚类算法比较,FA-SC算法在人工数据集和UCI数据集上能够取得更好的聚类效果。 展开更多
关键词 谱聚类 K近邻 稀疏矩阵 自适应 快速算法
原文传递
双层多目标遗传算法及应用 被引量:2
16
作者 于冲 吕剑虹 +1 位作者 吴科 赵亮 《中国电机工程学报》 EI CSCD 北大核心 2010年第S1期117-123,共7页
为解决工程应用中的多目标优化问题,提出一种双层多目标遗传算法(two-layer multi-objective genetic algorithm,TLMOGA)。该算法根据个体间的支配关系将种群分成2层,并分别采用快速k最邻近算法和净强度函数法为这2层中的个体分配适应... 为解决工程应用中的多目标优化问题,提出一种双层多目标遗传算法(two-layer multi-objective genetic algorithm,TLMOGA)。该算法根据个体间的支配关系将种群分成2层,并分别采用快速k最邻近算法和净强度函数法为这2层中的个体分配适应度。在此基础上,设计相应的个体排序和种群修剪策略,并确定了算法的整体流程。通过与传统多目标遗传算法进行比较,证明TLMOGA能够很好地保持解的收敛性和分布性,同时也具有较高的运算效率。最后,以ALSTOM气化炉基准控制器的参数优化整定为工程应用实例,进一步验证TLMOGA的有效性。仿真试验的结果表明,经优化后的控制系统,控制品质有了显著提高,达到了ALSTOM气化炉基准测试的要求。 展开更多
关键词 多目标遗传算法 快速k最邻近算法 净强度函数 ALSTOM气化炉 参数优化整定
原文传递
一种改进的快速并行细化算法 被引量:42
17
作者 牟少敏 杜海洋 +2 位作者 苏平 查绪恒 陈光艺 《微电子学与计算机》 CSCD 北大核心 2013年第1期53-55,60,共4页
对二值化的图像进行细化处理在目标识别中有着重要的应用.Zhang快速并行细化算法是一种常用的细化算法,其细化结果保持了原图像的连通性,且形态结构保持较好,无毛刺现象.但是细化后结果不能保证为单一像素,这为图像的后期处理带来了困难... 对二值化的图像进行细化处理在目标识别中有着重要的应用.Zhang快速并行细化算法是一种常用的细化算法,其细化结果保持了原图像的连通性,且形态结构保持较好,无毛刺现象.但是细化后结果不能保证为单一像素,这为图像的后期处理带来了困难.本文对Zhang并行细化算法进行了改进,实验结果表明改进后的细化结果保证为单一像素,且又保持原有算法的优点. 展开更多
关键词 Zhang快速并行细化算法 二值图像 8邻域 单像素
在线阅读 下载PDF
邻居预条件加速的多层快速非均匀平面波算法 被引量:4
18
作者 陈涌频 胡俊 +1 位作者 聂在平 孟敏 《电波科学学报》 EI CSCD 北大核心 2007年第6期941-945,共5页
采用邻居预条件加速的多层快速非均匀平面波算法求解三维导电目标的电磁散射。通过分组,将耦合划分为附近和非附近区,对于非附近区采用索末菲恒等式对格林函数展开,用修正最陡下降路径代替索末菲积分路径进行数值积分。采用内插与外推... 采用邻居预条件加速的多层快速非均匀平面波算法求解三维导电目标的电磁散射。通过分组,将耦合划分为附近和非附近区,对于非附近区采用索末菲恒等式对格林函数展开,用修正最陡下降路径代替索末菲积分路径进行数值积分。采用内插与外推技术将复角谱序列转换成均匀实角谱序列,以便于算法的高效实施。该算法的计算复杂度与多层快速多极子相当,且更具潜在优势。为改善迭代特性,本文研究了一种邻居预条件方法,加速迭代收敛,数值结果验证了算法的准确和高效。 展开更多
关键词 电磁散射 邻居预条件 多层快速非均匀平面波算法
在线阅读 下载PDF
基于Mean-Shift的广播音频聚类算法 被引量:3
19
作者 郑继明 俞佳 《计算机应用》 CSCD 北大核心 2009年第10期2741-2743,2750,共4页
针对大多数聚类算法依赖聚类数目这一先验知识的不足,提出一种基于均值漂移(Mean-Shift)的新广播音频聚类算法。对需聚类的音频段选取基于小波域的特征构造特征集合,通过主成分分析方法降低所提取特征中的冗余信息。在此基础上,采用Mean... 针对大多数聚类算法依赖聚类数目这一先验知识的不足,提出一种基于均值漂移(Mean-Shift)的新广播音频聚类算法。对需聚类的音频段选取基于小波域的特征构造特征集合,通过主成分分析方法降低所提取特征中的冗余信息。在此基础上,采用Mean-Shift算法对音频信号进行初步聚类,然后利用快速近邻法对其聚类结果进行一次修正,最后合并仅含有单个样本类别的类进行二次修正。实验结果表明,该算法的聚类精度有一定的提高。 展开更多
关键词 主成分分析 均值漂移算法 快速近邻法 二次修正 广播音频聚类
在线阅读 下载PDF
基于向量投影的KNN快速手写阿拉伯数字识别 被引量:2
20
作者 时恩早 《科技通报》 北大核心 2013年第12期127-129,共3页
传统K近邻(KNN)算法简单易于理解,但是求解过程中需要计算样本之间的距离,时间复杂度较高。针对这种不足,本文提出了一种基于向量投影的KNN快速算法。该算法首先计算二分类训练样本集中每一类的样本中心,并将所有的训练样本投影到样本... 传统K近邻(KNN)算法简单易于理解,但是求解过程中需要计算样本之间的距离,时间复杂度较高。针对这种不足,本文提出了一种基于向量投影的KNN快速算法。该算法首先计算二分类训练样本集中每一类的样本中心,并将所有的训练样本投影到样本中心所在的直线上。在进行样本分类时,先将无标签样本投影到样本中心所在的直线上,然后根据该无标签样本的投影点和训练样本的投影点之间的距离关系,确定样本的类别。在MNIST手写阿拉伯数字识别数据集上的仿真实验充分验证了本文算法的有效性。 展开更多
关键词 K近邻 向量投影 快速算法 无标签样本
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部