Structural fatigue of NiTi shape memory alloys is a key issue that should be solved in order to promote their engineering applications and utilize their unique shape memory effect and super-elasticity more sufficientl...Structural fatigue of NiTi shape memory alloys is a key issue that should be solved in order to promote their engineering applications and utilize their unique shape memory effect and super-elasticity more sufficiently. In this paper, the latest progresses made in experimental and theoretical analyses for the structural fatigue features of NiTi shape memory alloys are reviewed. First, macroscopic experimental observations to the pure mechanical and thermo-mechanical fatigue features of the alloys are summarized; then the state-of-arts in the mechanism analysis of fatigue rupture are addressed; further, advances in the construction of fatigue failure models are provided; finally, summary and future topics are outlined.展开更多
Sand production is an undesired phenomenon occurring in unconsolidated formations due to shear failure and hydrodynamic forces. There have been many approaches developed to predict sand production and prevent it by ch...Sand production is an undesired phenomenon occurring in unconsolidated formations due to shear failure and hydrodynamic forces. There have been many approaches developed to predict sand production and prevent it by changing drilling or production strategies. However, assumptions involved in these approaches have limited their applications to very specific scenarios. In this paper, an elliptical model based on the borehole shape is presented to predict the volume of sand produced during the drilling and depletion stages of oil and gas reservoirs. A shape factor parameter is introduced to estimate the changes in the geometry of the borehole as a result of shear failure. A carbonate reservoir from the south of Iran with a solid production history is used to show the application of the developed methodology. Deriving mathematical equations for determination of the shape factor based on different failure criteria indicate that the effect of the intermediate principal stress should be taken into account to achieve an accurate result. However, it should be noticed that the methodology presented can only be used when geomechanical parameters are accurately estimated prior to the production stage when using wells and field data.展开更多
基金supported by the National Natural Science Foundation of China (11532010)
文摘Structural fatigue of NiTi shape memory alloys is a key issue that should be solved in order to promote their engineering applications and utilize their unique shape memory effect and super-elasticity more sufficiently. In this paper, the latest progresses made in experimental and theoretical analyses for the structural fatigue features of NiTi shape memory alloys are reviewed. First, macroscopic experimental observations to the pure mechanical and thermo-mechanical fatigue features of the alloys are summarized; then the state-of-arts in the mechanism analysis of fatigue rupture are addressed; further, advances in the construction of fatigue failure models are provided; finally, summary and future topics are outlined.
文摘Sand production is an undesired phenomenon occurring in unconsolidated formations due to shear failure and hydrodynamic forces. There have been many approaches developed to predict sand production and prevent it by changing drilling or production strategies. However, assumptions involved in these approaches have limited their applications to very specific scenarios. In this paper, an elliptical model based on the borehole shape is presented to predict the volume of sand produced during the drilling and depletion stages of oil and gas reservoirs. A shape factor parameter is introduced to estimate the changes in the geometry of the borehole as a result of shear failure. A carbonate reservoir from the south of Iran with a solid production history is used to show the application of the developed methodology. Deriving mathematical equations for determination of the shape factor based on different failure criteria indicate that the effect of the intermediate principal stress should be taken into account to achieve an accurate result. However, it should be noticed that the methodology presented can only be used when geomechanical parameters are accurately estimated prior to the production stage when using wells and field data.