期刊文献+
共找到2,229篇文章
< 1 2 112 >
每页显示 20 50 100
可溶性fms样酪氨酸激酶1与胎盘生长因子比值用于预测子痫前期的研究进展
1
作者 雷银 沙梦晗 +2 位作者 尹恒 陈湘漪 赵云 《武汉大学学报(医学版)》 2025年第9期1203-1210,共8页
子痫前期(PE)是妊娠并发症之一,涉及母体多系统,与母儿的发病率密切相关。目前PE发病机制仍不明确,治疗手段有限,因此,预测PE以便及时采取相应防治措施成为关注的重点。尽管诸多文献已对可溶性fms样酪氨酸激酶1(sFlt-1)与胎盘生长因子(P... 子痫前期(PE)是妊娠并发症之一,涉及母体多系统,与母儿的发病率密切相关。目前PE发病机制仍不明确,治疗手段有限,因此,预测PE以便及时采取相应防治措施成为关注的重点。尽管诸多文献已对可溶性fms样酪氨酸激酶1(sFlt-1)与胎盘生长因子(PLGF)预测PE进行研究和总结,但目前此比值预测和排除PE的具体标准尚未形成共识。通过查阅、梳理相关文献,本文系统介绍了PE与sFlt-1、PLGF及其比值相关的作用机制,总结了不同妊娠时期sFlt-1/PLGF预测PE发生、进展及结局的研究成果,以期为PE的预测及风险评估提供一定的参考价值和证据支持。 展开更多
关键词 子痫前期 可溶性fms样酪氨酸激酶1 胎盘生长因子 生物标志物
原文传递
Development and validation of a machine learning model for diagnosis of ischemic heart disease using single-lead electrocardiogram parameters 被引量:1
2
作者 Basheer Abdullah Marzoog Peter Chomakhidze +11 位作者 Daria Gognieva Artemiy Silantyev Alexander Suvorov Magomed Abdullaev Natalia Mozzhukhina Darya Alexandrovna Filippova Sergey Vladimirovich Kostin Maria Kolpashnikova Natalya Ershova Nikolay Ushakov Dinara Mesitskaya Philipp Kopylov 《World Journal of Cardiology》 2025年第4期76-92,共17页
BACKGROUND Ischemic heart disease(IHD)impacts the quality of life and has the highest mortality rate of cardiovascular diseases globally.AIM To compare variations in the parameters of the single-lead electrocardiogram... BACKGROUND Ischemic heart disease(IHD)impacts the quality of life and has the highest mortality rate of cardiovascular diseases globally.AIM To compare variations in the parameters of the single-lead electrocardiogram(ECG)during resting conditions and physical exertion in individuals diagnosed with IHD and those without the condition using vasodilator-induced stress computed tomography(CT)myocardial perfusion imaging as the diagnostic reference standard.METHODS This single center observational study included 80 participants.The participants were aged≥40 years and given an informed written consent to participate in the study.Both groups,G1(n=31)with and G2(n=49)without post stress induced myocardial perfusion defect,passed cardiologist consultation,anthropometric measurements,blood pressure and pulse rate measurement,echocardiography,cardio-ankle vascular index,bicycle ergometry,recording 3-min single-lead ECG(Cardio-Qvark)before and just after bicycle ergometry followed by performing CT myocardial perfusion.The LASSO regression with nested cross-validation was used to find the association between Cardio-Qvark parameters and the existence of the perfusion defect.Statistical processing was performed with the R programming language v4.2,Python v.3.10[^R],and Statistica 12 program.RESULTS Bicycle ergometry yielded an area under the receiver operating characteristic curve of 50.7%[95%confidence interval(CI):0.388-0.625],specificity of 53.1%(95%CI:0.392-0.673),and sensitivity of 48.4%(95%CI:0.306-0.657).In contrast,the Cardio-Qvark test performed notably better with an area under the receiver operating characteristic curve of 67%(95%CI:0.530-0.801),specificity of 75.5%(95%CI:0.628-0.88),and sensitivity of 51.6%(95%CI:0.333-0.695).CONCLUSION The single-lead ECG has a relatively higher diagnostic accuracy compared with bicycle ergometry by using machine learning models,but the difference was not statistically significant.However,further investigations are required to uncover the hidden capabilities of single-lead ECG in IHD diagnosis. 展开更多
关键词 Ischemic heart disease Single-lead electrocardiography Computed tomography myocardial perfusion Prevention Risk factors Stress test machine learning model
暂未订购
Predicting chemotherapy-induced myelosuppression in colorectal cancer:An interpretable,machine learning-based nomogram
3
作者 Yu-Ming Liu Yan-Yuan Du +10 位作者 Ying Song Hong-Tai Xiong Hui-Bo Yu Bai-Hui Li Liu Cai Su-Su Ma Jin Gao Han-Yue Zhang Rui-Ying Fang Rui Cai Hong-Gang Zheng 《World Journal of Gastroenterology》 2025年第42期114-134,共21页
BACKGROUND Colorectal cancer is a common digestive malignancy,and chemotherapy remains a cornerstone of treatment.Myelosuppression,a frequent hematologic toxicity,poses significant clinical challenges.However,no inter... BACKGROUND Colorectal cancer is a common digestive malignancy,and chemotherapy remains a cornerstone of treatment.Myelosuppression,a frequent hematologic toxicity,poses significant clinical challenges.However,no interpretable machine learning-based nomogram exists to predict chemotherapy-induced myelosuppression in colorectal cancer patients.This study aimed to develop and validate an inter-pretable clinic-machine learning nomogram integrating clinical predictors with multiple algorithms via a feature mapping algorithm.The model provides accurate risk estimation and clinical interpretability,supporting individualized prevention strategies and optimizing decision-making in patients receiving first-line chemotherapy.AIM To develop and validate an interpretable clinic-machine learning nomogram predicting chemotherapy-induced myelosuppression in colorectal cancer.METHODS This retrospective study enrolled 855 colorectal cancer patients receiving first-line chemotherapy.Data were split into training(n=612),validation(n=153),and testing(n=90)cohorts.Ten predictors were identified through least absolute shrinkage and selection operator,decision tree,random forest,and expert con-sensus.Ten machine learning algorithms were applied,with performance assessed by area under the receiver operating characteristic curve(AUC),area under the precision-recall curve(AUPRC),calibration,and decision curves.The optimal model was integrated into a clinic-machine learning nomogram via the feature mapping algorithm,which was internally validated for predictive accuracy and clinical utility.(AUPRC),calibration,and decision curves.The optimal model was integrated into a clinic-machine learning nomogram via the feature mapping algorithm,which was internally validated for predictive accuracy and clinical utility.RESULTS A total of 855 colorectal cancer patients were enrolled,with 765 cases(April 2020 to December 2023)used for model training and validation,and 90 cases(January 2024 to July 2024)for internal testing.Baseline clinical features did not differ significantly between training and validation cohorts(P>0.05).Ten predictors were identified through integrated feature selection and expert consensus,including age,body surface area,body mass index,tumor position,albumin,carcinoembryonic antigen,carbohydrate antigen(CA)19-9,CA125,chemotherapy regimen,and chemotherapy cycles.Among ten machine learning algorithms,extreme gradient boosting achieved the best validation performance(AUC=0.97,AUPRC=0.92,sensitivity=0.79,specificity=0.92,accuracy=0.88).Logistic regression confirmed extra trees and random forest as independent predictors,which were incorporated into a clinic-machine learning nomogram.The clinic-machine learning nomogram demonstrated superior discrimination(AUC=0.96,AUPRC=0.93,accuracy=0.90,specificity=0.95),good calibration,and greater net clinical benefit across a wide probability range(10%-90%).Internal testing further confirmed its robustness and generalizability(AUC=0.95).CONCLUSION The clinic-machine learning nomogram accurately predicts chemotherapy-induced myelosuppression in colorectal cancer,providing interpretability and clinical utility to support individualized risk assessment and treatment decision-making. 展开更多
关键词 Colorectal cancer Chemotherapy-induced myelosuppression machine learning NOMOGRAM Risk factors
暂未订购
Identifying the key influencing factors of psychological birth trauma in primiparous women with interpretable machine learning
4
作者 Yuze Wu Fengling Li +5 位作者 Huilan Shu Siyuan Li Lijun Cui Min Tan Lanjun Luo Xuemei Wei 《International Journal of Nursing Sciences》 2025年第3期253-260,共8页
Objective Accurately identifying the key influencing factors of psychological birth trauma in primiparous women is crucial for implementing effective preventive and intervention measures.This study aimed to develop an... Objective Accurately identifying the key influencing factors of psychological birth trauma in primiparous women is crucial for implementing effective preventive and intervention measures.This study aimed to develop and validate an interpretable machine learning prediction model for identifying the key influencing factors of psychological birth trauma in primiparous women.Methods A multicenter cross-sectional study was conducted on primiparous women in four tertiary hospitals in Sichuan Province,southwestern China,from December 2023 to March 2024.The Childbirth Trauma Index was used in assessing psychological birth trauma in primiparous women.Data were collected and randomly divided into a training set(80%,n=289)and a testing set(20%,n=73).Six different machine learning models were trained and tested.Training and prediction were conducted using six machine learning models included Linear Regression,Support Vector Regression,Multilayer Perceptron Regression,eXtreme Gradient Boosting Regression,Random Forest Regression,and Adaptive Boosting Regression.The optimal model was selected based on various performance metrics,and its predictive results were interpreted using SHapley Additive exPlanations(SHAP)and accumulated local effects(ALE).Results Among the six machine learning models,the Multilayer Perceptron Regression model exhibited the best overall performance in the testing set(MAE=3.977,MSE=24.832,R2=0.507,EVS=0.524,RMSE=4.983).In the testing set,the R2 and EVS of the Multilayer Perceptron Regression model increased by 8.3%and 1.2%,respectively,compared to the traditional linear regression model.Meanwhile,the MAE,MSE,and RMSE decreased by 0.4%,7.3%,and 3.7%,respectively,compared to the traditional linear regression model.The SHAP analysis indicated that intrapartum pain,anxiety,postpartum pain,resilience,and planned pregnancy are the most critical influencing factors of psychological birth trauma in primiparous women.The ALE analysis indicated that higher intrapartum pain,anxiety,and postpartum pain scores are risk factors,while higher resilience scores are protective factors.Conclusions Interpretable machine learning prediction models can identify the key influencing factors of psychological birth trauma in primiparous women.SHAP and ALE analyses based on the Multilayer Perceptron Regression model can help healthcare providers understand the complex decision-making logic within a prediction model.This study provides a scientific basis for the early prevention and personalized intervention of psychological birth trauma in primiparous women. 展开更多
关键词 Influencing factor machine learning Primiparous women Psychological birth trauma
暂未订购
Machine learning for modeling and identifying risk factors of pancreatic fistula
5
作者 Mikhail B Potievskiy Leonid O Petrov +6 位作者 Sergei A Ivanov Pavel V Sokolov Vladimir S Trifanov Nikolai A Grishin Ruslan I Moshurov Peter V Shegai Andrei D Kaprin 《World Journal of Gastrointestinal Oncology》 2025年第4期104-115,共12页
BACKGROUND Pancreatic fistula is the most common complication of pancreatic surgeries that causes more serious conditions,including bleeding due to visceral vessel erosion and peritonitis.AIM To develop a machine lear... BACKGROUND Pancreatic fistula is the most common complication of pancreatic surgeries that causes more serious conditions,including bleeding due to visceral vessel erosion and peritonitis.AIM To develop a machine learning(ML)model for postoperative pancreatic fistula and identify significant risk factors of the complication.METHODS A single-center retrospective clinical study was conducted which included 150 patients,who underwent pancreat-oduodenectomy.Logistic regression,random forest,and CatBoost were employed for modeling the biochemical leak(symptomless fistula)and fistula grade B/C(clinically significant complication).The performance was estimated by receiver operating characteristic(ROC)area under the curve(AUC)after 5-fold cross-validation(20%testing and 80%training data).The risk factors were evaluated with the most accurate algorithm,based on the parameter“Importance”(Im),and Kendall correlation,P<0.05.RESULTS The CatBoost algorithm was the most accurate with an AUC of 74%-86%.The study provided results of ML-based modeling and algorithm selection for pancreatic fistula prediction and risk factor evaluation.From 14 parameters we selected the main pre-and intraoperative prognostic factors of all the fistulas:Tumor vascular invasion(Im=24.8%),age(Im=18.6%),and body mass index(Im=16.4%),AUC=74%.The ML model showed that biochemical leak,blood and drain amylase level(Im=21.6%and 16.4%),and blood leukocytes(Im=11.2%)were crucial predictors for subsequent fistula B/C,AUC=86%.Surgical techniques,morphology,and pancreatic duct diameter less than 3 mm were insignificant(Im<5%and no correlations detected).The results were confirmed by correlation analysis.CONCLUSION This study highlights the key predictors of postoperative pancreatic fistula and establishes a robust ML-based model for individualized risk prediction.These findings contribute to the advancement of personalized periop-erative care and may guide targeted preventive strategies. 展开更多
关键词 PANCREATODUODENECTOMY Postoperative pancreatic fistula Risk factors machine learning Precision oncology
暂未订购
Deploying machine learning for long-term road pavement moisture prediction: A case study from Queensland, Australia
6
作者 Ayesh Dushmantha Ruixuan Zhang +2 位作者 Yilin Gui Jinjiang Zhong Chaminda Gallage 《Journal of Road Engineering》 2025年第2期184-201,共18页
Moisture accumulation within road pavements,particularly in unbound granular materials with or without thin sprayed seals,presents significant challenges in high-rainfall regions such as Queensland.This infiltration o... Moisture accumulation within road pavements,particularly in unbound granular materials with or without thin sprayed seals,presents significant challenges in high-rainfall regions such as Queensland.This infiltration often leads to various forms of pavement distress,eventually causing irreversible damage to the pavement structure.The moisture content within pavements exhibits considerable dynamism and directly influenced by environmental factors such as precipitation,air temperature,and relative humidity.This variability underscores the importance of monitoring moisture changes using real-time climatic data to assess pavement conditions for operational management or incorporating these effects during pavement design based on historical climate data.Consequently,there is an increasing demand for advanced,technology-driven methodologies to predict moisture variations based on climatic inputs.Addressing this gap,the present study employs five traditional machine learning(ML)algorithms,K-nearest neighbors(KNN),regression trees,random forest,support vector machines(SVMs),and gaussian process regression(GPR),to forecast moisture levels within pavement layers over time,with varying algorithm complexities.Using data collected from an instrumented road in Brisbane,Australia,which includes pavement moisture and climatic factors,the study develops predictive models to forecast moisture content at future time steps.The approach incorporates current moisture content,rather than averaged values,along with seasonality(both daily and annual),and key climatic factors to predict next step moisture.Model performance is evaluated using R2,MSE,RMSE,and MAPE metrics.Results show that ML algorithms can reliably predict long-term moisture variations in pavements,provided optimal hyperparameters are selected for each algorithm.The best-performing algorithms include KNN(the number of neighbours equals to 15),medium regression tree,medium random forest,coarse SVM,and simple GPR,with medium random forest outperforming the others.The study also identifies the optimal hyperparameter combinations for each algorithm,offering significant advancements in moisture prediction tools for pavement technology。 展开更多
关键词 Pavement technology Unbound granular materials Moisture prediction machine learning Climatic factors
在线阅读 下载PDF
Construction and validation of machine learning-based predictive model for colorectal polyp recurrence one year after endoscopic mucosal resection
7
作者 Yi-Heng Shi Jun-Liang Liu +5 位作者 Cong-Cong Cheng Wen-Ling Li Han Sun Xi-Liang Zhou Hong Wei Su-Juan Fei 《World Journal of Gastroenterology》 2025年第11期46-62,共17页
BACKGROUND Colorectal polyps are precancerous diseases of colorectal cancer.Early detection and resection of colorectal polyps can effectively reduce the mortality of colorectal cancer.Endoscopic mucosal resection(EMR... BACKGROUND Colorectal polyps are precancerous diseases of colorectal cancer.Early detection and resection of colorectal polyps can effectively reduce the mortality of colorectal cancer.Endoscopic mucosal resection(EMR)is a common polypectomy proce-dure in clinical practice,but it has a high postoperative recurrence rate.Currently,there is no predictive model for the recurrence of colorectal polyps after EMR.AIM To construct and validate a machine learning(ML)model for predicting the risk of colorectal polyp recurrence one year after EMR.METHODS This study retrospectively collected data from 1694 patients at three medical centers in Xuzhou.Additionally,a total of 166 patients were collected to form a prospective validation set.Feature variable screening was conducted using uni-variate and multivariate logistic regression analyses,and five ML algorithms were used to construct the predictive models.The optimal models were evaluated based on different performance metrics.Decision curve analysis(DCA)and SHapley Additive exPlanation(SHAP)analysis were performed to assess clinical applicability and predictor importance.RESULTS Multivariate logistic regression analysis identified 8 independent risk factors for colorectal polyp recurrence one year after EMR(P<0.05).Among the models,eXtreme Gradient Boosting(XGBoost)demonstrated the highest area under the curve(AUC)in the training set,internal validation set,and prospective validation set,with AUCs of 0.909(95%CI:0.89-0.92),0.921(95%CI:0.90-0.94),and 0.963(95%CI:0.94-0.99),respectively.DCA indicated favorable clinical utility for the XGBoost model.SHAP analysis identified smoking history,family history,and age as the top three most important predictors in the model.CONCLUSION The XGBoost model has the best predictive performance and can assist clinicians in providing individualized colonoscopy follow-up recommendations. 展开更多
关键词 Colorectal polyps machine learning Predictive model Risk factors SHapley Additive exPlanation
暂未订购
Development of a machine learning-based risk prediction model for mild cognitive impairment with spleen-kidney deficiency syndrome in the elderly
8
作者 Ya-ting Ai Shi Zhou +6 位作者 Ming Wang Tao-yun Zheng Hui Hu Yun-cui Wang Yu-can Li Xiao-tong Wang Peng-jun Zhou 《Journal of Integrative Medicine》 2025年第4期390-397,共8页
Objective:As an age-related neurodegenerative disease,the prevalence of mild cognitive impairment(MCI)increases with age.Within the framework of traditional Chinese medicine,spleen-kidney deficiency syndrome(SKDS)is r... Objective:As an age-related neurodegenerative disease,the prevalence of mild cognitive impairment(MCI)increases with age.Within the framework of traditional Chinese medicine,spleen-kidney deficiency syndrome(SKDS)is recognized as the most frequent MCI subtype.Due to the covert and gradual onset of MCI,in community settings it poses a significant challenge for patients and their families to discern between typical aging and pathological changes.There exists an urgent need to devise a preliminary diagnostic tool designed for community-residing older adults with MCI attributed to SKDS(MCI-SKDS).Methods:This investigation enrolled 312 elderly individuals diagnosed with MCI,who were randomly distributed into training and test datasets at a 3:1 ratio.Five machine learning methods,including logistic regression(LR),decision tree(DT),naive Bayes(NB),support vector machine(SVM),and gradient boosting(GB),were used to build a diagnostic prediction model for MCI-SKDS.Accuracy,sensitivity,specificity,precision,F1 score,and area under the curve were used to evaluate model performance.Furthermore,the clinical applicability of the model was evaluated through decision curve analysis(DCA).Results:The accuracy,precision,specificity and F1 score of the DT model performed best in the training set(test set),with scores of 0.904(0.845),0.875(0.795),0.973(0.875)and 0.973(0.875).The sensitivity of the training set(test set)of the SVM model performed best among the five models with a score of 0.865(0.821).The area under the curve of all five models was greater than 0.9 for the training dataset and greater than 0.8 for the test dataset.The DCA of all models showed good clinical application value.The study identified ten indicators that were significant predictors of MCI-SKDS.Conclusion:The risk prediction index derived from machine learning for the MCI-SKDS prediction model is simple and practical;the model demonstrates good predictive value and clinical applicability,and the DT model had the best performance. 展开更多
关键词 Mild cognitive impairment machine learning Spleen-kidney deficiency syndrome Traditional Chinese medicine Risk factors
原文传递
Factor analysis and machine learning for predicting endpoint carbon content in converter steelmaking
9
作者 Lihua Zhao Shuai Yang +3 位作者 Yongzhao Xu Zhongliang Wang Xin Liu Yanping Bao 《International Journal of Minerals,Metallurgy and Materials》 2025年第10期2469-2482,共14页
The endpoint carbon content in the converter is critical for the quality of steel products,and accurately predicting this parameter is an effective way to reduce alloy consumption and improve smelting efficiency.Howev... The endpoint carbon content in the converter is critical for the quality of steel products,and accurately predicting this parameter is an effective way to reduce alloy consumption and improve smelting efficiency.However,most scholars currently focus on modifying methods to enhance model accuracy,while overlooking the extent to which input parameters influence accuracy.To address this issue,in this study,a prediction model for the endpoint carbon content in the converter was developed using factor analysis(FA)and support vector machine(SVM)optimized by improved particle swarm optimization(IPSO).Analysis of the factors influencing the endpoint carbon content during the converter smelting process led to the identification of 21 input parameters.Subsequently,FA was used to reduce the dimensionality of the data and applied to the prediction model.The results demonstrate that the performance of the FA-IPSO-SVM model surpasses several existing methods,such as twin support vector regression and support vector machine.The model achieves hit rates of 89.59%,96.21%,and 98.74%within error ranges of±0.01%,±0.015%,and±0.02%,respectively.Finally,based on the prediction results obtained by sequentially removing input parameters,the parameters were classified into high influence(5%-7%),medium influence(2%-5%),and low influence(0-2%)categories according to their varying degrees of impact on prediction accuracy.This classi-fication provides a reference for selecting input parameters in future prediction models for endpoint carbon content. 展开更多
关键词 CONVERTER endpoint carbon content parameter classification factor analysis improved particle swarm optimization support vector machine
在线阅读 下载PDF
基于FM-CM-FCE的深埋TBM隧道岩爆预警方法
10
作者 肖华波 赵龙翔 +4 位作者 陈靖文 石伟明 肖枫 刘仕勇 邓益 《安全与环境工程》 北大核心 2025年第5期66-79,共14页
岩爆灾害已成为制约深部工程安全建设的关键因素。针对深埋全断面隧道掘进机(tunnel boring machine,TBM)隧道岩爆影响因素复杂、量化困难、指标权重自适应性弱、模糊评价隶属度随机性不足等问题,建立了一种深埋TBM隧道岩爆预警方法。首... 岩爆灾害已成为制约深部工程安全建设的关键因素。针对深埋全断面隧道掘进机(tunnel boring machine,TBM)隧道岩爆影响因素复杂、量化困难、指标权重自适应性弱、模糊评价隶属度随机性不足等问题,建立了一种深埋TBM隧道岩爆预警方法。首先,基于多个深埋TBM隧道工程案例建立数据库;接着,运用相关系数法、互信息法和ReliefF算法等过滤式方法(filter method,FM)特征选择技术,筛选并构建了岩爆多源预警指标体系;然后,提出了基于相关性理论的权重自适应调整与动态更新机制,并结合云模型(cloud model,CM)和模糊综合评价(fuzzy comprehensive evaluation,FCE)理论,建立了模糊隶属云模型;最后,将该方法应用于中国西部某深埋TBM隧道,以验证其准确性。结果表明,该预警方法能显著提升岩爆风险预测准确率,可为深埋TBM隧道施工安全提供技术支撑。 展开更多
关键词 全断面隧道掘进机(TBM) 岩爆预警 过滤式方法(fm) 模糊综合评价(FCE) 云模型(CM)
在线阅读 下载PDF
Novel genes involved in vascular dysfunction of the middle temporal gyrus in Alzheimer's disease:transcriptomics combined with machine learning analysis
11
作者 Meiling Wang Aojie He +5 位作者 Yubing Kang Zhaojun Wang Yahui He Kahleong Lim Chengwu Zhang Li Lu 《Neural Regeneration Research》 2025年第12期3620-3634,共15页
Studies have shown that vascular dysfunction is closely related to the pathogenesis of Alzheimer's disease.The middle temporal gyrus region of the brain is susceptible to pronounced impairment in Alzheimer's d... Studies have shown that vascular dysfunction is closely related to the pathogenesis of Alzheimer's disease.The middle temporal gyrus region of the brain is susceptible to pronounced impairment in Alzheimer's disease.Identification of the molecules involved in vascular aberrance of the middle temporal gyrus would support elucidation of the mechanisms underlying Alzheimer's disease and discove ry of novel targets for intervention.We carried out single-cell transcriptomic analysis of the middle temporal gyrus in the brains of patients with Alzheimer's disease and healthy controls,revealing obvious changes in vascular function.CellChat analysis of intercellular communication in the middle temporal gyrus showed that the number of cell interactions in this region was decreased in Alzheimer's disease patients,with altered intercellular communication of endothelial cells and pericytes being the most prominent.Differentially expressed genes were also identified.Using the CellChat results,AUCell evaluation of the pathway activity of specific cells showed that the obvious changes in vascular function in the middle temporal gyrus in Alzheimer's disease were directly related to changes in the vascular endothelial growth factor(VEGF)A-VEGF receptor(VEGFR)2 pathway.AUCell analysis identified subtypes of endothelial cells and pericytes directly related to VEGFA-VEGFR2 pathway activity.Two subtypes of middle temporal gyrus cells showed significant alteration in AD:endothelial cells with high expression of Erb-B2 receptor tyrosine kinase 4(ERBB4^(high))and pericytes with high expression of angiopoietin-like 4(ANGPTL4^(high)).Finally,combining bulk RNA sequencing data and two machine learning algorithms(least absolute shrinkage and selection operator and random forest),four characteristic Alzheimer's disease feature genes were identified:somatostatin(SST),protein tyrosine phosphatase non-receptor type 3(PTPN3),glutinase(GL3),and tropomyosin 3(PTM3).These genes were downregulated in the middle temporal gyrus of patients with Alzheimer's disease and may be used to target the VEGF pathway.Alzheimer's disease mouse models demonstrated consistent altered expression of these genes in the middle temporal gyrus.In conclusion,this study detected changes in intercellular communication between endothelial cells and pericytes in the middle temporal gyrus and identified four novel feature genes related to middle temporal gyrus and vascular functioning in patients with Alzheimer's disease.These findings contribute to a deeper understanding of the molecular mechanisms underlying Alzheimer's disease and present novel treatment targets. 展开更多
关键词 Alzheimer’s disease bioinformatics CellChat cerebrovascular disorders endothelial cells intercellular communication machine learning middle temporal gyrus PERICYTES vascular endothelial growth factor pathway
暂未订购
Optimization of Extrusion-based Silicone Additive Manufacturing Process Parameters Based on Improved Kernel Extreme Learning Machine
12
作者 Zi-Ning Li Xiao-Qing Tian +3 位作者 Dingyifei Ma Shahid Hussain Lian Xia Jiang Han 《Chinese Journal of Polymer Science》 2025年第5期848-862,共15页
Silicone material extrusion(MEX)is widely used for processing liquids and pastes.Owing to the uneven linewidth and elastic extrusion deformation caused by material accumulation,products may exhibit geometric errors an... Silicone material extrusion(MEX)is widely used for processing liquids and pastes.Owing to the uneven linewidth and elastic extrusion deformation caused by material accumulation,products may exhibit geometric errors and performance defects,leading to a decline in product quality and affecting its service life.This study proposes a process parameter optimization method that considers the mechanical properties of printed specimens and production costs.To improve the quality of silicone printing samples and reduce production costs,three machine learning models,kernel extreme learning machine(KELM),support vector regression(SVR),and random forest(RF),were developed to predict these three factors.Training data were obtained through a complete factorial experiment.A new dataset is obtained using the Euclidean distance method,which assigns the elimination factor.It is trained with Bayesian optimization algorithms for parameter optimization,the new dataset is input into the improved double Gaussian extreme learning machine,and finally obtains the improved KELM model.The results showed improved prediction accuracy over SVR and RF.Furthermore,a multi-objective optimization framework was proposed by combining genetic algorithm technology with the improved KELM model.The effectiveness and reasonableness of the model algorithm were verified by comparing the optimized results with the experimental results. 展开更多
关键词 Silicone material extrusion Process parameter optimization Double Gaussian kernel extreme learning machine Euclidean distance assigned to the elimination factor Multi-objective optimization framework
原文传递
卵泡抑素样蛋白3和可溶性FMS样酪氨酸激酶1与胎盘生长因子的比值在胎儿生长受限中的预测价值研究
13
作者 黄丹 朱玲龑 +1 位作者 杨正菊 曾晓玲 《中国医学前沿杂志(电子版)》 北大核心 2025年第8期60-67,共8页
目的探讨单独或联合检测卵泡抑素样蛋白3(follistatin-like protein 3,FSTL3)、可溶性FMS样酪氨酸激酶1与胎盘生长因子的比值(soluble FMS-1ike tyrosine kinase 1/placenta growth factor,sFlt-1/PLGF),对胎儿生长受限(fetal growth re... 目的探讨单独或联合检测卵泡抑素样蛋白3(follistatin-like protein 3,FSTL3)、可溶性FMS样酪氨酸激酶1与胎盘生长因子的比值(soluble FMS-1ike tyrosine kinase 1/placenta growth factor,sFlt-1/PLGF),对胎儿生长受限(fetal growth restriction,FGR)的预测价值及其与新生儿预后的关联。方法本研究为病例对照研究,纳入2021年10月至2024年10月在贵州医科大学附属医院定期产检且超声可疑FGR的单胎孕妇148例,根据新生儿出生体重分组(FGR组103例,非FGR组45例),采用酶联免疫吸附分析法检测母体血清FSTL3、sFlt-1、PLGF水平,计算sFlt-1/PLGF比值;免疫组化定量分析它们在胎盘中的表达强度[平均光密度(mean optical density,MOD)、积分光密度(integral optical density,IOD)及阳性率];追踪新生儿结局并用Pearson法分析血清各指标与预后的关联,受试者操作特征曲线(receiver operating characteristic curve,ROC曲线)评估血清各指标单独或联合预测FGR的价值。结果FGR组血清FSTL3、sFlt-1/PLGF比值均高于非FGR组,PLGF低于非FGR组(P<0.05)。FGR组胎盘组织中FSTL3、sFlt-1的表达强度高于非FGR组(P<0.05),而PLGF的表达强度低于非FGR组(P<0.05)。相关性分析中,血清FSTL3与新生儿高胆红素血症、新生儿窒息及新生儿重症监护室(neonatal intensive care unit,NICU)入住率均呈显著正相关,sFlt-1、sFlt-1/PLGF与所有不良结局均呈显著正相关(P<0.05),而PLGF与新生儿窒息、低血糖呈负相关(P<0.05)。ROC曲线显示,FSTL3、sFlt-1/PLGF单独及联合预测FGR曲线下面积(area under he curve,AUC)分别为0.770、0.777、0.809。结论血清FSTL3联合sFlt-1/PLGF可有效提升FGR早期诊断效能,且与新生儿预后显著相关。 展开更多
关键词 胎儿生长受限 胎盘生长因子 可溶性fmS样酪氨酸激酶1 卵泡抑素样蛋白3 预测价值
暂未订购
基于FMM-SVR模型的深凹露天矿边坡稳定性分析
14
作者 周晴晴 穆琳 王雷 《矿冶工程》 北大核心 2025年第4期41-46,共6页
为了解决边坡稳定性分析中模糊测度方法(FMM)参数难以确定的问题,构建了一种待定参数的回归型支持向量机(SVR)代理模型,用于精准预测模糊测度方法中的模糊参数,进而建立FMM-SVR露天矿边坡稳定性预测模型。以马钢矿业高村铁矿二期露天矿... 为了解决边坡稳定性分析中模糊测度方法(FMM)参数难以确定的问题,构建了一种待定参数的回归型支持向量机(SVR)代理模型,用于精准预测模糊测度方法中的模糊参数,进而建立FMM-SVR露天矿边坡稳定性预测模型。以马钢矿业高村铁矿二期露天矿边坡为例,利用FMM-SVR模型预测边坡失稳概率。结果表明,开采至坡脚处时边坡失稳概率最大值为0.1208,边坡处于整体稳定状态但存在局部失稳风险,该结论与现场实测结果相吻合;采用有限元强度折减法确定了边坡最危险滑动面位置,计算得到的安全系数为1.5,进一步验证了FMM-SVR模型的有效性。 展开更多
关键词 露天边坡 边坡稳定性 模糊测度 支持向量机 强度折减 安全系数
在线阅读 下载PDF
血清可溶性fms相关受体酪氨酸激酶1、转化生长因子-β1在乳腺癌患者中的表达及与保乳手术后局部复发的关系
15
作者 张煜 尚立林 周献栋 《癌症进展》 2025年第16期1962-1965,共4页
目的探讨血清可溶性fms相关受体酪氨酸激酶1(sFLT1)、转化生长因子-β1(TGF-β1)在乳腺癌(BC)患者中的表达及与保乳手术(BCS)后局部复发的关系。方法根据BCS后是否复发将50例BC患者分为复发组(n=21)和未复发组(n=29)。比较两组患者的血... 目的探讨血清可溶性fms相关受体酪氨酸激酶1(sFLT1)、转化生长因子-β1(TGF-β1)在乳腺癌(BC)患者中的表达及与保乳手术(BCS)后局部复发的关系。方法根据BCS后是否复发将50例BC患者分为复发组(n=21)和未复发组(n=29)。比较两组患者的血清sFLT1、TGF-β1水平,采用多因素Logistic回归模型分析BCS后复发的危险因素,并绘制受试者工作特征(ROC)曲线,分析血清sFLT1、TGF-β1单独及联合检查对BC患者BCS后局部复发的预测效能。结果复发组患者血清sFLT1、TGF-β1水平均高于未复发组,差异均有统计学意义(P<0.05)。多因素Logistic回归分析结果显示,肿瘤最大径>2 cm、TNM分期为Ⅱ期及sFLT1、TGF-β1水平高均是BC患者BCS后局部复发的危险因素(P<0.05)。ROC曲线显示,sFLT1和TGF-β1联合检测预测BC患者BCS后局部复发的曲线下面积(AUC)为0.938,高于二者单独检测的0.844、0.893。结论血清sFLT1、TGF-β1可作为预测BC患者BCS后局部复发的指标。 展开更多
关键词 可溶性fms相关受体酪氨酸激酶1 转化生长因子-Β1 乳腺癌 保乳手术 局部复发
暂未订购
可溶性fms样酪氨酸激酶1和胎盘生长因子比值及24 h尿蛋白定量与孕中晚期子痫的关系研究
16
作者 王宇 《中国现代药物应用》 2025年第4期77-80,共4页
目的研究可溶性fms样酪氨酸激酶1和胎盘生长因子比值及24 h尿蛋白定量与孕中晚期子痫的关系。方法纳入154例接受产检的孕中晚期孕妇,以是否存在子痫分为健康孕妇组(未存在子痫孕妇)与观察组(存在子痫孕妇),每组77例。两组均接受可溶性fm... 目的研究可溶性fms样酪氨酸激酶1和胎盘生长因子比值及24 h尿蛋白定量与孕中晚期子痫的关系。方法纳入154例接受产检的孕中晚期孕妇,以是否存在子痫分为健康孕妇组(未存在子痫孕妇)与观察组(存在子痫孕妇),每组77例。两组均接受可溶性fms样酪氨酸激酶1、胎盘生长因子、24 h尿蛋白定量测定。对比两组可溶性fms样酪氨酸激酶1、胎盘生长因子、24 h尿蛋白定量水平及可溶性fms样酪氨酸激酶1和胎盘生长因子比值;分析可溶性fms样酪氨酸激酶1、胎盘生长因子、可溶性fms样酪氨酸激酶1和胎盘生长因子比值与血压(舒张压和收缩压)、24 h尿蛋白定量的相关性。结果观察组可溶性fms样酪氨酸激酶1(7318.83±135.55)pg/ml、可溶性fms样酪氨酸激酶1和胎盘生长因子比值(192.78±9.32)、24 h尿蛋白定量(0.65±0.23)g/24 h均高于健康孕妇组的(1910.05±66.34)pg/ml、(9.36±0.45)、(0.08±0.01)g/24 h,胎盘生长因子(57.39±3.82)pg/ml低于健康孕妇组的(370.70±13.88)pg/ml(P<0.05)。可溶性fms样酪氨酸激酶1、可溶性fms样酪氨酸激酶1和胎盘生长因子比值与舒张压、收缩压、24 h尿蛋白定量均呈正相关(r=0.539、0.631,0.525、0.637,0.431、0.569,P<0.05),胎盘生长因子与舒张压、收缩压、24 h尿蛋白定量均呈负相关(r=-0.598、-0.619、-0.481,P<0.05)。结论孕中晚期子痫孕妇24 h尿蛋白定量以及可溶性fms样酪氨酸激酶1和胎盘生长因子比值明显增高,且两种指标比值越高提示病情越重,可以两种指标的测定结果预测疾病的发生并评定疾病发生程度,为临床后续治疗方案的选择提供参考依据。 展开更多
关键词 可溶性fms样酪氨酸激酶1 胎盘生长因子 24 h尿蛋白定量 孕中晚期子痫 相关性
暂未订购
胎盘生长因子、可溶性fms样酪氨酸激酶-1及糖基化纤连蛋白在子痫前期预测中的应用价值 被引量:4
17
作者 杨岚 肖建平 +4 位作者 石皓 苏靖娜 赵頔 赵丽 唐叶 《重庆医科大学学报》 CAS CSCD 北大核心 2024年第1期50-54,共5页
目的:探讨胎盘生长因子(placental growth factor,PLGF)、可溶性fms样酪氨酸激酶-1(soluble fms-like tyrosine kinase-1,SFLT-1)和糖基化纤连蛋白(glycosylated fibronectin,GLYFN)检测对子痫前期的预测价值。方法:选择在无锡市妇幼保... 目的:探讨胎盘生长因子(placental growth factor,PLGF)、可溶性fms样酪氨酸激酶-1(soluble fms-like tyrosine kinase-1,SFLT-1)和糖基化纤连蛋白(glycosylated fibronectin,GLYFN)检测对子痫前期的预测价值。方法:选择在无锡市妇幼保健院就诊的188例孕妇,分154例正常孕妇(对照组)和34例子痫前期患者(子痫组),应用免疫荧光法分别检测其在孕16~18周血清中PLGF、SFLT-1和GLYFN的浓度,比较子痫前期组和对照组各标志物的水平,并使用受试者操作特征曲线(receiver operating characteristic,ROC)对3种标志物的预测价值进行效能评估。结果:在妊娠中期,子痫前期组血清PLGF浓度低于对照组,SFLT-1及GLYFN浓度均高于对照组,3种标志物的差异均有统计学意义(3指标P=0.000)。95%置信区间的ROC曲线下面积(areas under the ROC curve,AUC)为,PLGF为0.941(0.907~0.974),SFLT-1为0.881(0.800~0.962),GLYFN为0.951(0.918~0.985),联合指标SFLT-1和GLYFN、3项指标联合检测在ROC曲线下面积(areas under the ROC curve,AUC)分别为0.968、0.986。结论:PLGF、SFLT-1、GLYFN 3种标志物水平在对照组和子痫前期组均存在明显差异,对子痫前期的发病具有一定的预测价值,SFLT-1联合PLGF、SFLT-1联合GLYFN、3项指标联合检测对子痫前期的预测价值高于任一单项指标。 展开更多
关键词 子痫前期 胎盘生长因子 可溶性fms样酪氨酸激酶-1 糖基化纤连蛋白
原文传递
血清可溶性fms样酪氨酸激酶-1/胎盘生长因子和25-羟维生素D_(3)预测子痫前期的价值 被引量:5
18
作者 刘庆 李敬 +2 位作者 金永梅 李慧云 蒋晓敏 《中华实用诊断与治疗杂志》 2024年第2期174-178,共5页
目的观察子痫前期孕妇血清可溶性fms样酪氨酸激酶-1(sFlt-1)/胎盘生长因子(PLGF)和25-羟维生素D_(3)[25(OH)D_(3)]水平变化,探讨其预测子痫前期的价值。方法2020年1月—2022年9月安徽医科大学附属妇幼保健院定期产检并分娩的子痫前期孕... 目的观察子痫前期孕妇血清可溶性fms样酪氨酸激酶-1(sFlt-1)/胎盘生长因子(PLGF)和25-羟维生素D_(3)[25(OH)D_(3)]水平变化,探讨其预测子痫前期的价值。方法2020年1月—2022年9月安徽医科大学附属妇幼保健院定期产检并分娩的子痫前期孕妇60例为子痫前期组,无妊娠并发症及合并症的正常孕妇248例为对照组。比较2组年龄、孕前体质量指数、孕次、分娩孕周、新生儿体质量、血压;采用电化学发光法检测2组血清25(OH)D_(3)、sFlt-1、PLGF水平,计算sFlt-1/PLGF;绘制ROC曲线,评估血清25(OH)D_(3)、sFlt-1/PLGF预测孕妇子痫前期的效能。结果子痫前期组分娩孕周[(38.11±2.01)周]小于对照组[(39.01±1.48)周](t=2.321,P=0.026),新生儿体质量[(3018.33±602.82)g]、血清25(OH)D_(3)水平[(54.41±16.98)nmol/L]均低于对照组[(3325.89±480.44)g、(66.58±23.15)nmol/L](t=2.987,P=0.003;t=2.707,P=0.008),收缩压[(158.98±13.92)mmHg]、舒张压[(94.36±9.63)mmHg]、sFlt-1/PLGF(25.61±14.95)均高于对照组[(108.14±10.65)mmHg、(66.89±8.37)mmHg、19.78±12.59](P<0.05),年龄、孕前体质量指数、孕次与对照组比较差异均无统计学意义(P>0.05)。血清25(OH)D_(3)预测孕妇子痫前期的AUC为0.346(95%CI:0.238~0.454,P=0.076),灵敏度为100.0%,特异度为0;sFlt-1/PLGF以13为最佳截断值,预测孕妇子痫前期的AUC为0.605(95%CI:0.502~0.707,P=0.006),灵敏度为90.0%,特异度为37.9%;二者联合预测孕妇子痫前期的AUC为0.708(95%CI:0.610~0.815,P<0.001),灵敏度为70.0%,特异度为62.9%。结论子痫前期孕妇血清25(OH)D_(3)水平降低,sFlt-1/PLGF升高,血清25(OH)D_(3)及sFlt-1/PLGF联合预测子痫前期有较高价值。 展开更多
关键词 子痫前期 25-羟维生素D3 可溶性fms样酪氨酸激酶-1 胎盘生长因子
原文传递
GraphFM:Graph Factorization Machines for Feature Interaction Modelling
19
作者 Shu Wu Zekun Li +3 位作者 Yunyue Su Zeyu Cui Xiaoyu Zhang Liang Wang 《Machine Intelligence Research》 2025年第2期239-253,共15页
Factorization machine(FM)is a prevalent approach to modelling pairwise(second-order)feature interactions when dealing with high-dimensional sparse data.However,on the one hand,FMs fail to capture higher-order feature ... Factorization machine(FM)is a prevalent approach to modelling pairwise(second-order)feature interactions when dealing with high-dimensional sparse data.However,on the one hand,FMs fail to capture higher-order feature interactions suffering from combinatorial expansion.On the other hand,taking into account interactions between every pair of features may introduce noise and degrade the prediction accuracy.To solve these problems,we propose a novel approach,the graph factorization machine(GraphFM),which naturally represents features in the graph structure.In particular,we design a mechanism to select beneficial feature interactions and formulate them as edges between features.Then the proposed model,which integrates the interaction function of the FM into the feature aggregation strategy of the graph neural network(GNN),can model arbitrary-order feature interactions on graph-structured features by stacking layers.Experimental results on several real-world datasets demonstrate the rationality and effectiveness of our proposed approach.The code and data are available at https://github.com/CRIPAC-DIG/GraphCTR. 展开更多
关键词 Feature interaction factorization machines graph neural network recommender system deep learning
原文传递
上一页 1 2 112 下一页 到第
使用帮助 返回顶部