The electrochemical hydrogenation of HMF to BHMF is an elegant alternative to the conventio nal thermocatalytic route for the production of high-value-added chemicals from biomass resources.In virtue of the wide poten...The electrochemical hydrogenation of HMF to BHMF is an elegant alternative to the conventio nal thermocatalytic route for the production of high-value-added chemicals from biomass resources.In virtue of the wide potential window with promising Faradic efficiency(FE) towards BHMF,Cu-based electrode has been in the center of investigation.However,its structure-activity relationship remains ambiguous and its intrinsic catalytic activity is still unsatisfactory.In this work,we develop a two-step oxidation-reduction strategy to reconstruct the surface atom arrangement of the Cu foam(CF).By combination of multiple quasi-situ/in-situ techniques and density functional theory(DFT) calculation,the critical factor that governs the reaction is demonstrated to be facet effect of the metallic Cu crystal:Cu(110) facet accounts for the most favorable surface with enhanced chemisorption with reactants and selective production of BHMF,while Cu(100) facet might trigger the accumulation of the by-product 5,5'-bis(hydroxy methy)hydrofurion(BHH).With the optimized composition of the facets on the reconstructed Cu(OH)_(2)-ER/CF,the performance could be noticeably enhanced with a BHMF FE of 92.3% and HMF conversion of 98.5% at a potential of -0.15 V versus reversible hydrogen electrode(vs.RHE) in 0.1 M KOH solution.This work sheds light on the incomplete mechanistic puzzle for Cu-catalyzed electrochemical hydrogenation of HMF to BHMF,and provides a theoretical foundation for further precise design of highly efficient catalytic electrodes.展开更多
The facets effect on the catalytic properties of inorganic compounds and metal-organic frameworks(MOFs)has been widely demonstrated,but the intrinsic facets effect free of interference of capping agents has not been d...The facets effect on the catalytic properties of inorganic compounds and metal-organic frameworks(MOFs)has been widely demonstrated,but the intrinsic facets effect free of interference of capping agents has not been discussed.Here we give a proof-of-concept illustration on the intrinsic facets effect by employing the popularly investigated NH2-MIL-125(Ti)MOFs with{001},{111}and{100}facets controllably exposed as model photocatalysts,which were synthesized via a simple supersaturation strategy free of any capping agents.Compared to conventional synthetic routes with capping agents employed,the NH2-MIL-125(Ti)MOFs obtained in this work exhibit remarkably different physical and chemical properties such as surface wettability,charge separation as well as trend of facets effect on photocatalytic water splitting performance.The main reason has been unraveled to originate from unavoidable residue/influence of capping agents during the conventional facets-controlled synthetic routes leading to changed local surface structural environment as well as distinct charge separation property.Our results demonstrate the importance and feasibility of facets-controllable synthesis free of capping agents in getting insight into the intrinsic facets effect of MOFs-related materials.展开更多
Nanostructured ceria has attracted much attention in the field of redox catalysts due to the numerous active sites with excellent redox ability.Based on the acidic medium etching strategy,we constructed the strong bin...Nanostructured ceria has attracted much attention in the field of redox catalysts due to the numerous active sites with excellent redox ability.Based on the acidic medium etching strategy,we constructed the strong binding centers(hydroxyl sites and strong acid sites)on the surfaces of nanostructured ceria,which regulate the adsorption process of KA-Oil(the mixture of cyclohexanol and cyclohexanone)and to promote high KA-Oil selectivity in cyclohexane oxidation.The three CeO_(2)(nanocube,nanorod and nanopolyhedron)with different exposed crystal planes were treated by acid etching to change the surface sites and catalytic properties.The transition behavior of surface sites during etching was revealed,abundant strong binding centers were proved to be constructed successfully.And especially for the nanorod treated by acid(Acid@CeO_(2)-NR)with the strongest response for sulfuric acid etching,the strong adsorption of cyclohexanone by strong binding centers was confirmed based on the in-situ DRIFTs.The sulfuric acid etching strategy to enhance the selective oxidation of cyclohexane based on the construction of strong binding centers was proved to be feasible and effective,Acid@CeO_(2)-NR with strongest etching response achieved the dramatic promotion of KA-Oil selectivity from 64.1%to 92.3%.展开更多
Comprehensive fundamental understanding of CO hydrogenation reactions over Cu and ZnCu alloy surfaces is of great importance.Herein,we report a comparative DFT calculation study of elementary surface reaction network ...Comprehensive fundamental understanding of CO hydrogenation reactions over Cu and ZnCu alloy surfaces is of great importance.Herein,we report a comparative DFT calculation study of elementary surface reaction network of CO hydrogenation reactions on stepped Cu(211),Cu(611),ZnCu(211) and ZnCu(611)surfaces.On Zn Cu(211) and Zn Cu(611) surfaces,the energetic favorable reaction path of CO hydrogenation reaction follows CO^(*)→HCO^(*)→H_(2)CO^(*)→H_(3)CO^(*)→CH_(3)OH^(*)→CH_(3)OH with H_(3)CO^(*)hydrogenation as the rate-limiting step and proceeds more facilely on ZnCu(611) surface than on ZnCu(211) surface.On Cu(211) and Cu(611) surfaces,the energetic favorable reaction path of CO hydrogenation reaction follows CO^(*)→HCO^(*)→HCOH^(*)→H_(2)COH^(*)→H_(3)COH^(*)→CH_(3)^(*)→CH_(4)^(*)→CH_(4) with H_(2)COH^(*) hydrogenation as the rate-limiting step and proceeds more facilely on Cu(611) than on Cu(211).The key difference of CO hydrogenation reaction on Zn Cu alloy surface and Cu is that the resulting CH_(3)OH^(*) species desorbs to produce CH_(3)OH on ZnCu alloy but undergoes H^(*)-assisted decomposition to CH_(3)^(*) and eventually to CH_(4) on Cu surface.These results successfully unveil elementary surface reaction networks and structure sensitivity of Cu and Zn Cu alloy-catalyzed CO hydrogenation reactions.展开更多
基金supported by the National Natural Science Foundation of China (21808035, 21901040)the Natural Science Foundation of Fujian Province (2019J05058, 2021J05216, 2022J01922)+3 种基金the Fujian Provincial Department of Finance (GY-Z220231)the fund of the State Key Laboratory of Catalysis in DICP (N-22-08)the Fujian Fishery Disaster Reduction Center (GY-H-22146)College Student Innovation and Entrepreneurship Training Program (x202110388068)。
文摘The electrochemical hydrogenation of HMF to BHMF is an elegant alternative to the conventio nal thermocatalytic route for the production of high-value-added chemicals from biomass resources.In virtue of the wide potential window with promising Faradic efficiency(FE) towards BHMF,Cu-based electrode has been in the center of investigation.However,its structure-activity relationship remains ambiguous and its intrinsic catalytic activity is still unsatisfactory.In this work,we develop a two-step oxidation-reduction strategy to reconstruct the surface atom arrangement of the Cu foam(CF).By combination of multiple quasi-situ/in-situ techniques and density functional theory(DFT) calculation,the critical factor that governs the reaction is demonstrated to be facet effect of the metallic Cu crystal:Cu(110) facet accounts for the most favorable surface with enhanced chemisorption with reactants and selective production of BHMF,while Cu(100) facet might trigger the accumulation of the by-product 5,5'-bis(hydroxy methy)hydrofurion(BHH).With the optimized composition of the facets on the reconstructed Cu(OH)_(2)-ER/CF,the performance could be noticeably enhanced with a BHMF FE of 92.3% and HMF conversion of 98.5% at a potential of -0.15 V versus reversible hydrogen electrode(vs.RHE) in 0.1 M KOH solution.This work sheds light on the incomplete mechanistic puzzle for Cu-catalyzed electrochemical hydrogenation of HMF to BHMF,and provides a theoretical foundation for further precise design of highly efficient catalytic electrodes.
文摘The facets effect on the catalytic properties of inorganic compounds and metal-organic frameworks(MOFs)has been widely demonstrated,but the intrinsic facets effect free of interference of capping agents has not been discussed.Here we give a proof-of-concept illustration on the intrinsic facets effect by employing the popularly investigated NH2-MIL-125(Ti)MOFs with{001},{111}and{100}facets controllably exposed as model photocatalysts,which were synthesized via a simple supersaturation strategy free of any capping agents.Compared to conventional synthetic routes with capping agents employed,the NH2-MIL-125(Ti)MOFs obtained in this work exhibit remarkably different physical and chemical properties such as surface wettability,charge separation as well as trend of facets effect on photocatalytic water splitting performance.The main reason has been unraveled to originate from unavoidable residue/influence of capping agents during the conventional facets-controlled synthetic routes leading to changed local surface structural environment as well as distinct charge separation property.Our results demonstrate the importance and feasibility of facets-controllable synthesis free of capping agents in getting insight into the intrinsic facets effect of MOFs-related materials.
基金supported by National Natural Science Fund for Excellent Young Scholars(22222813)the National Natural Science Foundation of China(22078338)+2 种基金the National Key Research and Development Program of China(2023YFA1506803)the Postdoctoral Fellowship Program of CPSF(GZC20232700)the“Special Research Assistant Project”of the Chinese Academy of Sciences.
文摘Nanostructured ceria has attracted much attention in the field of redox catalysts due to the numerous active sites with excellent redox ability.Based on the acidic medium etching strategy,we constructed the strong binding centers(hydroxyl sites and strong acid sites)on the surfaces of nanostructured ceria,which regulate the adsorption process of KA-Oil(the mixture of cyclohexanol and cyclohexanone)and to promote high KA-Oil selectivity in cyclohexane oxidation.The three CeO_(2)(nanocube,nanorod and nanopolyhedron)with different exposed crystal planes were treated by acid etching to change the surface sites and catalytic properties.The transition behavior of surface sites during etching was revealed,abundant strong binding centers were proved to be constructed successfully.And especially for the nanorod treated by acid(Acid@CeO_(2)-NR)with the strongest response for sulfuric acid etching,the strong adsorption of cyclohexanone by strong binding centers was confirmed based on the in-situ DRIFTs.The sulfuric acid etching strategy to enhance the selective oxidation of cyclohexane based on the construction of strong binding centers was proved to be feasible and effective,Acid@CeO_(2)-NR with strongest etching response achieved the dramatic promotion of KA-Oil selectivity from 64.1%to 92.3%.
文摘采用湿化学法制备了立方体{100}、四面体{111}和菱形十二面体{110}磷酸银微晶,通过场发射扫描电镜(FE-SEM),X射线粉末衍射(XRD),固体紫外可见漫反射光谱(UV-Vis DRS),光电流,光致发光(PL)对催化剂的组分、结构、形貌及光电性质进行了系统表征。以罗丹明B(Rh B)为目标污染物,对不同形貌Ag_3PO_4微晶的可见光催化活性进行了探究。通过微热量技术结合过渡态理论和热化学循环原理对Ag_3PO_4的摩尔表面Gibbs自由能进行了测定,其数值分别为1.2972、0.9621、0.5414 k J?mol-1。采用自主设计的新型LED光-微热量系统获取了Ag_3PO_4原位光催化降解Rh B 2 h的热效应和稳定放热阶段的热焓变化率,并对其热谱曲线进行了合理的解析。结果表明,Ag_3PO_4的催化活性与原位光催化降解Rh B的热效应、热焓变化率以及摩尔表面Gibbs自由能皆呈正相关。此外,通过捕获剂实验和电子顺磁共振(ESR)确定了Ag_3PO_4光催化降解Rh B过程的主要活性基团。
基金financially supported by the National Natural Science Foundation of China (Nos. 91745202, 92145302)the Chinese Academy of Sciences, the Changjiang Scholars Program of Ministry of Education of China。
文摘Comprehensive fundamental understanding of CO hydrogenation reactions over Cu and ZnCu alloy surfaces is of great importance.Herein,we report a comparative DFT calculation study of elementary surface reaction network of CO hydrogenation reactions on stepped Cu(211),Cu(611),ZnCu(211) and ZnCu(611)surfaces.On Zn Cu(211) and Zn Cu(611) surfaces,the energetic favorable reaction path of CO hydrogenation reaction follows CO^(*)→HCO^(*)→H_(2)CO^(*)→H_(3)CO^(*)→CH_(3)OH^(*)→CH_(3)OH with H_(3)CO^(*)hydrogenation as the rate-limiting step and proceeds more facilely on ZnCu(611) surface than on ZnCu(211) surface.On Cu(211) and Cu(611) surfaces,the energetic favorable reaction path of CO hydrogenation reaction follows CO^(*)→HCO^(*)→HCOH^(*)→H_(2)COH^(*)→H_(3)COH^(*)→CH_(3)^(*)→CH_(4)^(*)→CH_(4) with H_(2)COH^(*) hydrogenation as the rate-limiting step and proceeds more facilely on Cu(611) than on Cu(211).The key difference of CO hydrogenation reaction on Zn Cu alloy surface and Cu is that the resulting CH_(3)OH^(*) species desorbs to produce CH_(3)OH on ZnCu alloy but undergoes H^(*)-assisted decomposition to CH_(3)^(*) and eventually to CH_(4) on Cu surface.These results successfully unveil elementary surface reaction networks and structure sensitivity of Cu and Zn Cu alloy-catalyzed CO hydrogenation reactions.