BACKGROUND Pathological calcification is a common feature of many diseases.Calcifying nanoparticles(CNPs)are considered potential inducers of this abnormal calcification,but their specific effects on bone marrow mesen...BACKGROUND Pathological calcification is a common feature of many diseases.Calcifying nanoparticles(CNPs)are considered potential inducers of this abnormal calcification,but their specific effects on bone marrow mesenchymal stem cells(BMSCs)remain unclear.BMSCs are key cells in bone formation and repair,and their aberrant apoptosis and calcification are closely related to disease progression.AIM To explore whether CNPs can induce apoptosis and calcification in BMSCs and analyzed the relationship between these processes.The differential effects of CNPs and nanoscale hydroxyapatites(nHAPs)in inducing apoptosis and calcification in BMSCs were also compared.METHODS CNPs obtained in the early stage were identified by electron microscopy and particle size analysis.BMSCs were cultured with various treatments,including different concentrations of nHAPs,CNPs[2 McFarland(MCF)turbidity,4 MCF,6 MCF],and a transforming growth factor(TGF)-βinhibitor(SB431542)for 72 hours.The isolated CNPs exhibited the expected sizes and shapes.RESULTS Exposure to CNPs and nHAPs suppressed cell proliferation and promoted apoptosis in a concentration-dependent manner,with CNPs exhibiting significantly stronger effects.Alizarin Red staining indicated an increase in calcium deposition with exposure to increasing concentrations of nHAPs and CNPs.Quantitative reverse-transcription polymerase chain reaction results indicated that medium concentrations of nHAPs and CNPs significantly enhanced the expression of pro-apoptotic and pro-calcification markers,whereas the expression of anti-apoptotic Bcl-2 was reduced compared with untreated controls.Western blotting results showed that medium concentrations of CNPs and nHAPs increased the expression of osteopontin,bone morphogenetic protein-2,TGF-β/Smad,Bax,and caspase-3 and decreased Bcl-2 expression compared with controls.CONCLUSION CNPs and nHAPs induced apoptosis and calcification in BMSCs,with CNPs being the most potent.Additionally,the TGF-βinhibitor SB431542 significantly reduced the occurrence of apoptosis and calcification.A correlation was found between apoptosis and calcification,which is likely mediated through the TGF-β/Smad signaling pathway.展开更多
Pulpitis is a common infective oral disease in clinical situations.The regulatory mechanisms of immune defense in pulpitis are still being investigated.Osteomodulin(OMD)is a small leucine-rich proteoglycan family memb...Pulpitis is a common infective oral disease in clinical situations.The regulatory mechanisms of immune defense in pulpitis are still being investigated.Osteomodulin(OMD)is a small leucine-rich proteoglycan family member distributed in bones and teeth.It is a bioactive protein that promotes osteogenesis and suppresses the apoptosis of human dental pulp stem cells(hDPSCs).In this study,the role of OMD in pulpitis and the OMD-induced regulatory mechanism were investigated.The OMD expression in normal and inflamed human pulp tissues was detected via immunofluorescence staining.Intriguingly,the OMD expression decreased in the inflammatory infiltration area of pulpitis specimens.The cellular experiments demonstrated that recombined human OMD could resist the detrimental effects of lipopolysaccharide(LPS)-induced inflammation.A conditional Omd knockout mouse model with pulpal inflammation was established.LPS-induced inflammatory impairment significantly increased in conditional Omd knockout mice,whereas OMD administration exhibited a protective effect against pulpitis.Mechanistically,the transcriptome alterations of OMD overexpression showed significant enrichment in the nuclear factor-κB(NF-κB)signaling pathway.Interleukin-1 receptor 1(IL1R1),a vital membrane receptor activating the NF-κB pathway,was significantly downregulated in OMD-overexpressing hDPSCs.Additionally,the interaction between OMD and IL1R1 was verified using co-immunoprecipitation and molecular docking.In vivo,excessive pulpal inflammation in Omd-deficient mice was rescued using an IL1R antagonist.Overall,OMD played a protective role in the inflammatory response via the IL1R1/NF-κB signaling pathway.OMD may optimize the immunomodulatory functions of hDPSCs and can be used for regenerative endodontics.展开更多
BACKGROUND Tumor necrosis factor-α(TNF-α)has been implicated in the development of diabetes following chronic pancreatitis.However,its role in abnormal glucose metabolism(AGM)after acute pancreatitis(AP)and post-pan...BACKGROUND Tumor necrosis factor-α(TNF-α)has been implicated in the development of diabetes following chronic pancreatitis.However,its role in abnormal glucose metabolism(AGM)after acute pancreatitis(AP)and post-pancreatitis diabetes mellitus remains unclear.AIM To investigate the role of TNF-αin AP-associated AGM and its effects on isletβ-cell apoptosis,focusing on the underlying molecular mechanisms.METHODS Clinical data were collected to assess AGM’s incidence and identify the characteristics in 369 AP patients.In vitro,AP models were established using lipopolysaccharide in 266-6 acinar cells and MIN-6β-cells.Cell proliferation,apoptosis,and protein expression were analyzed using the Cell Counting Kit-8 assay,terminal deoxynucleotidyl transferase dUTP nick-end labeling assay,and western blotting.The TNF-αand insulin concentration in co-culture medium was measured by enzyme-linked immunosorbent assay.In vivo,an AP mouse model was induced using sodium taurocholate,and pancreatic tissues were analyzed through hematoxylin and eosin staining,terminal deoxynucleotidyl transferase dUTP nick-end labeling,and western blotting.TNF-αlevels were assessed by enzyme-linked immunosorbent assay.A TNF-αinhibitor was applied to the AP cell model to reassess apoptosis and protein expression.RESULTS AGM occurred in 40.38%of AP patients.Body mass index,severity grade,recurrence frequency,and lung injury were significantly associated with AGM.AP models in 266-6 and MIN-6 cells showed reducedβ-cell proliferation,insulin secretion,and increased apoptosis,which correlated with inflammation severity.Similar findings ofβ-cell apoptosis were confirmed in the mouse model.TNF-αlevels were significantly elevated in AP models,with higher levels in severe inflammation.Increased Bax and caspase-3 expression and decreased Bcl-2 expression were observed in both in vitro and in vivo models.These changes intensified with increasing inflammation.TNF-αinhibition reduced apoptosis and altered protein expression patterns,decreasing Bax and caspase-3,while increasing Bcl-2 in MIN-6 cells.CONCLUSION TNF-αcontributes toβ-cell apoptosis and AGM in AP through the Bax/Bcl-2/caspase-3 signaling pathway,suggesting TNF-αas a potential therapeutic target for preventing AP-associated AGM.展开更多
OBJECTIVE:To investigate the impact of Shenhua tablet(肾华片,SHT)on renal macrophage polarization and renal injury in mice with diabetic kidney disease(DKD)and to explore the potential mechanism involving the hypoxia-...OBJECTIVE:To investigate the impact of Shenhua tablet(肾华片,SHT)on renal macrophage polarization and renal injury in mice with diabetic kidney disease(DKD)and to explore the potential mechanism involving the hypoxia-inducible factor-1α(HIF-1α)and pyruvate kinase M2(PKM2)signaling pathway,along with the glycolysis metabolism pathway.METHODS:The animals were divided into the following groups:Model,Control,dapagliflozin,SHT low-dose,SHT medium-dose,and SHT high-dose.We assessed 24-hour urine protein(24 h-UTP)levels,urinary albuminto-creatinine ratio,and regularly monitored fasting blood glucose during the treatment period.After treatment,we examined renal tissue structure,renal function(urea nitrogen,uric acid,creatinine,cystatin C,β2-microglobulin),and glycolysis in renal macrophages.Additionally,we observed macrophage polarization in renal tissue and measured inflammatory factors(tumor necrosis factor-α,interleukin-1β,interleukin-6,interleukin-10,monocyte chemoattractant protein-1)to assess the immunoinflammatory status of the renal tissue.Finally,we investigated the expression of the HIF-1α/PKM2 signaling pathway in macrophages to explore its role in the glycolysis process.RESULTS:SHT shows a beneficial effect in treating DKD by reducing 24 h-UTP,regulating blood glucose levels,improving renal tissue structure,protecting renal function,inhibiting macrophage glycolysis,reducing macrophage transformation to the M1 state,and suppressing the expression of the HIF-1α/PKM2 signaling pathway.CONCLUSION:SHT may exert renoprotective effects by inhibiting macrophage glycolysis via the HIF-1α/PKM2 signaling pathway.This inhibition decreases macrophage M1 polarization and reduces immunoinflammatory injury in the renal tissue of DKD mice.展开更多
Traumatic brain injury can be categorized into primary and secondary injuries.Secondary injuries are the main cause of disability following traumatic brain injury,which involves a complex multicellular cascade.Microgl...Traumatic brain injury can be categorized into primary and secondary injuries.Secondary injuries are the main cause of disability following traumatic brain injury,which involves a complex multicellular cascade.Microglia play an important role in secondary injury and can be activated in response to traumatic brain injury.In this article,we review the origin and classification of microglia as well as the dynamic changes of microglia in traumatic brain injury.We also clarify the microglial polarization pathways and the therapeutic drugs targeting activated microglia.We found that regulating the signaling pathways involved in pro-inflammatory and anti-inflammatory microglia,such as the Toll-like receptor 4/nuclear factor-kappa B,mitogen-activated protein kinase,Janus kinase/signal transducer and activator of transcription,phosphoinositide 3-kinase/protein kinase B,Notch,and high mobility group box 1 pathways,can alleviate the inflammatory response triggered by microglia in traumatic brain injury,thereby exerting neuroprotective effects.We also reviewed the strategies developed on the basis of these pathways,such as drug and cell replacement therapies.Drugs that modulate inflammatory factors,such as rosuvastatin,have been shown to promote the polarization of antiinflammatory microglia and reduce the inflammatory response caused by traumatic brain injury.Mesenchymal stem cells possess anti-inflammatory properties,and clinical studies have confirmed their significant efficacy and safety in patients with traumatic brain injury.Additionally,advancements in mesenchymal stem cell-delivery methods—such as combinations of novel biomaterials,genetic engineering,and mesenchymal stem cell exosome therapy—have greatly enhanced the efficiency and therapeutic effects of mesenchymal stem cells in animal models.However,numerous challenges in the application of drug and mesenchymal stem cell treatment strategies remain to be addressed.In the future,new technologies,such as single-cell RNA sequencing and transcriptome analysis,can facilitate further experimental studies.Moreover,research involving non-human primates can help translate these treatment strategies to clinical practice.展开更多
Peripheral nerve defect repair is a complex process that involves multiple cell types;perineurial cells play a pivotal role.Hair follicle neural crest stem cells promote perineurial cell proliferation and migration vi...Peripheral nerve defect repair is a complex process that involves multiple cell types;perineurial cells play a pivotal role.Hair follicle neural crest stem cells promote perineurial cell proliferation and migration via paracrine signaling;however,their clinical applications are limited by potential risks such as tumorigenesis and xenogeneic immune rejection,which are similar to the risks associated with other stem cell transplantations.The present study therefore focuses on small extracellular vesicles derived from hair follicle neural crest stem cells,which preserve the bioactive properties of the parent cells while avoiding the transplantation-associated risks.In vitro,small extracellular vesicles derived from hair follicle neural crest stem cells significantly enhanced the proliferation,migration,tube formation,and barrier function of perineurial cells,and subsequently upregulated the expression of tight junction proteins.Furthermore,in a rat model of sciatic nerve defects bridged with silicon tubes,treatment with small extracellular vesicles derived from hair follicle neural crest stem cells resulted in higher tight junction protein expression in perineurial cells,thus facilitating neural tissue regeneration.At 10 weeks post-surgery,rats treated with small extracellular vesicles derived from hair follicle neural crest stem cells exhibited improved nerve function recovery and reduced muscle atrophy.Transcriptomic and micro RNA analyses revealed that small extracellular vesicles derived from hair follicle neural crest stem cells deliver mi R-21-5p,which inhibits mothers against decapentaplegic homolog 7 expression,thereby activating the transforming growth factor-β/mothers against decapentaplegic homolog signaling pathway and upregulating hyaluronan synthase 2 expression,and further enhancing tight junction protein expression.Together,our findings indicate that small extracellular vesicles derived from hair follicle neural crest stem cells promote the proliferation,migration,and tight junction protein formation of perineurial cells.These results provide new insights into peripheral nerve regeneration from the perspective of perineurial cells,and present a novel approach for the clinical treatment of peripheral nerve defects.展开更多
Adult neurogenesis continuously produces new neurons critical for cognitive plasticity in adult rodents.While it is known transforming growth factor-βsignaling is important in embryonic neurogenesis,its role in postn...Adult neurogenesis continuously produces new neurons critical for cognitive plasticity in adult rodents.While it is known transforming growth factor-βsignaling is important in embryonic neurogenesis,its role in postnatal neurogenesis remains unclear.In this study,to define the precise role of transforming growth factor-βsignaling in postnatal neurogenesis at distinct stages of the neurogenic cascade both in vitro and in vivo,we developed two novel inducible and cell type-specific mouse models to specifically silence transforming growth factor-βsignaling in neural stem cells in(mGFAPcre-ALK5fl/fl-Ai9)or immature neuroblasts in(DCXcreERT2-ALK5fl/fl-Ai9).Our data showed that exogenous transforming growth factor-βtreatment led to inhibition of the proliferation of primary neural stem cells while stimulating their migration.These effects were abolished in activin-like kinase 5(ALK5)knockout primary neural stem cells.Consistent with this,inhibition of transforming growth factor-βsignaling with SB-431542 in wild-type neural stem cells stimulated proliferation while inhibited the migration of neural stem cells.Interestingly,deletion of transforming growth factor-βreceptor in neural stem cells in vivo inhibited the migration of postnatal born neurons in mGFAPcre-ALK5fl/fl-Ai9 mice,while abolishment of transforming growth factor-βsignaling in immature neuroblasts in DCXcreERT2-ALK5fl/fl-Ai9 mice did not affect the migration of these cells in the hippocampus.In summary,our data supports a dual role of transforming growth factor-βsignaling in the proliferation and migration of neural stem cells in vitro.Moreover,our data provides novel insights on cell type-specific-dependent requirements of transforming growth factor-βsignaling on neural stem cell proliferation and migration in vivo.展开更多
V-raf-leukemia viral oncogene 1(RAF1),a serine/threonine protein kinase,is well established to play a crucial role in tumorigenesis and cell development.However,the specific role of hypothalamic RAF1 in regulating ene...V-raf-leukemia viral oncogene 1(RAF1),a serine/threonine protein kinase,is well established to play a crucial role in tumorigenesis and cell development.However,the specific role of hypothalamic RAF1 in regulating energy metabolism remains unknown.In this study,we found that the expression of RAF1 was significantly increased in hypothalamic AgRP neurons of diet-induced obesity(DIO)mice.Under normal chow diet feeding,overexpression of Raf1 in AgRP neurons led to obesity in mice characterized by increased body weight,fat mass,and impaired glucose tolerance.Conversely,Raf1 knockout in AgRP neurons protected against diet-induced obesity,reducing fat mass and improving glucose tolerance.Mechanistically,Raf1 activated the MAPK signaling pathway,culminating in the phosphorylation of cAMP response element-binding protein(CREB),which enhanced transcription of Agrp and Npy.Insulin stimulation further potentiated the RAF1-MEK1/2-ERK1/2-CREB axis,highlighting RAF1's role in integrating hormonal and nutritional signals to regulate energy balance.Collectively,these findings underscore the important role of RAF1 in AgRP neurons in maintaining energy homeostasis and obesity pathogenesis,positioning it and its downstream pathways as potential therapeutic targets for innovative strategies to combat obesity and related metabolic diseases.展开更多
Governance debates gained strong momentum in Africa in early December 2025 as the China-Kenya Readers Forum on Xi Jinping:The Governance of China convened in Nairobi on 1 December 2025,followed by a promotional event ...Governance debates gained strong momentum in Africa in early December 2025 as the China-Kenya Readers Forum on Xi Jinping:The Governance of China convened in Nairobi on 1 December 2025,followed by a promotional event for the English edition of the book’s fifth volume on 3 December 2025 in Johannesburg,South Africa.展开更多
Accelerated industrialization combined with over-applied nitrogen fertilizers results in serious nitrate pollution insurface and ground water,disrupting the balance of the global nitrogen cycle.Electrochemical nitrate...Accelerated industrialization combined with over-applied nitrogen fertilizers results in serious nitrate pollution insurface and ground water,disrupting the balance of the global nitrogen cycle.Electrochemical nitrate reduction(eNO_(3)RR)emerges as an attractive strategy to simultaneously enable nitrate removal and decentralized ammo-nia fabrication,restoring the globally perturbed nitrogen cycle.However,complex deoxygenation-hydrogenationprocesses and sluggish proton-electron transfer kinetics significantly hinder practical application of eNO_(3)RR.In this study,we developed carbon-coated Cu-Ni bimetallic catalysts derived from metal-organic frameworks(MOFs)to facilitate eNO_(3)RR.The unique structural features of catalyst promote enhanced synergy between Cuand Ni,effectively addressing critical challenges in nitrate reduction.Comprehensive structural and electrochem-ical analysis demonstrate that electrochemical nitrate-to-nitrite conversion mainly takes place on active Cu sites,the introduction of Ni could efficiently accelerate the generation of aquatic active hydrogen,promoting the hy-drogenation of oxynitrides during eNO_(3)RR.In addition,Ni introduction could push up the d-band center of thecatalyst,thus enhancing the adsorption and activation of nitrate and the corresponding intermediates.Detailedreaction pathways for nitrate-to-ammonia conversion are illuminated by rotating disk electrode(RDE),in-situFourier-transform infrared spectroscopy,in-situ Raman spectrum and electrochemical impedance spectroscopy(EIS).Benefiting from the synergistic effect of Cu and Ni,optimum catalyst exhibited excellent nitrate reductionperformance.This work provides a new idea for elucidating the underlying eNO_(3)RR reaction mechanisms andcontributes a promising strategy for designing efficient bimetallic electrocatalysts.展开更多
Objective:To investigate effect of oleanolic acid(OA)on atherosclerosis and its related mechanisms.Methods:Human umbilical vein endothelial cells(HUVECs)were injured by oxidized low-density lipoprotein for 24 h and tr...Objective:To investigate effect of oleanolic acid(OA)on atherosclerosis and its related mechanisms.Methods:Human umbilical vein endothelial cells(HUVECs)were injured by oxidized low-density lipoprotein for 24 h and treated with OA,and the levels of cell proliferation,migration,adhesion,and apoptosis were evaluated by BrdU staining,scratch healing assay,monocyte-endothelial cell adhesion assay and flow cytometry.The mice were fed with a high-fat diet to induce an atherosclerosis model,and treated with OA by gastric gavage.The mice were divided into the control group,the model group,and the OA administration group.The blood lipid and plaque formation in mice were detected.In addition,oxidative stress and mitochondrial structure and function changes in cells and mice were evaluated by transmission electron microscopy,JC-1 fluorescent probe,and Western blotting assays.The expression levels of proteins in the AMPK/Drp1 pathway were examined through Western blot.Results:OA markedly increased cell viability and migration rate of HUVECs,and decreased the adhesion rate of THP-1 cells and the apoptosis rate.OA significantly reduced serum lipid levels,such as total cholesterol and triglyceride,in mice and inhibited plaque formation in the aorta.OA also significantly increased the content of superoxide dismutase and catalase,alleviated mitochondrial damage,such as mitochondrial swelling and mitochondrial cristae reduction,reduced the number of mitochondria,increased adenosine triphosphate content,and significantly reduced p-Drp1(Ser616)/Drp1,MFF and FIS1 levels,increased p-AMPK/AMPK levels,activated AMPK,and then regulated DRP1 activity.Conclusions:OA activates AMPK,which in turn regulates the activity of DRP1 to restore normal mitochondrial dynamics and reduce atherosclerosis.展开更多
This narrative review examines recent advances in salivary biomarkers for oral squamous cell carcinoma(OSCC),a major subtype of oral cancer with persistently low five-year survival rates due to delayed diagnosis.Saliv...This narrative review examines recent advances in salivary biomarkers for oral squamous cell carcinoma(OSCC),a major subtype of oral cancer with persistently low five-year survival rates due to delayed diagnosis.Saliva has emerged as a noninvasive diagnostic medium capable of reflecting both local tumor activity and systemic physiological changes.Various salivary biomarkers,including microRNAs,cytokines,proteins,metabolites,and exosomes,have been linked to oncogenic signaling pathways involved in tumor progression,immune modulation,and therapeutic resistance.Advances in quantitative polymerase chain reaction,mass spectrometry,and next-generation sequencing have enabled comprehensive biomarker profiling,while point-of-care detection systems and saliva-based omics platforms are accelerating clinical translation.Remaining challenges include variability in salivary composition,lack of standardized collection protocols,and insufficient validation across large patient cohorts.This review highlights the mechanistic relevance,diagnostic potential,and translational challenges of salivary biomarkers in OSCC.展开更多
Background:Epidemiological studies have confirmed that longer exposure to insecticides like cypermethrin(CYP)significantly increases the risk of male reproductive toxicity.Crocus sativus L.has been recognized due to i...Background:Epidemiological studies have confirmed that longer exposure to insecticides like cypermethrin(CYP)significantly increases the risk of male reproductive toxicity.Crocus sativus L.has been recognized due to its therapeutic properties,but its exact role and molecular mechanisms in treatment of reproductive dysfunction remain unclear.Methods:During this study,36 rats were randomly divided into six groups(n=6):control,CYP-induced(60 mg/kg),standard(leuprolide 3 mg/kg)and three treatment groups receiving aqueous,ethanolic,and oil extracts(50 mg/kg or 20 mL/kg)for post-toxicity induction.Results:The finding represented that exposure of CYP significantly increased oxidative stress,disrupted testicular architecture,and markedly reduced testosterone levels(P<0.05).Importantly,Crocus sativus L.treatment alleviated these changes by increasing the expression of Nrf2(nuclear factor erythroid 2-related factor 2),restoring the activity of antioxidant enzymes,and enhancing testicular histomorphology.Surprisingly,molecular docking established a high binding affinity of Crocus sativus L.phytoconstituents such as gallic acid,cinnamic acid and quercetin to the Nrf2-Keap1 complex.It is worth noting that,Crocus sativus L.exhibited a high level of protection against reproductive toxicity caused by CYP in male rats,which was mediated by the activation of Nrf2 pathway,reduction of oxidative damage,and favorable ADMET characteristics.Conclusion:Notably,this research provides a more valid,safe,and effective method of developing new drugs for reproductive disorders,however,further investigation is needed to support the research findings and implement it in clinical practice.展开更多
Objective:To investigate the anti-atherosclerosis effect of chikusetsusaponinⅣ(CSⅣ)against high-fat diet-induced atherosclerosis in rats.Methods:A high-fat diet was used for the induction of atherosclerosis in rats,...Objective:To investigate the anti-atherosclerosis effect of chikusetsusaponinⅣ(CSⅣ)against high-fat diet-induced atherosclerosis in rats.Methods:A high-fat diet was used for the induction of atherosclerosis in rats,and the rats received oral CSⅣor atorvastatin.The body weight,organ weights,food intake,calorie intake,lipid parameters,3-hydroxy-3-methylglutaryl coenzyme A(HMG-CoA)/mevalonate ratio,collagen,free fatty acid,cardiac parameters,apolipoprotein(A and B),antioxidant parameters,inflammatory cytokines,and inflammatory parameters were assessed.The mRNA expressions of interleukin-1β(IL-1β),tumor necrosis factor-α(TNF-α),IL-6,IL-17,PI3K,AKT,and mTOR were estimated.Results:CSⅣsignificantly modulated food intake,body weight,organ weight(liver,kidney,and heart),and calories(P<0.05).Total cholesterol,triglycerides,very low-density lipoprotein cholesterol,low-density lipoprotein cholesterol,cardiovascular risk index-1,and cardiovascular risk index-2 were decreased,while high-density lipoprotein cholesterol and anti-atherogenic index were increased significantly in the CSⅣgroup(P<0.05).Besides,CSⅣsignificantly restored the level of HMG-CoA/mevalonate ratio,collagen,free fatty acid,cardiac parameters(creatinine kinase-MB,lactate dehydrogenase,cTnT,cTnI),apolipoprotein(apolipoprotein A and apolipoprotein B),antioxidant parameters(MDA,CAT,GPx,GSH,SOD),inflammatory cytokines(TNF-α,IL-1β,IL-6,IL-10),inflammatory parameters(COX-2,TGF-β,NF-κB),intercellular adhesion molecule-1,vascular cell adhesion molecule-1,and monocyte chemoattractant protein-1.CSⅣalso decreased the mRNA expression of IL-1β,TNF-α,IL-6,IL-17,PI3K,AKT,and mTOR.Conclusions:This study showed the anti-atherosclerosis effect of CSⅣagainst high-fat diet-induced atherosclerosis in rats via alteration of NF-κB/COX-2 and PI3K/AKT/mTOR signaling pathway.展开更多
Background:The development of gastric cancer(GC)encompasses precancerous conditions like chronic atrophic gastritis(CAG)and premalignant lesions of gastric cancer(PLGC).In these situations,abnormal Notch signaling res...Background:The development of gastric cancer(GC)encompasses precancerous conditions like chronic atrophic gastritis(CAG)and premalignant lesions of gastric cancer(PLGC).In these situations,abnormal Notch signaling results in mucosal impairment and the initiation of cancer.Banxia Xiexin Decoction(BXD),a well-known formula in traditional Chinese medicine(TCM),shows promise in treating gastric disorders,but its mechanisms in gastric restoration remain unclear.Methods:Using MNNG-induced CAG and PLGC rat models,BXD was administered for 12 weeks.Gastric mucosal pathology was assessed via hematoxylin-eosin staining.Proliferation(Ki-67)and angiogenesis(VEGFA)markers were evaluated by immunohistochemistry.Network pharmacology identified BXD’s targets and pathways.Notch pathway components(Notch1,Jagged1,Dll4,Hes1)were analyzed via qPCR,Western blot,and immunohistochemistry.Results:BXD significantly ameliorated mucosal atrophy,glandular structural disorder,and dysplasia in CAG and PLGC rats.Network pharmacology revealed 323 overlapping targets between BXD and PLGC,with Notch signaling as a central pathway.BXD downregulated Notch1,Jagged1,Dll4,and Hes1 expression at transcriptional and protein levels,suppressed Ki-67(proliferation)and VEGFA(angiogenesis)overexpression,and restored gastric mucosal integrity.Conclusion:BXD inhibits Notch signaling,reduces aberrant proliferation and angiogenesis,and interrupts Correa’s gastric carcinogenesis cascade.This study provides mechanistic evidence supporting BXD as a TCM-based intervention for gastric precancerous lesions.展开更多
Background:ZhiZi-BoPi Decoction(ZZBPD),a traditional prescription for liver and gallbladder protection,has garnered significant clinical interest due to its hepatoprotective properties.Despite its proven efficacy in m...Background:ZhiZi-BoPi Decoction(ZZBPD),a traditional prescription for liver and gallbladder protection,has garnered significant clinical interest due to its hepatoprotective properties.Despite its proven efficacy in mitigating intrahepatic cholestasis,the precise mechanisms underlying its therapeutic effects remain inadequately understood.This study aims to comprehensively investigate the pharmacological mechanisms underlying the therapeutic effects of ZZBPD in cholestatic liver injury(CLI).Methods:Firstly,we evaluated the hepatoprotective effects of ZZBPD on mice with CLI induced byα-naphthylisothiocyanate(ANIT),by measuring biochemical markers,inflammatory factors,and bile acid levels.Subsequently,we employed network pharmacology and single-cell RNA sequencing(scRNA-seq)to identify key targets and potential signaling pathways for the prevention and treatment of CLI.Finally,we further validated the mechanism of action of ZZBPD on these key targets through molecular docking,western blotting,and immunofluorescence techniques.Results:ZZBPD notably improved serum liver function,reduced hepatic inflammation,and restored bile acid balance.Through network pharmacology and scRNA-seq analysis,48 core targets were identified,including TNF,IL-6,and NFKB1,all of which are linked to the IL-17 and NF-κB signaling pathways,as shown by KEGG enrichment analysis.Molecular docking further confirmed stable interactions between ZZBPD’s key active components and molecules such as IL-6,IL-17,and NF-κB.Additionally,western blotting and immunofluorescence validated the downregulation of IL-17 and NF-κB protein expression in liver tissue.Conclusion:ZZBPD effectively treats CLI by activating pathways related to the bile acid receptor FXR,while also modulating the IL-17/NF-κB signaling pathway.This dual action enhances bile secretion and alleviates liver inflammation.These findings offer important insights into the pharmacological mechanisms of ZZBPD and underscore its potential as a promising therapeutic for CLI.展开更多
Background:Hepatocellular carcinoma(HCC)is one of the leading causes of cancer-related mortality worldwide.This study aimed to identify key genes involved in HCC development and elucidate their molecular mechanisms,wi...Background:Hepatocellular carcinoma(HCC)is one of the leading causes of cancer-related mortality worldwide.This study aimed to identify key genes involved in HCC development and elucidate their molecular mechanisms,with a particular focus on mitochondrial function and apoptosis.Methods:Differential expression analyses were performed across three datasets—The Cancer Genome Atlas(TCGA)-Liver Hepatocellular Carcinoma(LIHC),GSE36076,and GSE95698—to identify overlapping differentially expressed genes(DEGs).A prognostic risk model was then constructed.Cysteine/serine-rich nuclear protein 1(CSRNP1)expression levels in HCC cell lines were assessed via western blot(WB)and quantitative reverse transcription polymerase chain reaction(qRT-PCR).The effects of CSRNP1 knockdown or overexpression on cell proliferation,migration,and apoptosis were evaluated using cell counting-8(CCK-8)assays,Transwell assays,and flow cytometry.Mitochondrial ultrastructure was examined by transmission electron microscopy,and intracellular and mitochondrial reactive oxygen species(mROS)levels were measured using specific fluorescent probes.WB was used to assess activation of the c-Jun N-terminal kinase(JNK)/p38 mitogen-activated protein kinase(MAPK)pathway,and pathway dependence was examined using the ROS scavenger N-Acetylcysteine(NAC)and the JNK inhibitor SP600125.Results:A six-gene prognostic model was established,comprising downregulated genes(NR4A1 and CSRNP1)and upregulated genes(CENPQ,YAE1,FANCF,and POC5)in HCC.Functional experiments revealed that CSRNP1 knockdown promoted the proliferation of HCC cells and suppressed their apoptosis.Conversely,CSRNP1 overexpression impaired mitochondrial integrity,increased both mitochondrial and cytoplasmic ROS levels,and activated the JNK/p38 MAPK pathway.Notably,treatment with NAC or SP600125 attenuated CSRNP1-induced MAPK activation and apoptosis.Conclusion:CSRNP1 is a novel prognostic biomarker and tumor suppressor in HCC.It exerts anti-tumor effects by inducing oxidative stress and activating the JNK/p38 MAPK pathway in a ROS-dependent manner.These findings suggest that CSRNP1 may serve as a potential therapeutic target in the management of HCC.展开更多
Pulmonary arterial hypertension(PAH)is a progressive disease marked by degeneration of the lung’s blood vessels.As the disease progresses,the resistance to blood flow in the pulmonary arteries increases,putting a str...Pulmonary arterial hypertension(PAH)is a progressive disease marked by degeneration of the lung’s blood vessels.As the disease progresses,the resistance to blood flow in the pulmonary arteries increases,putting a strain on the right side of the heart as it pumps blood through the lungs.PAH is characterized by changes in the structure of blood vessels and excessive cell growth.Untreated PAH leads to irreversible right-sided heart failure,often despite medical intervention.Patients experience a gradual decline in function until they are unable to perform daily activities.Advances in treatment have improved the prognosis for many PAH patients.Currently approved therapies target the prostacyclin,endothelin,nitric oxide,or phosphodiesterase pathways to slow the progression of the disease.To address the unmet need for effective PAH therapies,research efforts are focused on identifying new targets and developing therapies that specifically address the underlying disease mechanisms and restore vascular wall homeostasis.Among these,sotatercept,a fusion protein that targets the transforming growth factor-βsuperfamily signaling pathway,has emerged as a promising therapeutic option.In this review,we examine the available evidence from clinical trials to assess the potential of sotatercept as a treatment for PAH.展开更多
To investigate whether microRNA (miR)-34a mediates oxaliplatin (OXA) resistance of colorectal cancer (CRC) cells by inhibiting macroautophagy via the transforming growth factor (TGF)-β/Smad4 pathway.METHODSmiR-34a ex...To investigate whether microRNA (miR)-34a mediates oxaliplatin (OXA) resistance of colorectal cancer (CRC) cells by inhibiting macroautophagy via the transforming growth factor (TGF)-β/Smad4 pathway.METHODSmiR-34a expression levels were detected in CRC tissues and CRC cell lines by quantitative real-time polymerase chain reaction. Computational search, functional luciferase assay and western blotting were used to demonstrate the downstream target of miR-34a in CRC cells. Cell viability was measured with Cell Counting Kit-8. Apoptosis and macroautophagy of CRC cells were analyzed by flow cytometry and transmission electron microscopy, and expression of beclin I and LC3-II was detected by western blotting.RESULTSExpression of miR-34a was significantly reduced while expression of TGF-β and Smad4 was increased in CRC patients treated with OXA-based chemotherapy. OXA treatment also resulted in decreased miR-34a levels and increased TGF-β and Smad4 levels in both parental cells and the OXA-resistant CRC cells. Activation of macroautophagy contributed to OXA resistance in CRC cells. Expression levels of Smad4 and miR-34a in CRC patients had a significant inverse correlation and overexpressing miR-34a inhibited macroautophagy activation by directly targeting Smad4 through the TGF-β/Smad4 pathway. OXA-induced downregulation of miR-34a and increased drug resistance by activating macroautophagy in CRC cells.CONCLUSIONmiR-34a mediates OXA resistance of CRC by inhibiting macroautophagy via the TGF-β/Smad4 pathway.展开更多
AIM To explore the protective effects and underlying mechanisms of total polysaccharides of the Sijunzi decoction(TPSJ) on the epithelial barriers in vitro. METHODS Caco-2 cell monolayers were treated with or without ...AIM To explore the protective effects and underlying mechanisms of total polysaccharides of the Sijunzi decoction(TPSJ) on the epithelial barriers in vitro. METHODS Caco-2 cell monolayers were treated with or without TPSJ in the presence or absence of TNF-α, and paracellular permeability and transepithelial electrical resistance(TEER) were measured to evaluate the epithelial barrier function. Immunofluorescence and western blotting were respecti-vely used to evaluate the distribution and expression of the tight junction proteins claudin 1, claudin 2, zo3, and occludin in Caco-2 cells. western blotting was also used to evaluate the cellular expression of myosin light chain(MLC), phosphorylated MLC(pM LC), MLC kinase(MLCK), and nuclear factor(NF)-κB p65. RESULTS TPSJ promoted the proliferation of Caco-2 cells and inhibited TNF-α-induced secretion of pro-inflammatory cyto-kines. Furthermore, TPSJ significantly ameliorated both the reduction of TEER and the increased paracellular permeability observed in tumor necrosis factor(TNF)-α-damaged Caco-2 monolayers. Furthermore, TPSJ remarkably attenuated TNF-α-induced morphological changes, downregulated the expression of claudin 1, claudin 2, zo3, and occludin, and markedly suppressed TNF-α-mediated upregulation of p-MLC and MLCK expression. Finally, TPSJ inhibited the activation and expression of NF-κB p65. CONCLUSION Our results demonstrate that TPSJ alleviates the TNF-α-induced impairment of the intestinal epithelial cell barrier function by suppressing NF-κB p65-mediated phosphorylation of MLCK and MLC.展开更多
基金Supported by the Project of Xinjiang Production and Construction Corps,No.2022ZD090the Project of Xinjiang Production and Construction Corps-Young Science and Technology Innovation Talents,No.2023CB008-31+2 种基金The First Affiliated Hospital of Shihezi University Medical College,Doctoral Fund Project,No.BS202207Talent Development Fund-Tianshan Talents,No.CZ0012192024 National Health Commission Central Asian High-Incidence Prevention and Control Key Laboratory,No.KF202405.
文摘BACKGROUND Pathological calcification is a common feature of many diseases.Calcifying nanoparticles(CNPs)are considered potential inducers of this abnormal calcification,but their specific effects on bone marrow mesenchymal stem cells(BMSCs)remain unclear.BMSCs are key cells in bone formation and repair,and their aberrant apoptosis and calcification are closely related to disease progression.AIM To explore whether CNPs can induce apoptosis and calcification in BMSCs and analyzed the relationship between these processes.The differential effects of CNPs and nanoscale hydroxyapatites(nHAPs)in inducing apoptosis and calcification in BMSCs were also compared.METHODS CNPs obtained in the early stage were identified by electron microscopy and particle size analysis.BMSCs were cultured with various treatments,including different concentrations of nHAPs,CNPs[2 McFarland(MCF)turbidity,4 MCF,6 MCF],and a transforming growth factor(TGF)-βinhibitor(SB431542)for 72 hours.The isolated CNPs exhibited the expected sizes and shapes.RESULTS Exposure to CNPs and nHAPs suppressed cell proliferation and promoted apoptosis in a concentration-dependent manner,with CNPs exhibiting significantly stronger effects.Alizarin Red staining indicated an increase in calcium deposition with exposure to increasing concentrations of nHAPs and CNPs.Quantitative reverse-transcription polymerase chain reaction results indicated that medium concentrations of nHAPs and CNPs significantly enhanced the expression of pro-apoptotic and pro-calcification markers,whereas the expression of anti-apoptotic Bcl-2 was reduced compared with untreated controls.Western blotting results showed that medium concentrations of CNPs and nHAPs increased the expression of osteopontin,bone morphogenetic protein-2,TGF-β/Smad,Bax,and caspase-3 and decreased Bcl-2 expression compared with controls.CONCLUSION CNPs and nHAPs induced apoptosis and calcification in BMSCs,with CNPs being the most potent.Additionally,the TGF-βinhibitor SB431542 significantly reduced the occurrence of apoptosis and calcification.A correlation was found between apoptosis and calcification,which is likely mediated through the TGF-β/Smad signaling pathway.
基金supported by grants from the National Natural Science Foundation of China (82071104)Science and Technology Commission of Shanghai Municipality (23XD1434200/22Y21901000)+9 种基金Shanghai Hospital Development Center(SHDC12022120)National Clinical Research Center for Oral Diseases (NCRCO2021-omics-07)Shanghai Clinical Research Center for Oral Diseases (19MC1910600)Major and Key Cultivation Projects of Ninth People’s Hospital affiliated to Shanghai Jiao Tong University School of Medicine (JYZP006)Shanghai’s Top Priority Research Center (2022ZZ01017)CAMS Innovation Fund for Medical Sciences (2019-I2M-5-037)Fundamental research program funding of Ninth People’s Hospital affiliated to Shanghai Jiao Tong University School of Medicine(JYZZ237)Eastern Talent Plan Leading Project (BJZH2024001)partly supported by the Shanghai Ninth People’s Hospital affiliated with Shanghai Jiao Tong University,School of Medicine(JYJC202223)Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases (14DZ2260300)
文摘Pulpitis is a common infective oral disease in clinical situations.The regulatory mechanisms of immune defense in pulpitis are still being investigated.Osteomodulin(OMD)is a small leucine-rich proteoglycan family member distributed in bones and teeth.It is a bioactive protein that promotes osteogenesis and suppresses the apoptosis of human dental pulp stem cells(hDPSCs).In this study,the role of OMD in pulpitis and the OMD-induced regulatory mechanism were investigated.The OMD expression in normal and inflamed human pulp tissues was detected via immunofluorescence staining.Intriguingly,the OMD expression decreased in the inflammatory infiltration area of pulpitis specimens.The cellular experiments demonstrated that recombined human OMD could resist the detrimental effects of lipopolysaccharide(LPS)-induced inflammation.A conditional Omd knockout mouse model with pulpal inflammation was established.LPS-induced inflammatory impairment significantly increased in conditional Omd knockout mice,whereas OMD administration exhibited a protective effect against pulpitis.Mechanistically,the transcriptome alterations of OMD overexpression showed significant enrichment in the nuclear factor-κB(NF-κB)signaling pathway.Interleukin-1 receptor 1(IL1R1),a vital membrane receptor activating the NF-κB pathway,was significantly downregulated in OMD-overexpressing hDPSCs.Additionally,the interaction between OMD and IL1R1 was verified using co-immunoprecipitation and molecular docking.In vivo,excessive pulpal inflammation in Omd-deficient mice was rescued using an IL1R antagonist.Overall,OMD played a protective role in the inflammatory response via the IL1R1/NF-κB signaling pathway.OMD may optimize the immunomodulatory functions of hDPSCs and can be used for regenerative endodontics.
基金Supported by Taicang Science and Technology Program,No.TC2021JCYL21“National Tutor System”Training Program for Health Youth Key Talents in Suzhou,No.Qngg2023042Suzhou Science and Technology Bureau,No.SYW2024152.
文摘BACKGROUND Tumor necrosis factor-α(TNF-α)has been implicated in the development of diabetes following chronic pancreatitis.However,its role in abnormal glucose metabolism(AGM)after acute pancreatitis(AP)and post-pancreatitis diabetes mellitus remains unclear.AIM To investigate the role of TNF-αin AP-associated AGM and its effects on isletβ-cell apoptosis,focusing on the underlying molecular mechanisms.METHODS Clinical data were collected to assess AGM’s incidence and identify the characteristics in 369 AP patients.In vitro,AP models were established using lipopolysaccharide in 266-6 acinar cells and MIN-6β-cells.Cell proliferation,apoptosis,and protein expression were analyzed using the Cell Counting Kit-8 assay,terminal deoxynucleotidyl transferase dUTP nick-end labeling assay,and western blotting.The TNF-αand insulin concentration in co-culture medium was measured by enzyme-linked immunosorbent assay.In vivo,an AP mouse model was induced using sodium taurocholate,and pancreatic tissues were analyzed through hematoxylin and eosin staining,terminal deoxynucleotidyl transferase dUTP nick-end labeling,and western blotting.TNF-αlevels were assessed by enzyme-linked immunosorbent assay.A TNF-αinhibitor was applied to the AP cell model to reassess apoptosis and protein expression.RESULTS AGM occurred in 40.38%of AP patients.Body mass index,severity grade,recurrence frequency,and lung injury were significantly associated with AGM.AP models in 266-6 and MIN-6 cells showed reducedβ-cell proliferation,insulin secretion,and increased apoptosis,which correlated with inflammation severity.Similar findings ofβ-cell apoptosis were confirmed in the mouse model.TNF-αlevels were significantly elevated in AP models,with higher levels in severe inflammation.Increased Bax and caspase-3 expression and decreased Bcl-2 expression were observed in both in vitro and in vivo models.These changes intensified with increasing inflammation.TNF-αinhibition reduced apoptosis and altered protein expression patterns,decreasing Bax and caspase-3,while increasing Bcl-2 in MIN-6 cells.CONCLUSION TNF-αcontributes toβ-cell apoptosis and AGM in AP through the Bax/Bcl-2/caspase-3 signaling pathway,suggesting TNF-αas a potential therapeutic target for preventing AP-associated AGM.
基金National Natural Science Foundation of China:Basic Research on the Mechanism of Organ Immune Damage and the Diagnosis and Treatment of Integrated Traditional Chinese and Western Medicine(No.32141005)。
文摘OBJECTIVE:To investigate the impact of Shenhua tablet(肾华片,SHT)on renal macrophage polarization and renal injury in mice with diabetic kidney disease(DKD)and to explore the potential mechanism involving the hypoxia-inducible factor-1α(HIF-1α)and pyruvate kinase M2(PKM2)signaling pathway,along with the glycolysis metabolism pathway.METHODS:The animals were divided into the following groups:Model,Control,dapagliflozin,SHT low-dose,SHT medium-dose,and SHT high-dose.We assessed 24-hour urine protein(24 h-UTP)levels,urinary albuminto-creatinine ratio,and regularly monitored fasting blood glucose during the treatment period.After treatment,we examined renal tissue structure,renal function(urea nitrogen,uric acid,creatinine,cystatin C,β2-microglobulin),and glycolysis in renal macrophages.Additionally,we observed macrophage polarization in renal tissue and measured inflammatory factors(tumor necrosis factor-α,interleukin-1β,interleukin-6,interleukin-10,monocyte chemoattractant protein-1)to assess the immunoinflammatory status of the renal tissue.Finally,we investigated the expression of the HIF-1α/PKM2 signaling pathway in macrophages to explore its role in the glycolysis process.RESULTS:SHT shows a beneficial effect in treating DKD by reducing 24 h-UTP,regulating blood glucose levels,improving renal tissue structure,protecting renal function,inhibiting macrophage glycolysis,reducing macrophage transformation to the M1 state,and suppressing the expression of the HIF-1α/PKM2 signaling pathway.CONCLUSION:SHT may exert renoprotective effects by inhibiting macrophage glycolysis via the HIF-1α/PKM2 signaling pathway.This inhibition decreases macrophage M1 polarization and reduces immunoinflammatory injury in the renal tissue of DKD mice.
基金supported by the Natural Science Foundation of Yunnan Province,No.202401AS070086(to ZW)the National Key Research and Development Program of China,No.2018YFA0801403(to ZW)+1 种基金Yunnan Science and Technology Talent and Platform Plan,No.202105AC160041(to ZW)the Natural Science Foundation of China,No.31960120(to ZW)。
文摘Traumatic brain injury can be categorized into primary and secondary injuries.Secondary injuries are the main cause of disability following traumatic brain injury,which involves a complex multicellular cascade.Microglia play an important role in secondary injury and can be activated in response to traumatic brain injury.In this article,we review the origin and classification of microglia as well as the dynamic changes of microglia in traumatic brain injury.We also clarify the microglial polarization pathways and the therapeutic drugs targeting activated microglia.We found that regulating the signaling pathways involved in pro-inflammatory and anti-inflammatory microglia,such as the Toll-like receptor 4/nuclear factor-kappa B,mitogen-activated protein kinase,Janus kinase/signal transducer and activator of transcription,phosphoinositide 3-kinase/protein kinase B,Notch,and high mobility group box 1 pathways,can alleviate the inflammatory response triggered by microglia in traumatic brain injury,thereby exerting neuroprotective effects.We also reviewed the strategies developed on the basis of these pathways,such as drug and cell replacement therapies.Drugs that modulate inflammatory factors,such as rosuvastatin,have been shown to promote the polarization of antiinflammatory microglia and reduce the inflammatory response caused by traumatic brain injury.Mesenchymal stem cells possess anti-inflammatory properties,and clinical studies have confirmed their significant efficacy and safety in patients with traumatic brain injury.Additionally,advancements in mesenchymal stem cell-delivery methods—such as combinations of novel biomaterials,genetic engineering,and mesenchymal stem cell exosome therapy—have greatly enhanced the efficiency and therapeutic effects of mesenchymal stem cells in animal models.However,numerous challenges in the application of drug and mesenchymal stem cell treatment strategies remain to be addressed.In the future,new technologies,such as single-cell RNA sequencing and transcriptome analysis,can facilitate further experimental studies.Moreover,research involving non-human primates can help translate these treatment strategies to clinical practice.
基金supported by the National Natural Science Foundation of China,No.81571211(to FL)the Natural Science Foundation of Shanghai,No.22ZR1476800(to CH)。
文摘Peripheral nerve defect repair is a complex process that involves multiple cell types;perineurial cells play a pivotal role.Hair follicle neural crest stem cells promote perineurial cell proliferation and migration via paracrine signaling;however,their clinical applications are limited by potential risks such as tumorigenesis and xenogeneic immune rejection,which are similar to the risks associated with other stem cell transplantations.The present study therefore focuses on small extracellular vesicles derived from hair follicle neural crest stem cells,which preserve the bioactive properties of the parent cells while avoiding the transplantation-associated risks.In vitro,small extracellular vesicles derived from hair follicle neural crest stem cells significantly enhanced the proliferation,migration,tube formation,and barrier function of perineurial cells,and subsequently upregulated the expression of tight junction proteins.Furthermore,in a rat model of sciatic nerve defects bridged with silicon tubes,treatment with small extracellular vesicles derived from hair follicle neural crest stem cells resulted in higher tight junction protein expression in perineurial cells,thus facilitating neural tissue regeneration.At 10 weeks post-surgery,rats treated with small extracellular vesicles derived from hair follicle neural crest stem cells exhibited improved nerve function recovery and reduced muscle atrophy.Transcriptomic and micro RNA analyses revealed that small extracellular vesicles derived from hair follicle neural crest stem cells deliver mi R-21-5p,which inhibits mothers against decapentaplegic homolog 7 expression,thereby activating the transforming growth factor-β/mothers against decapentaplegic homolog signaling pathway and upregulating hyaluronan synthase 2 expression,and further enhancing tight junction protein expression.Together,our findings indicate that small extracellular vesicles derived from hair follicle neural crest stem cells promote the proliferation,migration,and tight junction protein formation of perineurial cells.These results provide new insights into peripheral nerve regeneration from the perspective of perineurial cells,and present a novel approach for the clinical treatment of peripheral nerve defects.
基金supported by NIH grants,Nos.R01NS125074,R01AG083164,R01NS107365,and R21NS127177(to YL),1F31NS129204-01A1(to KW)and Albert Ryan Fellowship(to KW).
文摘Adult neurogenesis continuously produces new neurons critical for cognitive plasticity in adult rodents.While it is known transforming growth factor-βsignaling is important in embryonic neurogenesis,its role in postnatal neurogenesis remains unclear.In this study,to define the precise role of transforming growth factor-βsignaling in postnatal neurogenesis at distinct stages of the neurogenic cascade both in vitro and in vivo,we developed two novel inducible and cell type-specific mouse models to specifically silence transforming growth factor-βsignaling in neural stem cells in(mGFAPcre-ALK5fl/fl-Ai9)or immature neuroblasts in(DCXcreERT2-ALK5fl/fl-Ai9).Our data showed that exogenous transforming growth factor-βtreatment led to inhibition of the proliferation of primary neural stem cells while stimulating their migration.These effects were abolished in activin-like kinase 5(ALK5)knockout primary neural stem cells.Consistent with this,inhibition of transforming growth factor-βsignaling with SB-431542 in wild-type neural stem cells stimulated proliferation while inhibited the migration of neural stem cells.Interestingly,deletion of transforming growth factor-βreceptor in neural stem cells in vivo inhibited the migration of postnatal born neurons in mGFAPcre-ALK5fl/fl-Ai9 mice,while abolishment of transforming growth factor-βsignaling in immature neuroblasts in DCXcreERT2-ALK5fl/fl-Ai9 mice did not affect the migration of these cells in the hippocampus.In summary,our data supports a dual role of transforming growth factor-βsignaling in the proliferation and migration of neural stem cells in vitro.Moreover,our data provides novel insights on cell type-specific-dependent requirements of transforming growth factor-βsignaling on neural stem cell proliferation and migration in vivo.
基金support from various sources,including the National Natural Science Foundation of China(Grant Nos.81570774,82070872,92049118,and 82370854)the Junior Thousand Talents Program of China,and the Nanjing Medical University Startup Fund(All awarded to J.L.)support provided by Jiangsu Province's Innovation Personal as well as Innovative and Entrepreneurial Team of Jiangsu Province(Grant No.JSSCTD2021)(All awarded to J.L.).
文摘V-raf-leukemia viral oncogene 1(RAF1),a serine/threonine protein kinase,is well established to play a crucial role in tumorigenesis and cell development.However,the specific role of hypothalamic RAF1 in regulating energy metabolism remains unknown.In this study,we found that the expression of RAF1 was significantly increased in hypothalamic AgRP neurons of diet-induced obesity(DIO)mice.Under normal chow diet feeding,overexpression of Raf1 in AgRP neurons led to obesity in mice characterized by increased body weight,fat mass,and impaired glucose tolerance.Conversely,Raf1 knockout in AgRP neurons protected against diet-induced obesity,reducing fat mass and improving glucose tolerance.Mechanistically,Raf1 activated the MAPK signaling pathway,culminating in the phosphorylation of cAMP response element-binding protein(CREB),which enhanced transcription of Agrp and Npy.Insulin stimulation further potentiated the RAF1-MEK1/2-ERK1/2-CREB axis,highlighting RAF1's role in integrating hormonal and nutritional signals to regulate energy balance.Collectively,these findings underscore the important role of RAF1 in AgRP neurons in maintaining energy homeostasis and obesity pathogenesis,positioning it and its downstream pathways as potential therapeutic targets for innovative strategies to combat obesity and related metabolic diseases.
文摘Governance debates gained strong momentum in Africa in early December 2025 as the China-Kenya Readers Forum on Xi Jinping:The Governance of China convened in Nairobi on 1 December 2025,followed by a promotional event for the English edition of the book’s fifth volume on 3 December 2025 in Johannesburg,South Africa.
基金supported by the Natural Science Foundation of China(No.52101279)the Key Scientific Research Foundation of Education department of Hunan Province(No.24A0003)the Scientific Research Project of Education Department of Hunan Province(No.21B000)and the Fundamental Research Funds for the Central Universities of Central South University.
文摘Accelerated industrialization combined with over-applied nitrogen fertilizers results in serious nitrate pollution insurface and ground water,disrupting the balance of the global nitrogen cycle.Electrochemical nitrate reduction(eNO_(3)RR)emerges as an attractive strategy to simultaneously enable nitrate removal and decentralized ammo-nia fabrication,restoring the globally perturbed nitrogen cycle.However,complex deoxygenation-hydrogenationprocesses and sluggish proton-electron transfer kinetics significantly hinder practical application of eNO_(3)RR.In this study,we developed carbon-coated Cu-Ni bimetallic catalysts derived from metal-organic frameworks(MOFs)to facilitate eNO_(3)RR.The unique structural features of catalyst promote enhanced synergy between Cuand Ni,effectively addressing critical challenges in nitrate reduction.Comprehensive structural and electrochem-ical analysis demonstrate that electrochemical nitrate-to-nitrite conversion mainly takes place on active Cu sites,the introduction of Ni could efficiently accelerate the generation of aquatic active hydrogen,promoting the hy-drogenation of oxynitrides during eNO_(3)RR.In addition,Ni introduction could push up the d-band center of thecatalyst,thus enhancing the adsorption and activation of nitrate and the corresponding intermediates.Detailedreaction pathways for nitrate-to-ammonia conversion are illuminated by rotating disk electrode(RDE),in-situFourier-transform infrared spectroscopy,in-situ Raman spectrum and electrochemical impedance spectroscopy(EIS).Benefiting from the synergistic effect of Cu and Ni,optimum catalyst exhibited excellent nitrate reductionperformance.This work provides a new idea for elucidating the underlying eNO_(3)RR reaction mechanisms andcontributes a promising strategy for designing efficient bimetallic electrocatalysts.
文摘Objective:To investigate effect of oleanolic acid(OA)on atherosclerosis and its related mechanisms.Methods:Human umbilical vein endothelial cells(HUVECs)were injured by oxidized low-density lipoprotein for 24 h and treated with OA,and the levels of cell proliferation,migration,adhesion,and apoptosis were evaluated by BrdU staining,scratch healing assay,monocyte-endothelial cell adhesion assay and flow cytometry.The mice were fed with a high-fat diet to induce an atherosclerosis model,and treated with OA by gastric gavage.The mice were divided into the control group,the model group,and the OA administration group.The blood lipid and plaque formation in mice were detected.In addition,oxidative stress and mitochondrial structure and function changes in cells and mice were evaluated by transmission electron microscopy,JC-1 fluorescent probe,and Western blotting assays.The expression levels of proteins in the AMPK/Drp1 pathway were examined through Western blot.Results:OA markedly increased cell viability and migration rate of HUVECs,and decreased the adhesion rate of THP-1 cells and the apoptosis rate.OA significantly reduced serum lipid levels,such as total cholesterol and triglyceride,in mice and inhibited plaque formation in the aorta.OA also significantly increased the content of superoxide dismutase and catalase,alleviated mitochondrial damage,such as mitochondrial swelling and mitochondrial cristae reduction,reduced the number of mitochondria,increased adenosine triphosphate content,and significantly reduced p-Drp1(Ser616)/Drp1,MFF and FIS1 levels,increased p-AMPK/AMPK levels,activated AMPK,and then regulated DRP1 activity.Conclusions:OA activates AMPK,which in turn regulates the activity of DRP1 to restore normal mitochondrial dynamics and reduce atherosclerosis.
基金supported by the College of Oral Medicine,Taipei Medical University,Taipei,Taiwan(Grant No.TMUCOM202502)supported by Taipei Medical University Hospital,Taipei,Taiwan(Grant No.114TMUH-NE-05).
文摘This narrative review examines recent advances in salivary biomarkers for oral squamous cell carcinoma(OSCC),a major subtype of oral cancer with persistently low five-year survival rates due to delayed diagnosis.Saliva has emerged as a noninvasive diagnostic medium capable of reflecting both local tumor activity and systemic physiological changes.Various salivary biomarkers,including microRNAs,cytokines,proteins,metabolites,and exosomes,have been linked to oncogenic signaling pathways involved in tumor progression,immune modulation,and therapeutic resistance.Advances in quantitative polymerase chain reaction,mass spectrometry,and next-generation sequencing have enabled comprehensive biomarker profiling,while point-of-care detection systems and saliva-based omics platforms are accelerating clinical translation.Remaining challenges include variability in salivary composition,lack of standardized collection protocols,and insufficient validation across large patient cohorts.This review highlights the mechanistic relevance,diagnostic potential,and translational challenges of salivary biomarkers in OSCC.
文摘Background:Epidemiological studies have confirmed that longer exposure to insecticides like cypermethrin(CYP)significantly increases the risk of male reproductive toxicity.Crocus sativus L.has been recognized due to its therapeutic properties,but its exact role and molecular mechanisms in treatment of reproductive dysfunction remain unclear.Methods:During this study,36 rats were randomly divided into six groups(n=6):control,CYP-induced(60 mg/kg),standard(leuprolide 3 mg/kg)and three treatment groups receiving aqueous,ethanolic,and oil extracts(50 mg/kg or 20 mL/kg)for post-toxicity induction.Results:The finding represented that exposure of CYP significantly increased oxidative stress,disrupted testicular architecture,and markedly reduced testosterone levels(P<0.05).Importantly,Crocus sativus L.treatment alleviated these changes by increasing the expression of Nrf2(nuclear factor erythroid 2-related factor 2),restoring the activity of antioxidant enzymes,and enhancing testicular histomorphology.Surprisingly,molecular docking established a high binding affinity of Crocus sativus L.phytoconstituents such as gallic acid,cinnamic acid and quercetin to the Nrf2-Keap1 complex.It is worth noting that,Crocus sativus L.exhibited a high level of protection against reproductive toxicity caused by CYP in male rats,which was mediated by the activation of Nrf2 pathway,reduction of oxidative damage,and favorable ADMET characteristics.Conclusion:Notably,this research provides a more valid,safe,and effective method of developing new drugs for reproductive disorders,however,further investigation is needed to support the research findings and implement it in clinical practice.
基金funded by the Yancheng Municipal Health Commission 2024 Medical Research Project(YK2024166).
文摘Objective:To investigate the anti-atherosclerosis effect of chikusetsusaponinⅣ(CSⅣ)against high-fat diet-induced atherosclerosis in rats.Methods:A high-fat diet was used for the induction of atherosclerosis in rats,and the rats received oral CSⅣor atorvastatin.The body weight,organ weights,food intake,calorie intake,lipid parameters,3-hydroxy-3-methylglutaryl coenzyme A(HMG-CoA)/mevalonate ratio,collagen,free fatty acid,cardiac parameters,apolipoprotein(A and B),antioxidant parameters,inflammatory cytokines,and inflammatory parameters were assessed.The mRNA expressions of interleukin-1β(IL-1β),tumor necrosis factor-α(TNF-α),IL-6,IL-17,PI3K,AKT,and mTOR were estimated.Results:CSⅣsignificantly modulated food intake,body weight,organ weight(liver,kidney,and heart),and calories(P<0.05).Total cholesterol,triglycerides,very low-density lipoprotein cholesterol,low-density lipoprotein cholesterol,cardiovascular risk index-1,and cardiovascular risk index-2 were decreased,while high-density lipoprotein cholesterol and anti-atherogenic index were increased significantly in the CSⅣgroup(P<0.05).Besides,CSⅣsignificantly restored the level of HMG-CoA/mevalonate ratio,collagen,free fatty acid,cardiac parameters(creatinine kinase-MB,lactate dehydrogenase,cTnT,cTnI),apolipoprotein(apolipoprotein A and apolipoprotein B),antioxidant parameters(MDA,CAT,GPx,GSH,SOD),inflammatory cytokines(TNF-α,IL-1β,IL-6,IL-10),inflammatory parameters(COX-2,TGF-β,NF-κB),intercellular adhesion molecule-1,vascular cell adhesion molecule-1,and monocyte chemoattractant protein-1.CSⅣalso decreased the mRNA expression of IL-1β,TNF-α,IL-6,IL-17,PI3K,AKT,and mTOR.Conclusions:This study showed the anti-atherosclerosis effect of CSⅣagainst high-fat diet-induced atherosclerosis in rats via alteration of NF-κB/COX-2 and PI3K/AKT/mTOR signaling pathway.
基金supported by the National Natural Science Foundation of China(Grant No.82274442)the Key Research Project in Traditional Chinese Medicine of Tianjin Municipal Health Commission(Grant No.202007)the Integrated Traditional Chinese and Western Medicine Research Project of Tianjin Municipal Health Commission(Grant No.2023134).
文摘Background:The development of gastric cancer(GC)encompasses precancerous conditions like chronic atrophic gastritis(CAG)and premalignant lesions of gastric cancer(PLGC).In these situations,abnormal Notch signaling results in mucosal impairment and the initiation of cancer.Banxia Xiexin Decoction(BXD),a well-known formula in traditional Chinese medicine(TCM),shows promise in treating gastric disorders,but its mechanisms in gastric restoration remain unclear.Methods:Using MNNG-induced CAG and PLGC rat models,BXD was administered for 12 weeks.Gastric mucosal pathology was assessed via hematoxylin-eosin staining.Proliferation(Ki-67)and angiogenesis(VEGFA)markers were evaluated by immunohistochemistry.Network pharmacology identified BXD’s targets and pathways.Notch pathway components(Notch1,Jagged1,Dll4,Hes1)were analyzed via qPCR,Western blot,and immunohistochemistry.Results:BXD significantly ameliorated mucosal atrophy,glandular structural disorder,and dysplasia in CAG and PLGC rats.Network pharmacology revealed 323 overlapping targets between BXD and PLGC,with Notch signaling as a central pathway.BXD downregulated Notch1,Jagged1,Dll4,and Hes1 expression at transcriptional and protein levels,suppressed Ki-67(proliferation)and VEGFA(angiogenesis)overexpression,and restored gastric mucosal integrity.Conclusion:BXD inhibits Notch signaling,reduces aberrant proliferation and angiogenesis,and interrupts Correa’s gastric carcinogenesis cascade.This study provides mechanistic evidence supporting BXD as a TCM-based intervention for gastric precancerous lesions.
基金supported by the National Science Foundation of China(No.82405004,82474253)the Natural Science Foundation postdoctoral project of Chongqing(CSTB2022NSCQ-BHX0709)+2 种基金Chongqing Wanzhou District doctoral“through train”scientific research project(wzstc-20220124)Natural Science Foundation of Chongqing,China(No.Cstc2021jcyj-msxmX0996)Chongqing Wanzhou District Science and Health Joint Medical Research Project(wzstc-kw2023032)。
文摘Background:ZhiZi-BoPi Decoction(ZZBPD),a traditional prescription for liver and gallbladder protection,has garnered significant clinical interest due to its hepatoprotective properties.Despite its proven efficacy in mitigating intrahepatic cholestasis,the precise mechanisms underlying its therapeutic effects remain inadequately understood.This study aims to comprehensively investigate the pharmacological mechanisms underlying the therapeutic effects of ZZBPD in cholestatic liver injury(CLI).Methods:Firstly,we evaluated the hepatoprotective effects of ZZBPD on mice with CLI induced byα-naphthylisothiocyanate(ANIT),by measuring biochemical markers,inflammatory factors,and bile acid levels.Subsequently,we employed network pharmacology and single-cell RNA sequencing(scRNA-seq)to identify key targets and potential signaling pathways for the prevention and treatment of CLI.Finally,we further validated the mechanism of action of ZZBPD on these key targets through molecular docking,western blotting,and immunofluorescence techniques.Results:ZZBPD notably improved serum liver function,reduced hepatic inflammation,and restored bile acid balance.Through network pharmacology and scRNA-seq analysis,48 core targets were identified,including TNF,IL-6,and NFKB1,all of which are linked to the IL-17 and NF-κB signaling pathways,as shown by KEGG enrichment analysis.Molecular docking further confirmed stable interactions between ZZBPD’s key active components and molecules such as IL-6,IL-17,and NF-κB.Additionally,western blotting and immunofluorescence validated the downregulation of IL-17 and NF-κB protein expression in liver tissue.Conclusion:ZZBPD effectively treats CLI by activating pathways related to the bile acid receptor FXR,while also modulating the IL-17/NF-κB signaling pathway.This dual action enhances bile secretion and alleviates liver inflammation.These findings offer important insights into the pharmacological mechanisms of ZZBPD and underscore its potential as a promising therapeutic for CLI.
基金funded by Shanghai Yangpu District Science and Technology Commission(Grant No.YPQ202303(Xuejing Lin))Shanghai Yangpu Hospital Foundation(Grant No.Se1202420(Wenchao Wang)and Ye1202423(Juan Huang)).
文摘Background:Hepatocellular carcinoma(HCC)is one of the leading causes of cancer-related mortality worldwide.This study aimed to identify key genes involved in HCC development and elucidate their molecular mechanisms,with a particular focus on mitochondrial function and apoptosis.Methods:Differential expression analyses were performed across three datasets—The Cancer Genome Atlas(TCGA)-Liver Hepatocellular Carcinoma(LIHC),GSE36076,and GSE95698—to identify overlapping differentially expressed genes(DEGs).A prognostic risk model was then constructed.Cysteine/serine-rich nuclear protein 1(CSRNP1)expression levels in HCC cell lines were assessed via western blot(WB)and quantitative reverse transcription polymerase chain reaction(qRT-PCR).The effects of CSRNP1 knockdown or overexpression on cell proliferation,migration,and apoptosis were evaluated using cell counting-8(CCK-8)assays,Transwell assays,and flow cytometry.Mitochondrial ultrastructure was examined by transmission electron microscopy,and intracellular and mitochondrial reactive oxygen species(mROS)levels were measured using specific fluorescent probes.WB was used to assess activation of the c-Jun N-terminal kinase(JNK)/p38 mitogen-activated protein kinase(MAPK)pathway,and pathway dependence was examined using the ROS scavenger N-Acetylcysteine(NAC)and the JNK inhibitor SP600125.Results:A six-gene prognostic model was established,comprising downregulated genes(NR4A1 and CSRNP1)and upregulated genes(CENPQ,YAE1,FANCF,and POC5)in HCC.Functional experiments revealed that CSRNP1 knockdown promoted the proliferation of HCC cells and suppressed their apoptosis.Conversely,CSRNP1 overexpression impaired mitochondrial integrity,increased both mitochondrial and cytoplasmic ROS levels,and activated the JNK/p38 MAPK pathway.Notably,treatment with NAC or SP600125 attenuated CSRNP1-induced MAPK activation and apoptosis.Conclusion:CSRNP1 is a novel prognostic biomarker and tumor suppressor in HCC.It exerts anti-tumor effects by inducing oxidative stress and activating the JNK/p38 MAPK pathway in a ROS-dependent manner.These findings suggest that CSRNP1 may serve as a potential therapeutic target in the management of HCC.
文摘Pulmonary arterial hypertension(PAH)is a progressive disease marked by degeneration of the lung’s blood vessels.As the disease progresses,the resistance to blood flow in the pulmonary arteries increases,putting a strain on the right side of the heart as it pumps blood through the lungs.PAH is characterized by changes in the structure of blood vessels and excessive cell growth.Untreated PAH leads to irreversible right-sided heart failure,often despite medical intervention.Patients experience a gradual decline in function until they are unable to perform daily activities.Advances in treatment have improved the prognosis for many PAH patients.Currently approved therapies target the prostacyclin,endothelin,nitric oxide,or phosphodiesterase pathways to slow the progression of the disease.To address the unmet need for effective PAH therapies,research efforts are focused on identifying new targets and developing therapies that specifically address the underlying disease mechanisms and restore vascular wall homeostasis.Among these,sotatercept,a fusion protein that targets the transforming growth factor-βsuperfamily signaling pathway,has emerged as a promising therapeutic option.In this review,we examine the available evidence from clinical trials to assess the potential of sotatercept as a treatment for PAH.
基金Supported by Science Foundation of Education Department of Heilongjiang Province,China,no.12541430
文摘To investigate whether microRNA (miR)-34a mediates oxaliplatin (OXA) resistance of colorectal cancer (CRC) cells by inhibiting macroautophagy via the transforming growth factor (TGF)-β/Smad4 pathway.METHODSmiR-34a expression levels were detected in CRC tissues and CRC cell lines by quantitative real-time polymerase chain reaction. Computational search, functional luciferase assay and western blotting were used to demonstrate the downstream target of miR-34a in CRC cells. Cell viability was measured with Cell Counting Kit-8. Apoptosis and macroautophagy of CRC cells were analyzed by flow cytometry and transmission electron microscopy, and expression of beclin I and LC3-II was detected by western blotting.RESULTSExpression of miR-34a was significantly reduced while expression of TGF-β and Smad4 was increased in CRC patients treated with OXA-based chemotherapy. OXA treatment also resulted in decreased miR-34a levels and increased TGF-β and Smad4 levels in both parental cells and the OXA-resistant CRC cells. Activation of macroautophagy contributed to OXA resistance in CRC cells. Expression levels of Smad4 and miR-34a in CRC patients had a significant inverse correlation and overexpressing miR-34a inhibited macroautophagy activation by directly targeting Smad4 through the TGF-β/Smad4 pathway. OXA-induced downregulation of miR-34a and increased drug resistance by activating macroautophagy in CRC cells.CONCLUSIONmiR-34a mediates OXA resistance of CRC by inhibiting macroautophagy via the TGF-β/Smad4 pathway.
基金Supported by the National Natural Science Foundation of China,No.81202635the Guangdong Provincial Bureau of Chinese Medicine,No.20151244
文摘AIM To explore the protective effects and underlying mechanisms of total polysaccharides of the Sijunzi decoction(TPSJ) on the epithelial barriers in vitro. METHODS Caco-2 cell monolayers were treated with or without TPSJ in the presence or absence of TNF-α, and paracellular permeability and transepithelial electrical resistance(TEER) were measured to evaluate the epithelial barrier function. Immunofluorescence and western blotting were respecti-vely used to evaluate the distribution and expression of the tight junction proteins claudin 1, claudin 2, zo3, and occludin in Caco-2 cells. western blotting was also used to evaluate the cellular expression of myosin light chain(MLC), phosphorylated MLC(pM LC), MLC kinase(MLCK), and nuclear factor(NF)-κB p65. RESULTS TPSJ promoted the proliferation of Caco-2 cells and inhibited TNF-α-induced secretion of pro-inflammatory cyto-kines. Furthermore, TPSJ significantly ameliorated both the reduction of TEER and the increased paracellular permeability observed in tumor necrosis factor(TNF)-α-damaged Caco-2 monolayers. Furthermore, TPSJ remarkably attenuated TNF-α-induced morphological changes, downregulated the expression of claudin 1, claudin 2, zo3, and occludin, and markedly suppressed TNF-α-mediated upregulation of p-MLC and MLCK expression. Finally, TPSJ inhibited the activation and expression of NF-κB p65. CONCLUSION Our results demonstrate that TPSJ alleviates the TNF-α-induced impairment of the intestinal epithelial cell barrier function by suppressing NF-κB p65-mediated phosphorylation of MLCK and MLC.