Dear Editor,This letter presents a novel latent factorization model for high dimensional and incomplete (HDI) tensor, namely the neural Tucker factorization (Neu Tuc F), which is a generic neural network-based latent-...Dear Editor,This letter presents a novel latent factorization model for high dimensional and incomplete (HDI) tensor, namely the neural Tucker factorization (Neu Tuc F), which is a generic neural network-based latent-factorization-of-tensors model under the Tucker decomposition framework.展开更多
Substantial effects of photochemical reaction losses of volatile organic compounds(VOCs)on factor profiles can be investigated by comparing the differences between daytime and nighttime dispersion-normalized VOC data ...Substantial effects of photochemical reaction losses of volatile organic compounds(VOCs)on factor profiles can be investigated by comparing the differences between daytime and nighttime dispersion-normalized VOC data resolved profiles.Hourly speciated VOC data measured in Shijiazhuang,China from May to September 2021 were used to conduct study.The mean VOC concentration in the daytime and at nighttime were 32.8 and 36.0 ppbv,respectively.Alkanes and aromatics concentrations in the daytime(12.9 and 3.08 ppbv)were lower than nighttime(15.5 and 3.63 ppbv),whereas that of alkenes showed the opposite tendency.The concentration differences between daytime and nighttime for alkynes and halogenated hydrocarbonswere uniformly small.The reactivities of the dominant species in factor profiles for gasoline emissions,natural gas and diesel vehicles,and liquefied petroleum gas were relatively low and their profiles were less affected by photochemical losses.Photochemical losses produced a substantial impact on the profiles of solvent use,petrochemical industry emissions,combustion sources,and biogenic emissions where the dominant species in these factor profiles had high reactivities.Although the profile of biogenic emissions was substantially affected by photochemical loss of isoprene,the low emissions at nighttime also had an important impact on its profile.Chemical losses of highly active VOC species substantially reduced their concentrations in apportioned factor profiles.This study results were consistent with the analytical results obtained through initial concentration estimation,suggesting that the initial concentration estimation could be the most effective currently availablemethod for the source analyses of active VOCs although with uncertainty.展开更多
Data factors are becoming the core driving force in the intelligent transformation of libraries.Based on a systematic review of the progress in data governance practices in libraries both domestically and internationa...Data factors are becoming the core driving force in the intelligent transformation of libraries.Based on a systematic review of the progress in data governance practices in libraries both domestically and internationally,this study delves into the mechanism by which data governance promotes data factorization and proposes implementation paths for data governance oriented toward data factorization.The aim is to facilitate the intelligent transformation and high-quality development of libraries.展开更多
Fine particulatematter(PM_(2.5))samples were collected in two neighboring cities,Beijing and Baoding,China.High-concentration events of PM_(2.5) in which the average mass concentration exceeded 75μg/m^(3) were freque...Fine particulatematter(PM_(2.5))samples were collected in two neighboring cities,Beijing and Baoding,China.High-concentration events of PM_(2.5) in which the average mass concentration exceeded 75μg/m^(3) were frequently observed during the heating season.Dispersion Normalized Positive Matrix Factorization was applied for the source apportionment of PM_(2.5) as minimize the dilution effects of meteorology and better reflect the source strengths in these two cities.Secondary nitrate had the highest contribution for Beijing(37.3%),and residential heating/biomass burning was the largest for Baoding(27.1%).Secondary nitrate,mobile,biomass burning,district heating,oil combustion,aged sea salt sources showed significant differences between the heating and non-heating seasons in Beijing for same period(2019.01.10–2019.08.22)(Mann-Whitney Rank Sum Test P<0.05).In case of Baoding,soil,residential heating/biomass burning,incinerator,coal combustion,oil combustion sources showed significant differences.The results of Pearson correlation analysis for the common sources between the two cities showed that long-range transported sources and some sources with seasonal patterns such as oil combustion and soil had high correlation coefficients.Conditional Bivariate Probability Function(CBPF)was used to identify the inflow directions for the sources,and joint-PSCF(Potential Source Contribution Function)was performed to determine the common potential source areas for sources affecting both cities.These models facilitated a more precise verification of city-specific influences on PM_(2.5) sources.The results of this study will aid in prioritizing air pollution mitigation strategies during the heating season and strengthening air quality management to reduce the impact of downwind neighboring cities.展开更多
In this paper,a nonlinear control approach for an unstable networked plant in the presence of actuator and sensor limitations using robust right coprime factorization is proposed.The actuator is limited by upper and l...In this paper,a nonlinear control approach for an unstable networked plant in the presence of actuator and sensor limitations using robust right coprime factorization is proposed.The actuator is limited by upper and lower constraints and the sensor in the feedback loop is subjected to network-induced unknown time-varying delay and noise.With this nonlinear control method,we first employ right coprime factorization based on isomorphism and operator theory to factorize the plant,so that bounded input bounded output(BIBO)stability can be guaranteed.Next,continuous-time generalized predictive control(CGPC)is utilized for the unstable operator of the right coprime factorized plant to guarantee inner stability and enables the closed-loop dynamics of the system with predictive characteristics.Meanwhile,a second-Do F(degrees of freedom)switched controller that satisfies a perturbed Bezout identity and a robustness condition is designed.By using the CGPC controller that possesses predictive behavior and the second-Do F switched stabilizer,the overall stability of the plant subjected to actuator limitations is guaranteed.To address sensor limitations that exist in networked plants in the form of delay and noise which often cause system performance degradation,we implement an identity operator definition in the feedback loop to compensate for these adverse effects.Further,a pre-operator is designed to ensure that the plant output tracks the reference input.Finally,the effectiveness of the proposed design scheme is demonstrated by simulations.展开更多
CircRNAs,widely found throughout the human bodies,play a crucial role in regulating various biological processes and are closely linked to complex human diseases.Investigating potential associations between circRNAs a...CircRNAs,widely found throughout the human bodies,play a crucial role in regulating various biological processes and are closely linked to complex human diseases.Investigating potential associations between circRNAs and diseases can enhance our understanding of diseases and provide new strategies and tools for early diagnosis,treatment,and disease prevention.However,existing models have limitations in accurately capturing similarities,handling the sparse and noise attributes of association networks,and fully leveraging bioinformatical aspects from multiple viewpoints.To address these issues,this study introduces a new non-negative matrix factorization-based framework called NMFMSN.First,we incorporate circRNA sequence data and disease semantic information to compute circRNA and disease similarity,respectively.Given the sparse known associations between circRNAs and diseases,we reconstruct the network to complete more associations by imputing missing links based on neighboring circRNA and disease interactions.Finally,we integrate these two similarity networks into a non-negative matrix factorization framework to identify potential circRNA-disease associations.Upon conducting 5-fold cross-validation and leave-one-out cross-validation,the AUC values for NMFMSN reach 0.9712 and 0.9768,respectively,outperforming the currently most advanced models.Case studies on lung cancer and hepatocellular carcinoma show that NMFMSN is a good way to predict new associations between circRNAs and diseases.展开更多
Dear Editor,This letter presents a latent-factorization-of-tensors(LFT)-incorporated battery cycle life prediction framework.Data-driven prognosis and health management(PHM)for battery pack(BP)can boost the safety and...Dear Editor,This letter presents a latent-factorization-of-tensors(LFT)-incorporated battery cycle life prediction framework.Data-driven prognosis and health management(PHM)for battery pack(BP)can boost the safety and sustainability of a battery management system(BMS),which relies heavily on the quality of the measured BP data like the voltage(V),current(I),and temperature(T).展开更多
Aiming at the problems of bispectral analysis when applied to machinery fault diagnosis, a machinery fault feature extraction method based on sparseness-controlled non-negative tensor factorization (SNTF) is propose...Aiming at the problems of bispectral analysis when applied to machinery fault diagnosis, a machinery fault feature extraction method based on sparseness-controlled non-negative tensor factorization (SNTF) is proposed. First, a non-negative tensor factorization(NTF) algorithm is improved by imposing sparseness constraints on it. Secondly, the bispectral images of mechanical signals are obtained and stacked to form a third-order tensor. Thirdly, the improved algorithm is used to extract features, which are represented by a series of basis images from this tensor. Finally, coefficients indicating these basis images' weights in constituting original bispectral images are calculated for fault classification. Experiments on fault diagnosis of gearboxes show that the extracted features can not only reveal some nonlinear characteristics of the system, but also have intuitive meanings with regard to fault characteristic frequencies. These features provide great convenience for the interpretation of the relationships between machinery faults and corresponding bispectra.展开更多
Aiming at the slow convergence and low accuracy problems of the traditional non-negative tensor factorization, a local hierarchical non-negative tensor factorization method is proposed by applying the local objective ...Aiming at the slow convergence and low accuracy problems of the traditional non-negative tensor factorization, a local hierarchical non-negative tensor factorization method is proposed by applying the local objective function theory to non- negative tensor factorization and combining the three semi-non- negative matrix factorization(NMF) model. The effectiveness of the method is verified by the facial feature extraction experiment. Through the decomposition of a series of an air compressor's vibration signals composed in the form of a bispectrum by this new method, the basis images representing the fault features and corresponding weight matrices are obtained. Then the relationships between characteristics and faults are analyzed and the fault types are classified by importing the weight matrices into the BP neural network. Experimental results show that the accuracy of fault diagnosis is improved by this new method compared with other feature extraction methods.展开更多
In this paper, it is shown that a sufficient condition for the existence of a K 1,p k factorization of K m,n , whenever p is a prime number and k is a positive integer, is (1) m≤p kn,(2...In this paper, it is shown that a sufficient condition for the existence of a K 1,p k factorization of K m,n , whenever p is a prime number and k is a positive integer, is (1) m≤p kn,(2) n≤p km,(3)p kn-m≡p km-n ≡0(mod( p 2k -1 )) and (4) (p kn-m)(p km-n) ≡0(mod( p k -1)p k×(p 2k -1)(m+n)) .展开更多
Spinal cord injury represents a severe form of central nervous system trauma for which effective treatments remain limited.Microglia is the resident immune cells of the central nervous system,play a critical role in s...Spinal cord injury represents a severe form of central nervous system trauma for which effective treatments remain limited.Microglia is the resident immune cells of the central nervous system,play a critical role in spinal cord injury.Previous studies have shown that microglia can promote neuronal survival by phagocytosing dead cells and debris and by releasing neuroprotective and anti-inflammatory factors.However,excessive activation of microglia can lead to persistent inflammation and contribute to the formation of glial scars,which hinder axonal regeneration.Despite this,the precise role and mechanisms of microglia during the acute phase of spinal cord injury remain controversial and poorly understood.To elucidate the role of microglia in spinal cord injury,we employed the colony-stimulating factor 1 receptor inhibitor PLX5622 to deplete microglia.We observed that sustained depletion of microglia resulted in an expansion of the lesion area,downregulation of brain-derived neurotrophic factor,and impaired functional recovery after spinal cord injury.Next,we generated a transgenic mouse line with conditional overexpression of brain-derived neurotrophic factor specifically in microglia.We found that brain-derived neurotrophic factor overexpression in microglia increased angiogenesis and blood flow following spinal cord injury and facilitated the recovery of hindlimb motor function.Additionally,brain-derived neurotrophic factor overexpression in microglia reduced inflammation and neuronal apoptosis during the acute phase of spinal cord injury.Furthermore,through using specific transgenic mouse lines,TMEM119,and the colony-stimulating factor 1 receptor inhibitor PLX73086,we demonstrated that the neuroprotective effects were predominantly due to brain-derived neurotrophic factor overexpression in microglia rather than macrophages.In conclusion,our findings suggest the critical role of microglia in the formation of protective glial scars.Depleting microglia is detrimental to recovery of spinal cord injury,whereas targeting brain-derived neurotrophic factor overexpression in microglia represents a promising and novel therapeutic strategy to enhance motor function recovery in patients with spinal cord injury.展开更多
目的探讨动脉粥样硬化(AS)患者口腔菌群多样性与炎症因子水平的特征及关联。方法纳入AS患者50例与健康对照50例,采集唾液和血样进行16S rRNA测序、IL-6、IL-1β、TNF-α、CRP检测;比较两组菌群结构与炎症指标差异,并进行Spearman相关和...目的探讨动脉粥样硬化(AS)患者口腔菌群多样性与炎症因子水平的特征及关联。方法纳入AS患者50例与健康对照50例,采集唾液和血样进行16S rRNA测序、IL-6、IL-1β、TNF-α、CRP检测;比较两组菌群结构与炎症指标差异,并进行Spearman相关和多因素回归分析。结果AS组IL-6、IL-1β、TNF-α、CRP水平均显著高于对照组(IL-6:8.24±2.15 vs 6.15±1.76,P<0.01;CRP:7.42±2.41 vs 3.98±1.57,P<0.01);口腔菌群Shannon指数低于对照组(4.38±0.55 vs 4.61±0.52,P=0.040);Fusobacterium与CRP、IL-6正相关(r=0.41、0.36,均P<0.05)。多因素回归提示Fusobacterium丰度及IL-6、CRP水平均为AS潜在危险因素。结论AS患者口腔菌群多样性下降伴随炎症显著增高,二者或通过免疫和代谢途径相互作用,为AS的风险评估与干预策略提供新的思路。展开更多
Border-associated macrophages are located at the interface between the brain and the periphery, including the perivascular spaces, choroid plexus, and meninges. Until recently, the functions of border-associated macro...Border-associated macrophages are located at the interface between the brain and the periphery, including the perivascular spaces, choroid plexus, and meninges. Until recently, the functions of border-associated macrophages have been poorly understood and largely overlooked. However, a recent study reported that border-associated macrophages participate in stroke-induced inflammation, although many details and the underlying mechanisms remain unclear. In this study, we performed a comprehensive single-cell analysis of mouse border-associated macrophages using sequencing data obtained from the Gene Expression Omnibus(GEO) database(GSE174574 and GSE225948). Differentially expressed genes were identified, and enrichment analysis was performed to identify the transcription profile of border-associated macrophages. CellChat analysis was conducted to determine the cell communication network of border-associated macrophages. Transcription factors were predicted using the ‘pySCENIC' tool. We found that, in response to hypoxia, borderassociated macrophages underwent dynamic transcriptional changes and participated in the regulation of inflammatory-related pathways. Notably, the tumor necrosis factor pathway was activated by border-associated macrophages following ischemic stroke. The pySCENIC analysis indicated that the activity of signal transducer and activator of transcription 3(Stat3) was obviously upregulated in stroke, suggesting that Stat3 inhibition may be a promising strategy for treating border-associated macrophages-induced neuroinflammation. Finally, we constructed an animal model to investigate the effects of border-associated macrophages depletion following a stroke. Treatment with liposomes containing clodronate significantly reduced infarct volume in the animals and improved neurological scores compared with untreated animals. Taken together, our results demonstrate comprehensive changes in border-associated macrophages following a stroke, providing a theoretical basis for targeting border-associated macrophages-induced neuroinflammation in stroke treatment.展开更多
基金supported by the National Natural Science Foundation of China(62272078)Chongqing Natural Science Foundation(CSTB2023NSCQ-LZX0069)the Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202300210)
文摘Dear Editor,This letter presents a novel latent factorization model for high dimensional and incomplete (HDI) tensor, namely the neural Tucker factorization (Neu Tuc F), which is a generic neural network-based latent-factorization-of-tensors model under the Tucker decomposition framework.
基金supported by the National Key R&D Program of China(No.2023YFC3705801)the National Natural Science Foundation of China(No.42177085).
文摘Substantial effects of photochemical reaction losses of volatile organic compounds(VOCs)on factor profiles can be investigated by comparing the differences between daytime and nighttime dispersion-normalized VOC data resolved profiles.Hourly speciated VOC data measured in Shijiazhuang,China from May to September 2021 were used to conduct study.The mean VOC concentration in the daytime and at nighttime were 32.8 and 36.0 ppbv,respectively.Alkanes and aromatics concentrations in the daytime(12.9 and 3.08 ppbv)were lower than nighttime(15.5 and 3.63 ppbv),whereas that of alkenes showed the opposite tendency.The concentration differences between daytime and nighttime for alkynes and halogenated hydrocarbonswere uniformly small.The reactivities of the dominant species in factor profiles for gasoline emissions,natural gas and diesel vehicles,and liquefied petroleum gas were relatively low and their profiles were less affected by photochemical losses.Photochemical losses produced a substantial impact on the profiles of solvent use,petrochemical industry emissions,combustion sources,and biogenic emissions where the dominant species in these factor profiles had high reactivities.Although the profile of biogenic emissions was substantially affected by photochemical loss of isoprene,the low emissions at nighttime also had an important impact on its profile.Chemical losses of highly active VOC species substantially reduced their concentrations in apportioned factor profiles.This study results were consistent with the analytical results obtained through initial concentration estimation,suggesting that the initial concentration estimation could be the most effective currently availablemethod for the source analyses of active VOCs although with uncertainty.
文摘Data factors are becoming the core driving force in the intelligent transformation of libraries.Based on a systematic review of the progress in data governance practices in libraries both domestically and internationally,this study delves into the mechanism by which data governance promotes data factorization and proposes implementation paths for data governance oriented toward data factorization.The aim is to facilitate the intelligent transformation and high-quality development of libraries.
基金supported by the National Institute of Environmental Research(NIER)funded by the Ministry of Environment(No.NIER-2019-04-02-039)supported by Particulate Matter Management Specialized Graduate Program through the Korea Environmental Industry&Technology Institute(KEITI)funded by the Ministry of Environment(MOE).
文摘Fine particulatematter(PM_(2.5))samples were collected in two neighboring cities,Beijing and Baoding,China.High-concentration events of PM_(2.5) in which the average mass concentration exceeded 75μg/m^(3) were frequently observed during the heating season.Dispersion Normalized Positive Matrix Factorization was applied for the source apportionment of PM_(2.5) as minimize the dilution effects of meteorology and better reflect the source strengths in these two cities.Secondary nitrate had the highest contribution for Beijing(37.3%),and residential heating/biomass burning was the largest for Baoding(27.1%).Secondary nitrate,mobile,biomass burning,district heating,oil combustion,aged sea salt sources showed significant differences between the heating and non-heating seasons in Beijing for same period(2019.01.10–2019.08.22)(Mann-Whitney Rank Sum Test P<0.05).In case of Baoding,soil,residential heating/biomass burning,incinerator,coal combustion,oil combustion sources showed significant differences.The results of Pearson correlation analysis for the common sources between the two cities showed that long-range transported sources and some sources with seasonal patterns such as oil combustion and soil had high correlation coefficients.Conditional Bivariate Probability Function(CBPF)was used to identify the inflow directions for the sources,and joint-PSCF(Potential Source Contribution Function)was performed to determine the common potential source areas for sources affecting both cities.These models facilitated a more precise verification of city-specific influences on PM_(2.5) sources.The results of this study will aid in prioritizing air pollution mitigation strategies during the heating season and strengthening air quality management to reduce the impact of downwind neighboring cities.
文摘In this paper,a nonlinear control approach for an unstable networked plant in the presence of actuator and sensor limitations using robust right coprime factorization is proposed.The actuator is limited by upper and lower constraints and the sensor in the feedback loop is subjected to network-induced unknown time-varying delay and noise.With this nonlinear control method,we first employ right coprime factorization based on isomorphism and operator theory to factorize the plant,so that bounded input bounded output(BIBO)stability can be guaranteed.Next,continuous-time generalized predictive control(CGPC)is utilized for the unstable operator of the right coprime factorized plant to guarantee inner stability and enables the closed-loop dynamics of the system with predictive characteristics.Meanwhile,a second-Do F(degrees of freedom)switched controller that satisfies a perturbed Bezout identity and a robustness condition is designed.By using the CGPC controller that possesses predictive behavior and the second-Do F switched stabilizer,the overall stability of the plant subjected to actuator limitations is guaranteed.To address sensor limitations that exist in networked plants in the form of delay and noise which often cause system performance degradation,we implement an identity operator definition in the feedback loop to compensate for these adverse effects.Further,a pre-operator is designed to ensure that the plant output tracks the reference input.Finally,the effectiveness of the proposed design scheme is demonstrated by simulations.
基金the Gansu Province Industrial Support Plan(No.2023CYZC-25)Natural Science Foundation of Gansu Province(No.23JRRA770)the National Natural Science Foundation of China(No.62162040)。
文摘CircRNAs,widely found throughout the human bodies,play a crucial role in regulating various biological processes and are closely linked to complex human diseases.Investigating potential associations between circRNAs and diseases can enhance our understanding of diseases and provide new strategies and tools for early diagnosis,treatment,and disease prevention.However,existing models have limitations in accurately capturing similarities,handling the sparse and noise attributes of association networks,and fully leveraging bioinformatical aspects from multiple viewpoints.To address these issues,this study introduces a new non-negative matrix factorization-based framework called NMFMSN.First,we incorporate circRNA sequence data and disease semantic information to compute circRNA and disease similarity,respectively.Given the sparse known associations between circRNAs and diseases,we reconstruct the network to complete more associations by imputing missing links based on neighboring circRNA and disease interactions.Finally,we integrate these two similarity networks into a non-negative matrix factorization framework to identify potential circRNA-disease associations.Upon conducting 5-fold cross-validation and leave-one-out cross-validation,the AUC values for NMFMSN reach 0.9712 and 0.9768,respectively,outperforming the currently most advanced models.Case studies on lung cancer and hepatocellular carcinoma show that NMFMSN is a good way to predict new associations between circRNAs and diseases.
文摘Dear Editor,This letter presents a latent-factorization-of-tensors(LFT)-incorporated battery cycle life prediction framework.Data-driven prognosis and health management(PHM)for battery pack(BP)can boost the safety and sustainability of a battery management system(BMS),which relies heavily on the quality of the measured BP data like the voltage(V),current(I),and temperature(T).
基金The National Natural Science Foundation of China (No.50875048)the Natural Science Foundation of Jiangsu Province (No.BK2007115)the National High Technology Research and Development Program of China (863 Program)(No.2007AA04Z421)
文摘Aiming at the problems of bispectral analysis when applied to machinery fault diagnosis, a machinery fault feature extraction method based on sparseness-controlled non-negative tensor factorization (SNTF) is proposed. First, a non-negative tensor factorization(NTF) algorithm is improved by imposing sparseness constraints on it. Secondly, the bispectral images of mechanical signals are obtained and stacked to form a third-order tensor. Thirdly, the improved algorithm is used to extract features, which are represented by a series of basis images from this tensor. Finally, coefficients indicating these basis images' weights in constituting original bispectral images are calculated for fault classification. Experiments on fault diagnosis of gearboxes show that the extracted features can not only reveal some nonlinear characteristics of the system, but also have intuitive meanings with regard to fault characteristic frequencies. These features provide great convenience for the interpretation of the relationships between machinery faults and corresponding bispectra.
基金The National Natural Science Foundation of China(No.50875078)the Natural Science Foundation of Jiangsu Province(No.BK2007115)the National High Technology Research and Development Program of China(863 Program)(No.2007AA04Z421)
文摘Aiming at the slow convergence and low accuracy problems of the traditional non-negative tensor factorization, a local hierarchical non-negative tensor factorization method is proposed by applying the local objective function theory to non- negative tensor factorization and combining the three semi-non- negative matrix factorization(NMF) model. The effectiveness of the method is verified by the facial feature extraction experiment. Through the decomposition of a series of an air compressor's vibration signals composed in the form of a bispectrum by this new method, the basis images representing the fault features and corresponding weight matrices are obtained. Then the relationships between characteristics and faults are analyzed and the fault types are classified by importing the weight matrices into the BP neural network. Experimental results show that the accuracy of fault diagnosis is improved by this new method compared with other feature extraction methods.
文摘In this paper, it is shown that a sufficient condition for the existence of a K 1,p k factorization of K m,n , whenever p is a prime number and k is a positive integer, is (1) m≤p kn,(2) n≤p km,(3)p kn-m≡p km-n ≡0(mod( p 2k -1 )) and (4) (p kn-m)(p km-n) ≡0(mod( p k -1)p k×(p 2k -1)(m+n)) .
基金supported by the National Natural Science Foundation of China,Nos.82072165 and 82272256(both to XM)the Key Project of Xiangyang Central Hospital,No.2023YZ03(to RM)。
文摘Spinal cord injury represents a severe form of central nervous system trauma for which effective treatments remain limited.Microglia is the resident immune cells of the central nervous system,play a critical role in spinal cord injury.Previous studies have shown that microglia can promote neuronal survival by phagocytosing dead cells and debris and by releasing neuroprotective and anti-inflammatory factors.However,excessive activation of microglia can lead to persistent inflammation and contribute to the formation of glial scars,which hinder axonal regeneration.Despite this,the precise role and mechanisms of microglia during the acute phase of spinal cord injury remain controversial and poorly understood.To elucidate the role of microglia in spinal cord injury,we employed the colony-stimulating factor 1 receptor inhibitor PLX5622 to deplete microglia.We observed that sustained depletion of microglia resulted in an expansion of the lesion area,downregulation of brain-derived neurotrophic factor,and impaired functional recovery after spinal cord injury.Next,we generated a transgenic mouse line with conditional overexpression of brain-derived neurotrophic factor specifically in microglia.We found that brain-derived neurotrophic factor overexpression in microglia increased angiogenesis and blood flow following spinal cord injury and facilitated the recovery of hindlimb motor function.Additionally,brain-derived neurotrophic factor overexpression in microglia reduced inflammation and neuronal apoptosis during the acute phase of spinal cord injury.Furthermore,through using specific transgenic mouse lines,TMEM119,and the colony-stimulating factor 1 receptor inhibitor PLX73086,we demonstrated that the neuroprotective effects were predominantly due to brain-derived neurotrophic factor overexpression in microglia rather than macrophages.In conclusion,our findings suggest the critical role of microglia in the formation of protective glial scars.Depleting microglia is detrimental to recovery of spinal cord injury,whereas targeting brain-derived neurotrophic factor overexpression in microglia represents a promising and novel therapeutic strategy to enhance motor function recovery in patients with spinal cord injury.
文摘目的探讨动脉粥样硬化(AS)患者口腔菌群多样性与炎症因子水平的特征及关联。方法纳入AS患者50例与健康对照50例,采集唾液和血样进行16S rRNA测序、IL-6、IL-1β、TNF-α、CRP检测;比较两组菌群结构与炎症指标差异,并进行Spearman相关和多因素回归分析。结果AS组IL-6、IL-1β、TNF-α、CRP水平均显著高于对照组(IL-6:8.24±2.15 vs 6.15±1.76,P<0.01;CRP:7.42±2.41 vs 3.98±1.57,P<0.01);口腔菌群Shannon指数低于对照组(4.38±0.55 vs 4.61±0.52,P=0.040);Fusobacterium与CRP、IL-6正相关(r=0.41、0.36,均P<0.05)。多因素回归提示Fusobacterium丰度及IL-6、CRP水平均为AS潜在危险因素。结论AS患者口腔菌群多样性下降伴随炎症显著增高,二者或通过免疫和代谢途径相互作用,为AS的风险评估与干预策略提供新的思路。
基金supported by Qingdao Key Medical and Health Discipline ProjectThe Intramural Research Program of the Affiliated Hospital of Qingdao University,No. 4910Qingdao West Coast New Area Science and Technology Project,No. 2020-55 (all to SW)。
文摘Border-associated macrophages are located at the interface between the brain and the periphery, including the perivascular spaces, choroid plexus, and meninges. Until recently, the functions of border-associated macrophages have been poorly understood and largely overlooked. However, a recent study reported that border-associated macrophages participate in stroke-induced inflammation, although many details and the underlying mechanisms remain unclear. In this study, we performed a comprehensive single-cell analysis of mouse border-associated macrophages using sequencing data obtained from the Gene Expression Omnibus(GEO) database(GSE174574 and GSE225948). Differentially expressed genes were identified, and enrichment analysis was performed to identify the transcription profile of border-associated macrophages. CellChat analysis was conducted to determine the cell communication network of border-associated macrophages. Transcription factors were predicted using the ‘pySCENIC' tool. We found that, in response to hypoxia, borderassociated macrophages underwent dynamic transcriptional changes and participated in the regulation of inflammatory-related pathways. Notably, the tumor necrosis factor pathway was activated by border-associated macrophages following ischemic stroke. The pySCENIC analysis indicated that the activity of signal transducer and activator of transcription 3(Stat3) was obviously upregulated in stroke, suggesting that Stat3 inhibition may be a promising strategy for treating border-associated macrophages-induced neuroinflammation. Finally, we constructed an animal model to investigate the effects of border-associated macrophages depletion following a stroke. Treatment with liposomes containing clodronate significantly reduced infarct volume in the animals and improved neurological scores compared with untreated animals. Taken together, our results demonstrate comprehensive changes in border-associated macrophages following a stroke, providing a theoretical basis for targeting border-associated macrophages-induced neuroinflammation in stroke treatment.