To meet the demand for high on-chip network performance, flexible routing algorithms supplying path diversity and congestion alleviation are required. We propose a CAOE-FA router as a combination of congestionawarenes...To meet the demand for high on-chip network performance, flexible routing algorithms supplying path diversity and congestion alleviation are required. We propose a CAOE-FA router as a combination of congestionawareness and fair arbitration. Buffer occupancies from downstream neighbors are collected to indicate the congestion levels, among the candidate outputs permitted by the odd-even(OE) turn model, the lightest loaded direction is selected; fair arbitration is employed for the condition of the same congestion level to replace random selection. Experimental results show that the CAOE-FA can reduce the average packet latency by up to 22.18% and improve the network throughput by up to 68.58%, with ignorable price of hardware cost.展开更多
基金Project supported by the National Natural Science Foundation of China(No.61625403)
文摘To meet the demand for high on-chip network performance, flexible routing algorithms supplying path diversity and congestion alleviation are required. We propose a CAOE-FA router as a combination of congestionawareness and fair arbitration. Buffer occupancies from downstream neighbors are collected to indicate the congestion levels, among the candidate outputs permitted by the odd-even(OE) turn model, the lightest loaded direction is selected; fair arbitration is employed for the condition of the same congestion level to replace random selection. Experimental results show that the CAOE-FA can reduce the average packet latency by up to 22.18% and improve the network throughput by up to 68.58%, with ignorable price of hardware cost.