Microbially induced calcium carbonate precipitation(MICP)technology can induce calcium carbonate crystals with cementation and stable performance in the process of microbial metabolism or enzymization through the regu...Microbially induced calcium carbonate precipitation(MICP)technology can induce calcium carbonate crystals with cementation and stable performance in the process of microbial metabolism or enzymization through the regulation of environmental factors MICP can be used as a cementing agent to cement cohesionless sand particles to form the materials with the characteristics of higher strength,better durability and environmental friendli-ness,as well as a good engineering application prospect.In this paper,the shear strength of sand column was tested by triaxial compression tests,and the strength index was obtained.In order to further study the micro-strength mechanism and the failure process,based on the discrete element method,a numerical model of MICP cemented sand column was established considering the factors of matrix soil particle gradation,particle mor-phology,content ratio of induced calcium carbonate,pore distribution characteristics,inter-particle cementation and so on.The failure process of MICP cemented sand column under load was analysed by numerical simulation,and the reliability of the numerical model was tested by combining with the stress intensity curve of samples under test conditions.The results indicate that compared with the actual triaxial tests of MICP cemented sand column,although there are deviations in stress and strain,cohesion and internal friction angle,the numerical simulation shows similar development law and intensity amplitude,and the same failure trend.The work in this paper verifies the reliability of the numerical model and provides a theoretical basis for the subsequent analysis of the factors influencing the geotechnical mechanical properties of biomineralized materials.展开更多
The anchoring capacity of the anchor cable is closely related to the bonding length and radial pressure conditions.Through field pull-out tests,theoretical analysis,numerical simulation,and industrial tests,this study...The anchoring capacity of the anchor cable is closely related to the bonding length and radial pressure conditions.Through field pull-out tests,theoretical analysis,numerical simulation,and industrial tests,this study clarifies the relationship between radial pressure and bonding length for the ultimate pullout force and reveals the microscopic failure process of the resin-rock interface in the anchoring system.The results show that the ultimate load increases with the increase of bonding length in three different stages:rapid,slow,and uniform growth.The new mechanical model developed considering radial pressure describes the inverse relationship between radial pressure and the plastic zone on the bonding section,and quantifies the reinforcing effect of confining pressure on the anchoring force.During the pull-out process of the anchor cable,the generation of failure cracks is in the order of orifice,bottom,and middle of the hole.Radial pressure can effectively enhance the ultimate pull-out force,alleviate the oscillation increase of pull-out force,and inhibit resin cracking,but will produce an external crushing zone.It also reveals the synergistic effect between bonding length and radial pressure,and successfully carries out industrial tests of anchor cable support,which ensures the stability of the stope roof and provides an important reference for the design of anchor cable support in deep high-stress mines.展开更多
Acquiring pristine deep lunar regolith cores with appropriate drilling tools is crucial for deciphering the lunar geological history.Conventional thick-walled drill bits are inherently limited in obtaining deep lunar ...Acquiring pristine deep lunar regolith cores with appropriate drilling tools is crucial for deciphering the lunar geological history.Conventional thick-walled drill bits are inherently limited in obtaining deep lunar regolith samples,whereas thin-walled coring bits offer a promising solution for lunar deep drilling.To support future lunar deep exploration missions,this study systematically investigates the failure mechanisms of lunar regolith induced by thin-walled drilling tools.Firstly,five thin-walled bit configurations were designed and evaluated based on drilling load,coring efficiency,and disturbance minimization,with Bit D demonstrating optimal overall performance.And the interaction mechanisms between differently configured coring bits and large-particle lunar regolith were elucidated.Coring experiments under critical drilling parameters revealed an operational window for the feed-to-rotation ratio(FRR of 2.0–2.5),effectively balancing drilling load and core recovery rate.Furthermore,a novel theoretical framework was developed to characterize dynamic drilling load parameters,supported by experimental validation.Based on these findings,practical strategies are proposed to mitigate drilling-induced disturbances,including parameter optimization and bit structural improvements.This research could provide valuable insights for designing advanced lunar deep drilling tools and developing drilling procedures.展开更多
The rock mass failure induced by deep mining exhibits pronounced spatial heterogeneity and diverse mechanisms,with its microseismic responses serving as effective indicators of regional failure evolution and instabili...The rock mass failure induced by deep mining exhibits pronounced spatial heterogeneity and diverse mechanisms,with its microseismic responses serving as effective indicators of regional failure evolution and instability mechanisms.Focusing on the Level VI stope sublayers in the Jinchuan#2 mining area,this study constructs a 24-parameter index system encompassing time-domain features,frequency-domain features,and multifractal characteristics.Through manifold learning,clustering analysis,and hybrid feature selection,15 key indicators were extracted to construct a classification framework for failure responses.Integrated with focal mechanism inversion and numerical simulation,the failure patterns and corresponding instability mechanisms across different structural zones were further identified.The results reveal that multiscale microseismic characteristics exhibit clear regional similarities.Based on the morphological features of radar plots derived from the 15 indicators,acoustic responses were classified into four typical types,each reflecting distinct local failure mechanisms,stress conditions,and plastic zone evolution.Moreover,considering dominant instability factors and rupture modes,four representative rock mass instability models were proposed for typical failure zones within the stope.These findings provide theoretical guidance and methodological support for hazard prediction,structural optimization,and disturbance control in deep metal mining areas.展开更多
In order to investigate the failure process of brittle rock under triaxial compression through both experimental and numerical approaches, the particle simulation method was used in numerical simulations and the simul...In order to investigate the failure process of brittle rock under triaxial compression through both experimental and numerical approaches, the particle simulation method was used in numerical simulations and the simulated results were compared with those of the experiment. The numerical simulation results, such as fracture propagation, microcrack distribution, stress-strain response, and damage patterns, were discussed in detail. The simulated results under various confining pressures (0-60 MPa) are in good agreement with the experimental results. The simulated results reveal that rock failure is caused by axial splitting under uniaxial compression. As the confining pressure increases, rock failure occurs in a few localized shear planes and the rock mechanical behavior is changed from brittle to ductile. Consequently, the peak failure strength, microcrack numbers, and the shear plane angle increase, but the ratio of tensile to shear microcracks decreases. The damage formation during the compression simulations indicates that the particle simulation method can produce similar behaviors as those observed through laboratory compression tests.展开更多
Large and super-large section chamber groups in coal mines are frequently affected by dynamic loads resulting from production activities such as roadway driving and blasting.The stability of the surrounding rock is po...Large and super-large section chamber groups in coal mines are frequently affected by dynamic loads resulting from production activities such as roadway driving and blasting.The stability of the surrounding rock is poor,and it is difficult to control.In this paper,a similar simulation test was used to study the deformation and evolution laws of the surrounding rock of a triangle-shaped chamber group under different dynamic loads.The results showed that under dynamic loading,the vertical stress of the surrounding rock of the chamber group increased in an oscillatory form.The maximum stress concentration coefficient reached 4.09.The damage degree of the roof was greater than that of the two sides.The deformation of the roof was approximately 1.2 times that of the two sides.For the chamber closer to the power source,the stress oscillation amplitude of the surrounding rock was larger,and the failure was more serious.The force of the anchorage structure showed a phased increasing characteristic;additionally,the force of the anchorage structure on the adjacent side of the chambers was greater than that on the other side.This study reveals the deformation and failure evolution laws of the surrounding rock of large section chamber groups under dynamic loading.展开更多
This paper focuses on the research of a semi-submersible platform equipped with a DP-assisted mooring system. Based on the working principles of the DP-assisted mooring system and the model of the platform motion, a t...This paper focuses on the research of a semi-submersible platform equipped with a DP-assisted mooring system. Based on the working principles of the DP-assisted mooring system and the model of the platform motion, a time domain simulation program is applied to analyze the impact, in the case of one line failure, on the platform motion, power consumption of the thrusters and the tension of the mooring lines. The results show that, under the 10-year wind dominant, a one line failure will have little impact on the tension of the mooring lines. When the failure line is windward, the power consumption will increase greatly with a weakened position of accuracy. However when the failure line is leeward, the power consumption will be reduced with a partly strengthened oosition of accuracy.展开更多
Based on the safety coefficient method,which assigns rock failure criteria to calculate the rock mass unit,the safety coefficient contour of surrounding rock is plotted to judge the distribution form of the fractured ...Based on the safety coefficient method,which assigns rock failure criteria to calculate the rock mass unit,the safety coefficient contour of surrounding rock is plotted to judge the distribution form of the fractured zone in the roadway.This will provide the basis numerical simulation to calculate the surrounding rock fractured zone in a roadway.Using the single factor and multi-factor orthogonal test method,the evolution law of roadway surrounding rock displacements,plastic zone and stress distribution under different conditions is studied.It reveals the roadway surrounding rock burst evolution process,and obtains five kinds of failure modes in deep soft rock roadway.Using the fuzzy mathematics clustering analysis method,the deep soft surrounding rock failure model in Zhujixi mine can be classified and patterns recognized.Compared to the identification results and the results detected by geological radar of surrounding rock loose circle,the reliability of the results of the pattern recognition is verified and lays the foundations for the support design of deep soft rock roadways.展开更多
Rainfall is one of the most important factors contributing to landslides, and gentle bedding incline, high-rainfall induced landslides are common throughout the world. Field observations and theoretical analyses have ...Rainfall is one of the most important factors contributing to landslides, and gentle bedding incline, high-rainfall induced landslides are common throughout the world. Field observations and theoretical analyses have been used to assess slope instability caused by permeability variation. In this study, the influence of rainfall infiltration on gentle bedding incline slope behaviour was investigated using a centrifuge physical simulation test. The magnitude, pattern and development of pore water and earth pressure at the interface;the shear failure surface features;and the corresponding deformation and failure processes were considered. A model with interbedded sand and mud was created, and a centrifuge was used to simulate both natural and rainfall conditions. The weak intercalation was composed of single-material silty clay, and the landslide mass was composed of red-bed sandstone. A combination of photography, pore water pressure measurements and earth pressure measurements were used to examine the relationship between the pore water pressure, earth pressure and failure modes. When the slope experiences overall instability, the curves of the earth pressure and pore water pressure dramatically decrease. The results reveal that the failure shear surface largely depends on the differential creep caused by the properties of the rock mass and the rainfall infiltration.展开更多
Electromechanical product's reliability is affected by uncertainty as well as performance degeneration during its life cycle.The present reliability and performance integrating modeling methods have obvious defici...Electromechanical product's reliability is affected by uncertainty as well as performance degeneration during its life cycle.The present reliability and performance integrating modeling methods have obvious deficiencies in long period reliability analysis and assessment when applied to such system.A novel integrating modeling method based on physics of failure(PoF)and a simulation algorithm that considers uncertainty and degeneration are proposed in this paper to compute maintenance free operation period or maintenance free operation period survivability which is used to assess long period reliability of system.Furthermore,the concept design of this kind of software based on the above theory is also introduced.A case study of servo valve demonstrates the feasibility of the method and usability of the software in this research.展开更多
A general failure probability simulation and deviation evaluation methods were presented for fuzzy safety state and fuzzy failure state. And the corresponding number integral method was simultaneously established. As ...A general failure probability simulation and deviation evaluation methods were presented for fuzzy safety state and fuzzy failure state. And the corresponding number integral method was simultaneously established. As the distribution of state variable and the membership of the state variable to the fuzzy safety set were normal, the general failure probability of the single failure mode had precise analytic solution, which was used to verify the precision of the presented methods. The results show that the evaluation of the simulation method convergences to the analytic solution with the number increase of the sampling. The above methods for the single failure mode was extended to the multi-mode by the expansion and probability principles. The presented methods were applied to the engineering problem. For the number of significant mode is not too many, the high precision solution can be given by the presented number simulation and number integral methods, which is illustrated by the engineering examples. In addition, the application scope of the methods was discussed.展开更多
Based on an essential assumption of meso-heterogeneity of material, the macro characteristic of composite reinfiorced with particles, the crack initiation, propagation and the failure process in composite were studied...Based on an essential assumption of meso-heterogeneity of material, the macro characteristic of composite reinfiorced with particles, the crack initiation, propagation and the failure process in composite were studied by using a numerical code. The composite is subjected to a uniaxial tension, aact stiff or soft particles are distributed at random manner but without overlapping or contacting. The effect of reinforcement particle properties on the fracture process aact mechanism of composite with brittle matrix, furthermore, the influence of the particle volumetric fraction is also investigated. Numerical results present the different failure mode and re-produce the crack initiation, propagation aurl coalescence in brittle aurl heterogeneons matrix. The mechanism of sach failure was also elucidated.展开更多
Considering the heterogeneity of geomechanical materials, seismicity during brittle rock failure under compressive loading on the sample with an original weak zone is simulated by using rock failure process analysis c...Considering the heterogeneity of geomechanical materials, seismicity during brittle rock failure under compressive loading on the sample with an original weak zone is simulated by using rock failure process analysis code (RFPA2D). The run-through process of weak zone, the forming of new fault and associated micro-seismicities are studied. The modeling demonstrates the total process of source development of earthquake from deformation, micro-failure to collapse and the behavior of temporal-spatial distribution of micro-seismicities. The stress, strain and the temporal-spatial distribution of micro-seismicities life-likely portrayed the phenomena of localization and temporal-spatial transitions, which is similar to those observed in our real crust. Also, the results obtained in simulations are in agreement with or similar to the reported experimental observations.展开更多
The reliability assessment model of k /N system is built based on Copula function theory considering the failure correlativity existing among components,and then a simulation strategy is presented on the foundation of...The reliability assessment model of k /N system is built based on Copula function theory considering the failure correlativity existing among components,and then a simulation strategy is presented on the foundation of agent technique.The components and equipment entity model are designed according to the modeling technique above to describe the operation relationship during the mission phase,and then the simulation system for the assessment of product reliability is completed.And at last,an example is given with different material support programs.The research result has shown that the relevance existing in components has effect on the confirmation and optimization of maintenance strategy.展开更多
The latticed dunes in the Tengger Desert are widely distributed,and the sand-blocking fence placed here are highly susceptible to local failure due to complex wind-sand activities,posing a serious threat to the safe o...The latticed dunes in the Tengger Desert are widely distributed,and the sand-blocking fence placed here are highly susceptible to local failure due to complex wind-sand activities,posing a serious threat to the safe operation of the highway.To explore the local failure mechanism of sand-blocking fence in the latticed dune area,the local failure of sand-blocking fence in the latticed dune areas along the Wuhai-Maqin Highway in China was observed.Taking the first main ridge of the latticed dune as the placement location,the structure of the wind-sand flow field of sand-blocking fence placed at top,the bottom and the middle of windward slope was analyzed by Computational Fluid Dynamics(CFD).The results show that when placed at top of the first main ridge,the wind speed near the sand-blocking fence is the highest,up to 15.23 m/s.Therefore,the wind load strength on the sand barrier is correspondingly larger,up to 232.61 N∙m-2.As the strength of material continues to decrease,the nylon net is prone to breakage.The roots of the angle steel posts are susceptible to hollowing by vortex action,which can cause sand-blocking fence to fall over in strong wind conditions.When placed at the bottom of windward slope,wind speed drop near sand-blocking fence is greatest,with the decrease of 12.48-14.32 m/s compared to the original wind speed.This is highly likely to lead to large-scale deposition of sand particles and burial of the sand-blocking fence.When placed in the middle of windward slope,sand-blocking fence is subjected to less wind load strength(168.61N∙m-2)and sand particles are mostly deposited at the bottom of windward slope,with only a small amount of sand accumulating at the root of sand-blocking fence.Based on field observations and numerical modelling results,when the sand-blocking fence is placed in latticed dune area,it should be placed in the middle of the windward slope of the first main ridge as a matter of priority.Besides the sand-blocking fence should be placed at the top of the first main ridge,and sand fixing measures should be added.展开更多
To further study the load transfer mechanism of roofemulti-pillarefloor system during cascading pillar failure(CPF),numerical simulation and theoretical analysis were carried out to study the three CPF modes according...To further study the load transfer mechanism of roofemulti-pillarefloor system during cascading pillar failure(CPF),numerical simulation and theoretical analysis were carried out to study the three CPF modes according to the previous experimental study on treble-pillar specimens,e.g.successive failure mode(SFM),domino failure mode(DFM)and compound failure mode(CFM).Based on the finite element code rock failure process analysis(RFPA^(2D)),numerical models of treble-pillar specimen with different mechanical properties were established to reproduce and verify the experimental results of the three CPF modes.Numerical results show that the elastic rebound of roofefloor system induced by pillar instability causes dynamic disturbance to adjacent pillars,resulting in sudden load increases and sudden jump displacement of adjacent pillars.The phenomena of load transfer in the roofemulti-pillarefloor system,as well as the induced accelerated damage behavior in adjacent pillars,were discovered and studied.In addition,based on the catastrophe theory and the proposed mechanical model of treble-pillar specimen edisc spring group system,a potential function that characterizes the evolution characteristics of roof emulti-pillarefloor system was established.The analytical expressions of sudden jump and energy release of treble-pillar specimenedisc spring group system of the three CPF modes were derived according to the potential function.The numerical and theoretical results show good agreement with the experimental results.This study further reveals the physical essence of load transfer during CPF of roof emulti-pillarefloor system,which provides references for mine design,construction and disaster prevention.展开更多
In the engineering.to ensure the quality and safety,it is necessary to carry out reliability analysis on it.When conducting reliability analysis in engineering.a 1arge rumber of small1 failure probability problems wil...In the engineering.to ensure the quality and safety,it is necessary to carry out reliability analysis on it.When conducting reliability analysis in engineering.a 1arge rumber of small1 failure probability problems will be encountered.For such problems,the traditional Monte Carlo method needs a 1ot of samples,and the calculation efficiency is extremely 1ow,while the subset sinmulation method can efficiently estimate the relLability index of the small failure probability problem with litle samples.Therefore,this paper takes the application of the subset simulation method in the reliability analysis of the small failure probability structure as the object,constructs the reliability analysis method of the single failure mode of the system and applies the method to a mathematical example and a single-story gate.Through the rigid frame example,it can be seen that this method is beneficial to improve the calculation efficiency and accuracy.展开更多
Directional roof cutting(DRC)is one of the key techniques in non-pillar coal mining with self-formed entries(NCMSE)mining method.Due to the inability to accurately measure the expansion coefficient of the goaf rock ma...Directional roof cutting(DRC)is one of the key techniques in non-pillar coal mining with self-formed entries(NCMSE)mining method.Due to the inability to accurately measure the expansion coefficient of the goaf rock mass,the implementation of this technology often encounters design challenges,leading to suboptimal results and increased costs.This paper establishes a structural analysis model of the goaf working face roof,revealing the failure mechanism of DRC,and clarifies the positive role of DRC in improving the stress of the roadway surrounding rock and reducing the subsidence of the roof through numerical simulation experiments.On this basis,the paper further analyses the roadway pressure and roof settlement under different DRC design heights,and ultimately proposes an optimized design method for the DRC height.The results indicate that the implementation of DRC can significantly optimize the stress environment of the working face roadway surrounding rock.At the same time,during the application of DRC,three scenarios may arise:insufficient,reasonable,and excessive DRC height.Insufficient height will significantly reduce the effectiveness of the technology,while excessive height has little impact on the implementation effect but will greatly increase construction costs and difficulty.Engineering verification shows that the optimized DRC design method proposed in this paper reduces the peak stress of the protective coal pillar in the roadway by 27.2%and the central subsidence of the roof by 41.8%,demonstrating excellent application results.This method provides technical support for the further promotion of NCMSE mining method.展开更多
Among various power system disturbances,cascading failures are considered the most serious and extreme threats to grid operations,potentially leading to significant stability issues or even widespread power blackouts....Among various power system disturbances,cascading failures are considered the most serious and extreme threats to grid operations,potentially leading to significant stability issues or even widespread power blackouts.Simulating power systems’behaviors during cascading failures is of great importance to comprehend how failures originate and propagate,as well as to develop effective preventive and mitigative control strategies.The intricate mechanism of cascading failures,characterized by multi-timescale dynamics,presents exceptional challenges for their simulations.This paper provides a comprehensive review of simulation models for cascading failures,providing a systematic categorization and a comparison of these models.The challenges and potential research directions for the future are also discussed.展开更多
Reinforced concrete(RC)slabs are the primary load-carrying member of underwater facilities.They can suffer severe local failures such as cratering,spalling,or breaching as a result of underwater close-in(UWCI)explosio...Reinforced concrete(RC)slabs are the primary load-carrying member of underwater facilities.They can suffer severe local failures such as cratering,spalling,or breaching as a result of underwater close-in(UWCI)explosions.In this study,we established a fully validated high-fidelity finite element analysis approach to precisely reproduce the local failures of RC slabs after a UWCI explosion.A recently proposed dynamic constitutive model is used to describe wet concrete.The effects of free water content on the material properties,including the tensile/compressive strength,elastic modulus,strain rate effect,failure strength surface,and equation of state,are comprehensively calibrated based on existing test data.The calibrated material parameters are then verified by a single-element test.A high-fidelity finite element analysis(FEA)approach of an RC slab subjected to a UWCI explosion is established using an arbitrary Lagrangian-Eulerian(ALE)algorithm.Simulating previous UWCI explosion tests on RC orifice targets and underwater contact explosion tests on saturated concrete slabs showed that the established FEA approach could accurately reproduce the pressure-time history in water and damage patterns,including the cracking,cratering,and spalling,of the RC orifice target and saturated concrete slab.Furthermore,parametric studies conducted by simulating an RC slab subjected to a UWCI explosion showed that:(i)the local failure of an RC slab enlarges with increased charge weight,reduced standoff distance,and reduced structural thickness;(ii)compared to a water-backed RC slab,an air-backed RC slab exhibits much more obvious local and structural failure.Lastly,to aid the anti-explosion design of relevant underwater facilities,based on over 90 simulation cases empirical formulae are summarized to predict local failure modes,i.e.,no spall,spall,and breach,of water-and air-backed RC slabs subjected to a UWCI explosion.展开更多
基金sponsored by the National Natural Science Foundation of China(Grant No.12002173,12262027)Research start-up project of Inner Mongolia University of Technology(No.2200000924)key Lab.of University of Geological Hazards and Geotechnical Engineering Defense in Sandy and Drought Regions,Inner Mongolia Autonomous.
文摘Microbially induced calcium carbonate precipitation(MICP)technology can induce calcium carbonate crystals with cementation and stable performance in the process of microbial metabolism or enzymization through the regulation of environmental factors MICP can be used as a cementing agent to cement cohesionless sand particles to form the materials with the characteristics of higher strength,better durability and environmental friendli-ness,as well as a good engineering application prospect.In this paper,the shear strength of sand column was tested by triaxial compression tests,and the strength index was obtained.In order to further study the micro-strength mechanism and the failure process,based on the discrete element method,a numerical model of MICP cemented sand column was established considering the factors of matrix soil particle gradation,particle mor-phology,content ratio of induced calcium carbonate,pore distribution characteristics,inter-particle cementation and so on.The failure process of MICP cemented sand column under load was analysed by numerical simulation,and the reliability of the numerical model was tested by combining with the stress intensity curve of samples under test conditions.The results indicate that compared with the actual triaxial tests of MICP cemented sand column,although there are deviations in stress and strain,cohesion and internal friction angle,the numerical simulation shows similar development law and intensity amplitude,and the same failure trend.The work in this paper verifies the reliability of the numerical model and provides a theoretical basis for the subsequent analysis of the factors influencing the geotechnical mechanical properties of biomineralized materials.
基金Financial supports for this work,provided by the National Natural Science Foundation Project of China(No.52374152)the Guangxi Science and Technology Plan Project of China(No.2022AB31023)the National Basic Research Development Program of China(No.2022YFC2904602)are gratefully acknowledged。
文摘The anchoring capacity of the anchor cable is closely related to the bonding length and radial pressure conditions.Through field pull-out tests,theoretical analysis,numerical simulation,and industrial tests,this study clarifies the relationship between radial pressure and bonding length for the ultimate pullout force and reveals the microscopic failure process of the resin-rock interface in the anchoring system.The results show that the ultimate load increases with the increase of bonding length in three different stages:rapid,slow,and uniform growth.The new mechanical model developed considering radial pressure describes the inverse relationship between radial pressure and the plastic zone on the bonding section,and quantifies the reinforcing effect of confining pressure on the anchoring force.During the pull-out process of the anchor cable,the generation of failure cracks is in the order of orifice,bottom,and middle of the hole.Radial pressure can effectively enhance the ultimate pull-out force,alleviate the oscillation increase of pull-out force,and inhibit resin cracking,but will produce an external crushing zone.It also reveals the synergistic effect between bonding length and radial pressure,and successfully carries out industrial tests of anchor cable support,which ensures the stability of the stope roof and provides an important reference for the design of anchor cable support in deep high-stress mines.
基金supported by the National Natural Science Foundation of China(Nos.52225403,52434004,and 52404365)the National Key Research and Development Program of China(No.2023YFF0615404)the Scientific Instrument Developing Project of Shenzhen University.
文摘Acquiring pristine deep lunar regolith cores with appropriate drilling tools is crucial for deciphering the lunar geological history.Conventional thick-walled drill bits are inherently limited in obtaining deep lunar regolith samples,whereas thin-walled coring bits offer a promising solution for lunar deep drilling.To support future lunar deep exploration missions,this study systematically investigates the failure mechanisms of lunar regolith induced by thin-walled drilling tools.Firstly,five thin-walled bit configurations were designed and evaluated based on drilling load,coring efficiency,and disturbance minimization,with Bit D demonstrating optimal overall performance.And the interaction mechanisms between differently configured coring bits and large-particle lunar regolith were elucidated.Coring experiments under critical drilling parameters revealed an operational window for the feed-to-rotation ratio(FRR of 2.0–2.5),effectively balancing drilling load and core recovery rate.Furthermore,a novel theoretical framework was developed to characterize dynamic drilling load parameters,supported by experimental validation.Based on these findings,practical strategies are proposed to mitigate drilling-induced disturbances,including parameter optimization and bit structural improvements.This research could provide valuable insights for designing advanced lunar deep drilling tools and developing drilling procedures.
基金financial support from the Distinguished Youth Funds of the National Natural Science Foundation of China(No.52425403)the Hunan Province Graduate Research Innovation Project of China(No.CX20230168)。
文摘The rock mass failure induced by deep mining exhibits pronounced spatial heterogeneity and diverse mechanisms,with its microseismic responses serving as effective indicators of regional failure evolution and instability mechanisms.Focusing on the Level VI stope sublayers in the Jinchuan#2 mining area,this study constructs a 24-parameter index system encompassing time-domain features,frequency-domain features,and multifractal characteristics.Through manifold learning,clustering analysis,and hybrid feature selection,15 key indicators were extracted to construct a classification framework for failure responses.Integrated with focal mechanism inversion and numerical simulation,the failure patterns and corresponding instability mechanisms across different structural zones were further identified.The results reveal that multiscale microseismic characteristics exhibit clear regional similarities.Based on the morphological features of radar plots derived from the 15 indicators,acoustic responses were classified into four typical types,each reflecting distinct local failure mechanisms,stress conditions,and plastic zone evolution.Moreover,considering dominant instability factors and rupture modes,four representative rock mass instability models were proposed for typical failure zones within the stope.These findings provide theoretical guidance and methodological support for hazard prediction,structural optimization,and disturbance control in deep metal mining areas.
基金supported by the Graduate Degree Thesis Innovation Foundation of Central South University (No.2009ssxt226)
文摘In order to investigate the failure process of brittle rock under triaxial compression through both experimental and numerical approaches, the particle simulation method was used in numerical simulations and the simulated results were compared with those of the experiment. The numerical simulation results, such as fracture propagation, microcrack distribution, stress-strain response, and damage patterns, were discussed in detail. The simulated results under various confining pressures (0-60 MPa) are in good agreement with the experimental results. The simulated results reveal that rock failure is caused by axial splitting under uniaxial compression. As the confining pressure increases, rock failure occurs in a few localized shear planes and the rock mechanical behavior is changed from brittle to ductile. Consequently, the peak failure strength, microcrack numbers, and the shear plane angle increase, but the ratio of tensile to shear microcracks decreases. The damage formation during the compression simulations indicates that the particle simulation method can produce similar behaviors as those observed through laboratory compression tests.
基金financial support from the National Key R&D Program of China(No.2018YFC0604703)National Natural Science Foundation of China(Nos.51804181,51874190,and 52074168)Key R&D Program of Shandong Province(No.2019GSF111020)。
文摘Large and super-large section chamber groups in coal mines are frequently affected by dynamic loads resulting from production activities such as roadway driving and blasting.The stability of the surrounding rock is poor,and it is difficult to control.In this paper,a similar simulation test was used to study the deformation and evolution laws of the surrounding rock of a triangle-shaped chamber group under different dynamic loads.The results showed that under dynamic loading,the vertical stress of the surrounding rock of the chamber group increased in an oscillatory form.The maximum stress concentration coefficient reached 4.09.The damage degree of the roof was greater than that of the two sides.The deformation of the roof was approximately 1.2 times that of the two sides.For the chamber closer to the power source,the stress oscillation amplitude of the surrounding rock was larger,and the failure was more serious.The force of the anchorage structure showed a phased increasing characteristic;additionally,the force of the anchorage structure on the adjacent side of the chambers was greater than that on the other side.This study reveals the deformation and failure evolution laws of the surrounding rock of large section chamber groups under dynamic loading.
基金Suppirted by the Programme of Introducing Talents of Discipline to Universities(B07019)
文摘This paper focuses on the research of a semi-submersible platform equipped with a DP-assisted mooring system. Based on the working principles of the DP-assisted mooring system and the model of the platform motion, a time domain simulation program is applied to analyze the impact, in the case of one line failure, on the platform motion, power consumption of the thrusters and the tension of the mooring lines. The results show that, under the 10-year wind dominant, a one line failure will have little impact on the tension of the mooring lines. When the failure line is windward, the power consumption will increase greatly with a weakened position of accuracy. However when the failure line is leeward, the power consumption will be reduced with a partly strengthened oosition of accuracy.
基金provided by the National Natural Science Foundation of China(Nos.51322401,51309222,51323004,51579239 and 51574223)the Opening Project Fund of Shandong Provincial Key Laboratory of Civil Engineering Disaster Prevention and Mitigation(No.CDPM2014KF03)+2 种基金the State Key Laboratory for GeoMechanics Opening Project Fund of Shandong Provincial Key Laboratory of Civil Engineering Disaster Prevention and MitigationDeep Underground Engineering,China University of Mining&Technology(No.SKLGDUEK1305)China Postdoctoral Science Foundation(Nos.2014M551700and 2013M531424)
文摘Based on the safety coefficient method,which assigns rock failure criteria to calculate the rock mass unit,the safety coefficient contour of surrounding rock is plotted to judge the distribution form of the fractured zone in the roadway.This will provide the basis numerical simulation to calculate the surrounding rock fractured zone in a roadway.Using the single factor and multi-factor orthogonal test method,the evolution law of roadway surrounding rock displacements,plastic zone and stress distribution under different conditions is studied.It reveals the roadway surrounding rock burst evolution process,and obtains five kinds of failure modes in deep soft rock roadway.Using the fuzzy mathematics clustering analysis method,the deep soft surrounding rock failure model in Zhujixi mine can be classified and patterns recognized.Compared to the identification results and the results detected by geological radar of surrounding rock loose circle,the reliability of the results of the pattern recognition is verified and lays the foundations for the support design of deep soft rock roadways.
文摘Rainfall is one of the most important factors contributing to landslides, and gentle bedding incline, high-rainfall induced landslides are common throughout the world. Field observations and theoretical analyses have been used to assess slope instability caused by permeability variation. In this study, the influence of rainfall infiltration on gentle bedding incline slope behaviour was investigated using a centrifuge physical simulation test. The magnitude, pattern and development of pore water and earth pressure at the interface;the shear failure surface features;and the corresponding deformation and failure processes were considered. A model with interbedded sand and mud was created, and a centrifuge was used to simulate both natural and rainfall conditions. The weak intercalation was composed of single-material silty clay, and the landslide mass was composed of red-bed sandstone. A combination of photography, pore water pressure measurements and earth pressure measurements were used to examine the relationship between the pore water pressure, earth pressure and failure modes. When the slope experiences overall instability, the curves of the earth pressure and pore water pressure dramatically decrease. The results reveal that the failure shear surface largely depends on the differential creep caused by the properties of the rock mass and the rainfall infiltration.
基金National Natural Science Foundation of China(No.61304218)Beijing Natural Science Foundation,China(No.3153027)
文摘Electromechanical product's reliability is affected by uncertainty as well as performance degeneration during its life cycle.The present reliability and performance integrating modeling methods have obvious deficiencies in long period reliability analysis and assessment when applied to such system.A novel integrating modeling method based on physics of failure(PoF)and a simulation algorithm that considers uncertainty and degeneration are proposed in this paper to compute maintenance free operation period or maintenance free operation period survivability which is used to assess long period reliability of system.Furthermore,the concept design of this kind of software based on the above theory is also introduced.A case study of servo valve demonstrates the feasibility of the method and usability of the software in this research.
文摘A general failure probability simulation and deviation evaluation methods were presented for fuzzy safety state and fuzzy failure state. And the corresponding number integral method was simultaneously established. As the distribution of state variable and the membership of the state variable to the fuzzy safety set were normal, the general failure probability of the single failure mode had precise analytic solution, which was used to verify the precision of the presented methods. The results show that the evaluation of the simulation method convergences to the analytic solution with the number increase of the sampling. The above methods for the single failure mode was extended to the multi-mode by the expansion and probability principles. The presented methods were applied to the engineering problem. For the number of significant mode is not too many, the high precision solution can be given by the presented number simulation and number integral methods, which is illustrated by the engineering examples. In addition, the application scope of the methods was discussed.
文摘Based on an essential assumption of meso-heterogeneity of material, the macro characteristic of composite reinfiorced with particles, the crack initiation, propagation and the failure process in composite were studied by using a numerical code. The composite is subjected to a uniaxial tension, aact stiff or soft particles are distributed at random manner but without overlapping or contacting. The effect of reinforcement particle properties on the fracture process aact mechanism of composite with brittle matrix, furthermore, the influence of the particle volumetric fraction is also investigated. Numerical results present the different failure mode and re-produce the crack initiation, propagation aurl coalescence in brittle aurl heterogeneons matrix. The mechanism of sach failure was also elucidated.
基金The Development Program on National Key Basic Researches under the Project Mechanism and Prediction of Continental Strong Earthquakes (G19980407) State Natural Science Foundation (49974009).
文摘Considering the heterogeneity of geomechanical materials, seismicity during brittle rock failure under compressive loading on the sample with an original weak zone is simulated by using rock failure process analysis code (RFPA2D). The run-through process of weak zone, the forming of new fault and associated micro-seismicities are studied. The modeling demonstrates the total process of source development of earthquake from deformation, micro-failure to collapse and the behavior of temporal-spatial distribution of micro-seismicities. The stress, strain and the temporal-spatial distribution of micro-seismicities life-likely portrayed the phenomena of localization and temporal-spatial transitions, which is similar to those observed in our real crust. Also, the results obtained in simulations are in agreement with or similar to the reported experimental observations.
文摘The reliability assessment model of k /N system is built based on Copula function theory considering the failure correlativity existing among components,and then a simulation strategy is presented on the foundation of agent technique.The components and equipment entity model are designed according to the modeling technique above to describe the operation relationship during the mission phase,and then the simulation system for the assessment of product reliability is completed.And at last,an example is given with different material support programs.The research result has shown that the relevance existing in components has effect on the confirmation and optimization of maintenance strategy.
文摘The latticed dunes in the Tengger Desert are widely distributed,and the sand-blocking fence placed here are highly susceptible to local failure due to complex wind-sand activities,posing a serious threat to the safe operation of the highway.To explore the local failure mechanism of sand-blocking fence in the latticed dune area,the local failure of sand-blocking fence in the latticed dune areas along the Wuhai-Maqin Highway in China was observed.Taking the first main ridge of the latticed dune as the placement location,the structure of the wind-sand flow field of sand-blocking fence placed at top,the bottom and the middle of windward slope was analyzed by Computational Fluid Dynamics(CFD).The results show that when placed at top of the first main ridge,the wind speed near the sand-blocking fence is the highest,up to 15.23 m/s.Therefore,the wind load strength on the sand barrier is correspondingly larger,up to 232.61 N∙m-2.As the strength of material continues to decrease,the nylon net is prone to breakage.The roots of the angle steel posts are susceptible to hollowing by vortex action,which can cause sand-blocking fence to fall over in strong wind conditions.When placed at the bottom of windward slope,wind speed drop near sand-blocking fence is greatest,with the decrease of 12.48-14.32 m/s compared to the original wind speed.This is highly likely to lead to large-scale deposition of sand particles and burial of the sand-blocking fence.When placed in the middle of windward slope,sand-blocking fence is subjected to less wind load strength(168.61N∙m-2)and sand particles are mostly deposited at the bottom of windward slope,with only a small amount of sand accumulating at the root of sand-blocking fence.Based on field observations and numerical modelling results,when the sand-blocking fence is placed in latticed dune area,it should be placed in the middle of the windward slope of the first main ridge as a matter of priority.Besides the sand-blocking fence should be placed at the top of the first main ridge,and sand fixing measures should be added.
基金financially supported by the National Key R&D Program of China(Grant No.2022YFC2903901)Enlisting and Leading Project of the Key Scientific and Technological Innovation in Heilongjiang Province,China(Grant No.2021ZXJ02A03,04)the North China University of Water Resources and Electric Power Launch Fund for High-level Talents Research(Grant No.40937).
文摘To further study the load transfer mechanism of roofemulti-pillarefloor system during cascading pillar failure(CPF),numerical simulation and theoretical analysis were carried out to study the three CPF modes according to the previous experimental study on treble-pillar specimens,e.g.successive failure mode(SFM),domino failure mode(DFM)and compound failure mode(CFM).Based on the finite element code rock failure process analysis(RFPA^(2D)),numerical models of treble-pillar specimen with different mechanical properties were established to reproduce and verify the experimental results of the three CPF modes.Numerical results show that the elastic rebound of roofefloor system induced by pillar instability causes dynamic disturbance to adjacent pillars,resulting in sudden load increases and sudden jump displacement of adjacent pillars.The phenomena of load transfer in the roofemulti-pillarefloor system,as well as the induced accelerated damage behavior in adjacent pillars,were discovered and studied.In addition,based on the catastrophe theory and the proposed mechanical model of treble-pillar specimen edisc spring group system,a potential function that characterizes the evolution characteristics of roof emulti-pillarefloor system was established.The analytical expressions of sudden jump and energy release of treble-pillar specimenedisc spring group system of the three CPF modes were derived according to the potential function.The numerical and theoretical results show good agreement with the experimental results.This study further reveals the physical essence of load transfer during CPF of roof emulti-pillarefloor system,which provides references for mine design,construction and disaster prevention.
基金funded by the Sichuan Science and Technology Innovation Seedling Project Funding Project (Grant No.2021112).
文摘In the engineering.to ensure the quality and safety,it is necessary to carry out reliability analysis on it.When conducting reliability analysis in engineering.a 1arge rumber of small1 failure probability problems will be encountered.For such problems,the traditional Monte Carlo method needs a 1ot of samples,and the calculation efficiency is extremely 1ow,while the subset sinmulation method can efficiently estimate the relLability index of the small failure probability problem with litle samples.Therefore,this paper takes the application of the subset simulation method in the reliability analysis of the small failure probability structure as the object,constructs the reliability analysis method of the single failure mode of the system and applies the method to a mathematical example and a single-story gate.Through the rigid frame example,it can be seen that this method is beneficial to improve the calculation efficiency and accuracy.
基金funded by the National Natural Science Foundation of China(52074298)Beijing Municipal Natural Science Foundation(8232056)+1 种基金Guizhou Province science and technology plan project([2020]3008)Liulin Energy and Environment Academician Workstation(2022XDHZ12).
文摘Directional roof cutting(DRC)is one of the key techniques in non-pillar coal mining with self-formed entries(NCMSE)mining method.Due to the inability to accurately measure the expansion coefficient of the goaf rock mass,the implementation of this technology often encounters design challenges,leading to suboptimal results and increased costs.This paper establishes a structural analysis model of the goaf working face roof,revealing the failure mechanism of DRC,and clarifies the positive role of DRC in improving the stress of the roadway surrounding rock and reducing the subsidence of the roof through numerical simulation experiments.On this basis,the paper further analyses the roadway pressure and roof settlement under different DRC design heights,and ultimately proposes an optimized design method for the DRC height.The results indicate that the implementation of DRC can significantly optimize the stress environment of the working face roadway surrounding rock.At the same time,during the application of DRC,three scenarios may arise:insufficient,reasonable,and excessive DRC height.Insufficient height will significantly reduce the effectiveness of the technology,while excessive height has little impact on the implementation effect but will greatly increase construction costs and difficulty.Engineering verification shows that the optimized DRC design method proposed in this paper reduces the peak stress of the protective coal pillar in the roadway by 27.2%and the central subsidence of the roof by 41.8%,demonstrating excellent application results.This method provides technical support for the further promotion of NCMSE mining method.
基金supported by UT-Battelle,LLC under Contract No.DE-AC05-00OR22725 with the U.S.Department of Energy.
文摘Among various power system disturbances,cascading failures are considered the most serious and extreme threats to grid operations,potentially leading to significant stability issues or even widespread power blackouts.Simulating power systems’behaviors during cascading failures is of great importance to comprehend how failures originate and propagate,as well as to develop effective preventive and mitigative control strategies.The intricate mechanism of cascading failures,characterized by multi-timescale dynamics,presents exceptional challenges for their simulations.This paper provides a comprehensive review of simulation models for cascading failures,providing a systematic categorization and a comparison of these models.The challenges and potential research directions for the future are also discussed.
基金supported by the National Natural Science Foundation of China(No.52208500).
文摘Reinforced concrete(RC)slabs are the primary load-carrying member of underwater facilities.They can suffer severe local failures such as cratering,spalling,or breaching as a result of underwater close-in(UWCI)explosions.In this study,we established a fully validated high-fidelity finite element analysis approach to precisely reproduce the local failures of RC slabs after a UWCI explosion.A recently proposed dynamic constitutive model is used to describe wet concrete.The effects of free water content on the material properties,including the tensile/compressive strength,elastic modulus,strain rate effect,failure strength surface,and equation of state,are comprehensively calibrated based on existing test data.The calibrated material parameters are then verified by a single-element test.A high-fidelity finite element analysis(FEA)approach of an RC slab subjected to a UWCI explosion is established using an arbitrary Lagrangian-Eulerian(ALE)algorithm.Simulating previous UWCI explosion tests on RC orifice targets and underwater contact explosion tests on saturated concrete slabs showed that the established FEA approach could accurately reproduce the pressure-time history in water and damage patterns,including the cracking,cratering,and spalling,of the RC orifice target and saturated concrete slab.Furthermore,parametric studies conducted by simulating an RC slab subjected to a UWCI explosion showed that:(i)the local failure of an RC slab enlarges with increased charge weight,reduced standoff distance,and reduced structural thickness;(ii)compared to a water-backed RC slab,an air-backed RC slab exhibits much more obvious local and structural failure.Lastly,to aid the anti-explosion design of relevant underwater facilities,based on over 90 simulation cases empirical formulae are summarized to predict local failure modes,i.e.,no spall,spall,and breach,of water-and air-backed RC slabs subjected to a UWCI explosion.