期刊文献+
共找到1,868篇文章
< 1 2 94 >
每页显示 20 50 100
A Lightweight Multimodal Deep Fusion Network for Face Antis Poofing with Cross-Axial Attention and Deep Reinforcement Learning Technique
1
作者 Diyar Wirya Omar Ameenulhakeem Osman Nuri Uçan 《Computers, Materials & Continua》 2025年第12期5671-5702,共32页
Face antispoofing has received a lot of attention because it plays a role in strengthening the security of face recognition systems.Face recognition is commonly used for authentication in surveillance applications.How... Face antispoofing has received a lot of attention because it plays a role in strengthening the security of face recognition systems.Face recognition is commonly used for authentication in surveillance applications.However,attackers try to compromise these systems by using spoofing techniques such as using photos or videos of users to gain access to services or information.Many existing methods for face spoofing face difficulties when dealing with new scenarios,especially when there are variations in background,lighting,and other environmental factors.Recent advancements in deep learning with multi-modality methods have shown their effectiveness in face antispoofing,surpassing single-modal methods.However,these approaches often generate several features that can lead to issues with data dimensionality.In this study,we introduce a multimodal deep fusion network for face anti-spoofing that incorporates cross-axial attention and deep reinforcement learning techniques.This network operates at three patch levels and analyzes images from modalities(RGB,IR,and depth).Initially,our design includes an axial attention network(XANet)model that extracts deeply hidden features from multimodal images.Further,we use a bidirectional fusion technique that pays attention to both directions to combine features from each mode effectively.We further improve feature optimization by using the Enhanced Pity Beetle Optimization(EPBO)algorithm,which selects the features to address data dimensionality problems.Moreover,our proposed model employs a hybrid federated reinforcement learning(FDDRL)approach to detect and classify face anti-spoofing,achieving a more optimal tradeoff between detection rates and false positive rates.We evaluated the proposed approach on publicly available datasets,including CASIA-SURF and GREATFASD-S,and realized 98.985%and 97.956%classification accuracy,respectively.In addition,the current method outperforms other state-of-the-art methods in terms of precision,recall,and Fmeasures.Overall,the developed methodology boosts the effectiveness of our model in detecting various types of spoofing attempts. 展开更多
关键词 face antispoofing LIGHTWEIGHT MULTIMODAL deep feature fusion feature extraction feature optimization
在线阅读 下载PDF
Super-Resolution Generative Adversarial Network with Pyramid Attention Module for Face Generation
2
作者 Parvathaneni Naga Srinivasu G.JayaLakshmi +4 位作者 Sujatha Canavoy Narahari Victor Hugo C.de Albuquerque Muhammad Attique Khan Hee-Chan Cho Byoungchol Chang 《Computers, Materials & Continua》 2025年第10期2117-2139,共23页
The generation of high-quality,realistic face generation has emerged as a key field of research in computer vision.This paper proposes a robust approach that combines a Super-Resolution Generative Adversarial Network(... The generation of high-quality,realistic face generation has emerged as a key field of research in computer vision.This paper proposes a robust approach that combines a Super-Resolution Generative Adversarial Network(SRGAN)with a Pyramid Attention Module(PAM)to enhance the quality of deep face generation.The SRGAN framework is designed to improve the resolution of generated images,addressing common challenges such as blurriness and a lack of intricate details.The Pyramid Attention Module further complements the process by focusing on multi-scale feature extraction,enabling the network to capture finer details and complex facial features more effectively.The proposed method was trained and evaluated over 100 epochs on the CelebA dataset,demonstrating consistent improvements in image quality and a marked decrease in generator and discriminator losses,reflecting the model’s capacity to learn and synthesize high-quality images effectively,given adequate computational resources.Experimental outcome demonstrates that the SRGAN model with PAM module has outperformed,yielding an aggregate discriminator loss of 0.055 for real,0.043 for fake,and a generator loss of 10.58 after training for 100 epochs.The model has yielded an structural similarity index measure of 0.923,that has outperformed the other models that are considered in the current study for analysis. 展开更多
关键词 Artificial intelligence generative adversarial network pyramid attention module face generation deep learning
在线阅读 下载PDF
Face Forgery Detection via Multi-Scale Dual-Modality Mutual Enhancement Network
3
作者 Yuanqing Ding Hanming Zhai +3 位作者 Qiming Ma Liang Zhang Lei Shao Fanliang Bu 《Computers, Materials & Continua》 2025年第10期905-923,共19页
As the use of deepfake facial videos proliferate,the associated threats to social security and integrity cannot be overstated.Effective methods for detecting forged facial videos are thus urgently needed.While many de... As the use of deepfake facial videos proliferate,the associated threats to social security and integrity cannot be overstated.Effective methods for detecting forged facial videos are thus urgently needed.While many deep learning-based facial forgery detection approaches show promise,they often fail to delve deeply into the complex relationships between image features and forgery indicators,limiting their effectiveness to specific forgery techniques.To address this challenge,we propose a dual-branch collaborative deepfake detection network.The network processes video frame images as input,where a specialized noise extraction module initially extracts the noise feature maps.Subsequently,the original facial images and corresponding noise maps are directed into two parallel feature extraction branches to concurrently learn texture and noise forgery clues.An attention mechanism is employed between the two branches to facilitate mutual guidance and enhancement of texture and noise features across four different scales.This dual-modal feature integration enhances sensitivity to forgery artifacts and boosts generalization ability across various forgery techniques.Features from both branches are then effectively combined and processed through a multi-layer perception layer to distinguish between real and forged video.Experimental results on benchmark deepfake detection datasets demonstrate that our approach outperforms existing state-of-the-art methods in terms of detection performance,accuracy,and generalization ability. 展开更多
关键词 face forgery detection dual branch network noise features attention mechanism multiple scale
在线阅读 下载PDF
基于FACE架构的控制显示单元模拟器的设计
4
作者 朱剑锋 李保霖 杨少伟 《航空电子技术》 2025年第2期15-21,共7页
本文提出一种基于未来机载能力环境架构的控制显示单元模拟器设计方案。方案采用开放式架构设计,通过标准化接口实现应用软件的“热插拔”式升级,支持在不改变底层框架的前提下,动态加载新功能模块;基于真实代码的重构技术,使模拟器在... 本文提出一种基于未来机载能力环境架构的控制显示单元模拟器设计方案。方案采用开放式架构设计,通过标准化接口实现应用软件的“热插拔”式升级,支持在不改变底层框架的前提下,动态加载新功能模块;基于真实代码的重构技术,使模拟器在保持机载设备性能要求的同时,具备地面设备的灵活配置特性;首创机载设备与模拟器双向迭代体系,通过架构中间件实现航空软件生态与模拟器环境的无缝对,有力促进航空电子系统集成和仿真。 展开更多
关键词 face架构 控制显示单元 模拟器 软件重用 双向迭代开发 face航空软件生态
在线阅读 下载PDF
Face Image Recognition Based on Convolutional Neural Network 被引量:15
5
作者 Guangxin Lou Hongzhen Shi 《China Communications》 SCIE CSCD 2020年第2期117-124,共8页
With the continuous progress of The Times and the development of technology,the rise of network social media has also brought the“explosive”growth of image data.As one of the main ways of People’s Daily communicati... With the continuous progress of The Times and the development of technology,the rise of network social media has also brought the“explosive”growth of image data.As one of the main ways of People’s Daily communication,image is widely used as a carrier of communication because of its rich content,intuitive and other advantages.Image recognition based on convolution neural network is the first application in the field of image recognition.A series of algorithm operations such as image eigenvalue extraction,recognition and convolution are used to identify and analyze different images.The rapid development of artificial intelligence makes machine learning more and more important in its research field.Use algorithms to learn each piece of data and predict the outcome.This has become an important key to open the door of artificial intelligence.In machine vision,image recognition is the foundation,but how to associate the low-level information in the image with the high-level image semantics becomes the key problem of image recognition.Predecessors have provided many model algorithms,which have laid a solid foundation for the development of artificial intelligence and image recognition.The multi-level information fusion model based on the VGG16 model is an improvement on the fully connected neural network.Different from full connection network,convolutional neural network does not use full connection method in each layer of neurons of neural network,but USES some nodes for connection.Although this method reduces the computation time,due to the fact that the convolutional neural network model will lose some useful feature information in the process of propagation and calculation,this paper improves the model to be a multi-level information fusion of the convolution calculation method,and further recovers the discarded feature information,so as to improve the recognition rate of the image.VGG divides the network into five groups(mimicking the five layers of AlexNet),yet it USES 3*3 filters and combines them as a convolution sequence.Network deeper DCNN,channel number is bigger.The recognition rate of the model was verified by 0RL Face Database,BioID Face Database and CASIA Face Image Database. 展开更多
关键词 convolutional neural network face image recognition machine learning artificial intelligence multilayer information fusion
在线阅读 下载PDF
Face Detection Detection, Alignment Alignment, Quality Assessment and Attribute Analysis with Multi-Task Hybrid Convolutional Neural Networks 被引量:5
6
作者 GUO Da ZHENG Qingfang +1 位作者 PENG Xiaojiang LIU Ming 《ZTE Communications》 2019年第3期15-22,49,共9页
This paper proposes a universal framework,termed as Multi-Task Hybrid Convolutional Neural Network(MHCNN),for joint face detection,facial landmark detection,facial quality,and facial attribute analysis.MHCNN consists ... This paper proposes a universal framework,termed as Multi-Task Hybrid Convolutional Neural Network(MHCNN),for joint face detection,facial landmark detection,facial quality,and facial attribute analysis.MHCNN consists of a high-accuracy single stage detector(SSD)and an efficient tiny convolutional neural network(T-CNN)for joint face detection refinement,alignment and attribute analysis.Though the SSD face detectors achieve promising results,we find that applying a tiny CNN on detections further boosts the detected face scores and bounding boxes.By multi-task training,our T-CNN aims to provide five facial landmarks,facial quality scores,and facial attributes like wearing sunglasses and wearing masks.Since there is no public facial quality data and facial attribute data as we need,we contribute two datasets,namely FaceQ and FaceA,which are collected from the Internet.Experiments show that our MHCNN achieves face detection performance comparable to the state of the art in face detection data set and benchmark(FDDB),and gets reasonable results on AFLW,FaceQ and FaceA. 展开更多
关键词 face DETECTION face ALIGNMENT FACIAL ATTRIBUTE CNN MULTI-TASK training
在线阅读 下载PDF
Study of electromagnetic characteristics of stress distribution and sudden changes in the mining of gob-surrounded coal face 被引量:12
7
作者 WANG En-yuan LIU Xiao-fei ZHAO En-lai LIU Zhen-tang 《Journal of China University of Mining and Technology》 EI 2008年第1期1-5,共5页
The incidence of dynamic coal or rock disasters is closely related to the distribution of stress in the surrounding rock. Our experiments show that electromagnetic radiation (EMR) signals are related to the state of... The incidence of dynamic coal or rock disasters is closely related to the distribution of stress in the surrounding rock. Our experiments show that electromagnetic radiation (EMR) signals are related to the state of stress of a coal body. The higher the stress, the more intense the deformation and fractures of a coal body and the stronger the EMR signals. EMR signals reflect the degrees of concentrated stress of a coal body and danger of a rock burst. We selected EMR intensity as the test index of the No.237 gob-surrounded coal face in the Nanshan coal mine. We tested the EMR characteristics of the stress distribution on the strike, on the incline and in the interior of the coal body. The EMR rule of rock bursts, caused by sudden changes in stress, is analyzed. Our research shows that EMR technology can be not only used to test qualitatively the stress distribution of the surrounding rock, but also to predict a possible occurrence of rock burst. Based on this, effective distress measures are used to eliminate or at least weaken the incidence of rock bursts. We hooe that safetv in coalmines will be enhanced. 展开更多
关键词 gob-surrounded coal face stress distribution sudden stress change rock burst electromagnetic radiation (EMR)
在线阅读 下载PDF
Dense Face Network:A Dense Face Detector Based on Global Context and Visual Attention Mechanism 被引量:4
8
作者 Lin Song Jin-Fu Yang +1 位作者 Qing-Zhen Shang Ming-Ai Li 《Machine Intelligence Research》 EI CSCD 2022年第3期247-256,共10页
Face detection has achieved tremendous strides thanks to convolutional neural networks. However, dense face detection remains an open challenge due to large face scale variation, tiny faces, and serious occlusion. Thi... Face detection has achieved tremendous strides thanks to convolutional neural networks. However, dense face detection remains an open challenge due to large face scale variation, tiny faces, and serious occlusion. This paper presents a robust, dense face detector using global context and visual attention mechanisms which can significantly improve detection accuracy. Specifically, a global context fusion module with top-down feedback is proposed to improve the ability to identify tiny faces. Moreover, a visual attention mechanism is employed to solve the problem of occlusion. Experimental results on the public face datasets WIDER FACE and FDDB demonstrate the effectiveness of the proposed method. 展开更多
关键词 face detection global context attention mechanism computer vision deep learning
原文传递
Improved Face Recognition Method Using Genetic Principal Component Analysis 被引量:2
9
作者 E.Gomathi K.Baskaran 《Journal of Electronic Science and Technology》 CAS 2010年第4期372-378,共7页
An improved face recognition method is proposed based on principal component analysis (PCA) compounded with genetic algorithm (GA), named as genetic based principal component analysis (GPCA). Initially the eigen... An improved face recognition method is proposed based on principal component analysis (PCA) compounded with genetic algorithm (GA), named as genetic based principal component analysis (GPCA). Initially the eigenspace is created with eigenvalues and eigenvectors. From this space, the eigenfaces are constructed, and the most relevant eigenfaees have been selected using GPCA. With these eigenfaees, the input images are classified based on Euclidian distance. The proposed method was tested on ORL (Olivetti Research Labs) face database. Experimental results on this database demonstrate that the effectiveness of the proposed method for face recognition has less misclassification in comparison with previous methods. 展开更多
关键词 EIGENfaceS EIGENVECTORS face recognition genetic algorithm principal component analysis.
在线阅读 下载PDF
Lightweight FaceNet Based on MobileNet 被引量:4
10
作者 Xinzheng Xu Meng Du +2 位作者 Huanxiu Guo Jianying Chang Xiaoyang Zhao 《International Journal of Intelligence Science》 2021年第1期1-16,共16页
Face recognition is a kind of biometric technology that recognizes identities through human faces. At first, the speed of machine recognition of human faces was slow and the accuracy was lower than manual recognition.... Face recognition is a kind of biometric technology that recognizes identities through human faces. At first, the speed of machine recognition of human faces was slow and the accuracy was lower than manual recognition. With the rapid development of deep learning and the application of Convolutional Neural Network (CNN) in the field of face recognition, the accuracy of face recognition has greatly improved. FaceNet is a deep learning framework commo</span><span><span style="font-family:Verdana;">nly used in face recognition in recent years. FaceNet uses the deep learning model GoogLeNet, which has </span><span style="font-family:Verdana;">a high</span><span style="font-family:Verdana;"> accuracy in face recognition. However, its network structure is too large, which causes the </span><span style="font-family:Verdana;">FaceNet</span><span style="font-family:Verdana;"> to run at a low speed. Therefore, to improve the running speed without affecting the recognition accuracy of FaceNet, this paper proposes a lightweight FaceNet model based on MobileNet. This article mainly does the following works:</span></span></span><span style="font-family:""> </span><span style="font-family:Verdana;">Based on the analysis of the low running speed of FaceNet and the principle of MobileNet, a lightweight FaceNet model based on MobileNet is proposed. The model would reduce the overall calculation of the network by using deep separable convolutio</span><span style="font-family:""><span style="font-family:Verdana;">ns. In this paper, the model is trained on the CASIA-WebFace and VGGFace2 </span><span style="font-family:Verdana;">datasets,</span><span style="font-family:Verdana;"> and tested on the LFW dataset. Experimental results show that the model reduces the network parameters to a large extent while ensuring </span><span style="font-family:Verdana;">the accuracy</span><span style="font-family:Verdana;"> and hence an increase in system computing speed. The model can also perform face recognition on a specific person in the video. 展开更多
关键词 face Recognition Deep Learning facenet Mobilenet
在线阅读 下载PDF
Age Invariant Face Recognition Using Convolutional Neural Networks and Set Distances 被引量:4
11
作者 Hachim El Khiyari Harry Wechsler 《Journal of Information Security》 2017年第3期174-185,共12页
Biometric security systems based on facial characteristics face a challenging task due to variability in the intrapersonal facial appearance of subjects traced to factors such as pose, illumination, expression and agi... Biometric security systems based on facial characteristics face a challenging task due to variability in the intrapersonal facial appearance of subjects traced to factors such as pose, illumination, expression and aging. This paper innovates as it proposes a deep learning and set-based approach to face recognition subject to aging. The images for each subject taken at various times are treated as a single set, which is then compared to sets of images belonging to other subjects. Facial features are extracted using a convolutional neural network characteristic of deep learning. Our experimental results show that set-based recognition performs better than the singleton-based approach for both face identification and face verification. We also find that by using set-based recognition, it is easier to recognize older subjects from younger ones rather than younger subjects from older ones. 展开更多
关键词 Aging BIOMETRICS Convolutional Neural networks (CNN) Deep LEARNING Image Set-Based face Recognition (ISFR) Transfer LEARNING
在线阅读 下载PDF
Prediction of Concrete Faced Rock Fill Dams Settlements Using Genetic Programming Algorithm 被引量:3
12
作者 Seyed Morteza Marandi Seyed Mahmood VaeziNejad Elyas Khavari 《International Journal of Geosciences》 2012年第3期601-609,共9页
In the present study a Genetic Programing model (GP) proposed for the prediction of relative crest settlement of concrete faced rock fill dams. To this end information of 30 large dams constructed in seven countries a... In the present study a Genetic Programing model (GP) proposed for the prediction of relative crest settlement of concrete faced rock fill dams. To this end information of 30 large dams constructed in seven countries across the world is gathered with their reported settlements. The results showed that the GP model is able to estimate the dam settlement properly based on four properties, void ratio of dam’s body (e), height (H), vertical deformation modulus (Ev) and shape factor (Sc) of the dam. For verification of the model applicability, obtained results compared with other research methods such as Clements’s formula and the finite element model. The comparison showed that in all cases the GP model led to be more accurate than those of performed in literature. Also a proper compatibility between the GP model and the finite element model was perceived. 展开更多
关键词 CONCRETE faceD Rock-Fill DAMS SETTLEMENT Genetic Programming ALGORITHM Finite Element Model
暂未订购
Masked Face Recognition Using MobileNet V2 with Transfer Learning 被引量:3
13
作者 Ratnesh Kumar Shukla Arvind Kumar Tiwari 《Computer Systems Science & Engineering》 SCIE EI 2023年第4期293-309,共17页
Corona virus(COVID-19)is once in a life time calamity that has resulted in thousands of deaths and security concerns.People are using face masks on a regular basis to protect themselves and to help reduce corona virus... Corona virus(COVID-19)is once in a life time calamity that has resulted in thousands of deaths and security concerns.People are using face masks on a regular basis to protect themselves and to help reduce corona virus transmission.During the on-going coronavirus outbreak,one of the major priorities for researchers is to discover effective solution.As important parts of the face are obscured,face identification and verification becomes exceedingly difficult.The suggested method is a transfer learning using MobileNet V2 based technology that uses deep feature such as feature extraction and deep learning model,to identify the problem of face masked identification.In the first stage,we are applying face mask detector to identify the face mask.Then,the proposed approach is applying to the datasets from Canadian Institute for Advanced Research10(CIFAR10),Modified National Institute of Standards and Technology Database(MNIST),Real World Masked Face Recognition Database(RMFRD),and Stimulated Masked Face Recognition Database(SMFRD).The proposed model is achieving recognition accuracy 99.82%with proposed dataset.This article employs the four pre-programmed models VGG16,VGG19,ResNet50 and ResNet101.To extract the deep features of faces with VGG16 is achieving 99.30%accuracy,VGG19 is achieving 99.54%accuracy,ResNet50 is achieving 78.70%accuracy and ResNet101 is achieving 98.64%accuracy with own dataset.The comparative analysis shows,that our proposed model performs better result in all four previous existing models.The fundamental contribution of this study is to monitor with face mask and without face mask to decreases the pace of corona virus and to detect persons using wearing face masks. 展开更多
关键词 Convolutional Neural network(CNN) deep learning face recognition system COVID-19 dataset and machine learning based models
在线阅读 下载PDF
Improved Network for Face Recognition Based on Feature Super Resolution Method 被引量:1
14
作者 Ling-Yi Xu Zoran Gajic 《International Journal of Automation and computing》 EI CSCD 2021年第6期915-925,共11页
Low-resolution face images can be found in many practical applications. For example, faces captured from surveillance videos are typically in small sizes. Existing face recognition deep networks, trained on high-resol... Low-resolution face images can be found in many practical applications. For example, faces captured from surveillance videos are typically in small sizes. Existing face recognition deep networks, trained on high-resolution images, perform poorly in recognizing low-resolution faces. In this work, an improved multi-branch network is proposed by combining ResNet and feature super-resolution modules. ResNet is for recognizing high-resolution facial images and extracting features from both high-and low-resolution images.Feature super-resolution modules are inserted before the classifier of ResNet for low-resolution facial images. They are used to increase feature resolution. The proposed method is effective and simple. Experimental results show that the recognition accuracy for high-resolution face images is high, and the recognition accuracy for low-resolution face images is improved. 展开更多
关键词 face recognition feature super resolution multiple-branch network deep learning convolutional neural networks
原文传递
Rock mass quality prediction on tunnel faces with incomplete multi-source dataset via tree-augmented naive Bayesian network 被引量:1
15
作者 Hongwei Huang Chen Wu +3 位作者 Mingliang Zhou Jiayao Chen Tianze Han Le Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期323-337,共15页
Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantita... Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantitative parameters.However,due to the harsh on-site construction conditions,it is rather difficult to obtain some of the evaluation parameters which are essential for the rock mass quality prediction.In this study,a novel improved Swin Transformer is proposed to detect,segment,and quantify rock mass characteristic parameters such as water leakage,fractures,weak interlayers.The site experiment results demonstrate that the improved Swin Transformer achieves optimal segmentation results and achieving accuracies of 92%,81%,and 86%for water leakage,fractures,and weak interlayers,respectively.A multisource rock tunnel face characteristic(RTFC)dataset includes 11 parameters for predicting rock mass quality is established.Considering the limitations in predictive performance of incomplete evaluation parameters exist in this dataset,a novel tree-augmented naive Bayesian network(BN)is proposed to address the challenge of the incomplete dataset and achieved a prediction accuracy of 88%.In comparison with other commonly used Machine Learning models the proposed BN-based approach proved an improved performance on predicting the rock mass quality with the incomplete dataset.By utilizing the established BN,a further sensitivity analysis is conducted to quantitatively evaluate the importance of the various parameters,results indicate that the rock strength and fractures parameter exert the most significant influence on rock mass quality. 展开更多
关键词 Rock mass quality Tunnel faces Incomplete multi-source dataset Improved Swin Transformer Bayesian networks
在线阅读 下载PDF
High performance“non-local”generic face reconstruction model using the lightweight Speckle-Transformer(SpT)UNet 被引量:1
16
作者 Yangyundou Wang Hao Wang Min Gu 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2023年第2期1-9,共9页
Significant progress has been made in computational imaging(CI),in which deep convolutional neural networks(CNNs)have demonstrated that sparse speckle patterns can be reconstructed.However,due to the limited“local”k... Significant progress has been made in computational imaging(CI),in which deep convolutional neural networks(CNNs)have demonstrated that sparse speckle patterns can be reconstructed.However,due to the limited“local”kernel size of the convolutional operator,for the spatially dense patterns,such as the generic face images,the performance of CNNs is limited.Here,we propose a“non-local”model,termed the Speckle-Transformer(SpT)UNet,for speckle feature extraction of generic face images.It is worth noting that the lightweight SpT UNet reveals a high efficiency and strong comparative performance with Pearson Correlation Coefficient(PCC),and structural similarity measure(SSIM)exceeding 0.989,and 0.950,respectively. 展开更多
关键词 speckle reconstruction non-local model generic face images lightweight network
在线阅读 下载PDF
Detection technology and application of electromagnetic method for hidden danger of water gushing at coal face 被引量:2
17
作者 SHI Xian-xin YAN Shu +1 位作者 CHEN Ming-sheng FU Jun-mei 《Journal of Coal Science & Engineering(China)》 2009年第2期197-205,共9页
The principles, methods, technologies and application effects of several electromagnetic methods for the detection of the hidden danger of water gushing at the coal face were introduced. Also, emphasis was laid on exp... The principles, methods, technologies and application effects of several electromagnetic methods for the detection of the hidden danger of water gushing at the coal face were introduced. Also, emphasis was laid on expounding the methods, principles and effects of down-hole detections by electric transmission tomography and transient electromagnetic method. The potential of point power supplied in the underground homogeneous semi-space, as well as the response to a low-resistivity abnormal body in the homogeneous semi-space, was simulated by adopting 3-D finite element method to interpret the basic theory of the electric transmission tomography. The results of actual measurement show that the mine electromagnetic method is sensitive to water-bearing low-resistivity bodies and can play a unique role in detecting the hidden danger of water gushing at the coal face. 展开更多
关键词 hidden trouble of water gushing electric transmission tomography mine transient electromagnetic method coal face high-density resistivity method 3-D finite element simulation
在线阅读 下载PDF
Face Age Estimation Based on CSLBP and Lightweight Convolutional Neural Network 被引量:1
18
作者 Yang Wang Ying Tian Ou Tian 《Computers, Materials & Continua》 SCIE EI 2021年第11期2203-2216,共14页
As the use of facial attributes continues to expand,research into facial age estimation is also developing.Because face images are easily affected by factors including illumination and occlusion,the age estimation of ... As the use of facial attributes continues to expand,research into facial age estimation is also developing.Because face images are easily affected by factors including illumination and occlusion,the age estimation of faces is a challenging process.This paper proposes a face age estimation algorithm based on lightweight convolutional neural network in view of the complexity of the environment and the limitations of device computing ability.Improving face age estimation based on Soft Stagewise Regression Network(SSR-Net)and facial images,this paper employs the Center Symmetric Local Binary Pattern(CSLBP)method to obtain the feature image and then combines the face image and the feature image as network input data.Adding feature images to the convolutional neural network can improve the accuracy as well as increase the network model robustness.The experimental results on IMDB-WIKI and MORPH 2 datasets show that the lightweight convolutional neural network method proposed in this paper reduces model complexity and increases the accuracy of face age estimations. 展开更多
关键词 face age estimation lightweight convolutional neural network CSLBP SSR-net
在线阅读 下载PDF
Development of Trusted Network and Challenges It Faces 被引量:3
19
作者 Lin Chuang 1, Wang Yuanzhuo 1, Tian Liqin 1,2 (1. Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China 2. Department of Computer, North China Institute of Science and Technology, Beijing 101601, China) 《ZTE Communications》 2008年第1期13-17,共5页
As the information network plays a more and more important role globally, the traditional network theories and technologies, especially those related to network security, can no longer meet the network development req... As the information network plays a more and more important role globally, the traditional network theories and technologies, especially those related to network security, can no longer meet the network development requirements. Offering the system with secure and trusted services has become a new focus in network research. This paper first discusses the meaning of and aspects involved in the trusted network. According to this paper, the trusted network should be a network where the network’s and users’ behaviors and their results are always predicted and manageable. The trustworthiness of a network mainly involves three aspects: service provider, information transmission and terminal user. This paper also analyzes the trusted network in terms of trusted model for network/user behaviors, architecture of trusted network, service survivability and network manageability, which is designed to give ideas on solving the problems that may be faced in developing the trusted network. 展开更多
关键词 Development of Trusted network and Challenges It faces
在线阅读 下载PDF
Face Recognition across Time Lapse Using Convolutional Neural Networks 被引量:3
20
作者 Hachim El Khiyari Harry Wechsler 《Journal of Information Security》 2016年第3期141-151,共11页
Time lapse, characteristic of aging, is a complex process that affects the reliability and security of biometric face recognition systems. This paper reports the novel use and effectiveness of deep learning, in genera... Time lapse, characteristic of aging, is a complex process that affects the reliability and security of biometric face recognition systems. This paper reports the novel use and effectiveness of deep learning, in general, and convolutional neural networks (CNN), in particular, for automatic rather than hand-crafted feature extraction for robust face recognition across time lapse. A CNN architecture using the VGG-Face deep (neural network) learning is found to produce highly discriminative and interoperable features that are robust to aging variations even across a mix of biometric datasets. The features extracted show high inter-class and low intra-class variability leading to low generalization errors on aging datasets using ensembles of subspace discriminant classifiers. The classification results for the all-encompassing authentication methods proposed on the challenging FG-NET and MORPH datasets are competitive with state-of-the-art methods including commercial face recognition engines and are richer in functionality and interoperability than existing methods as it handles mixed biometric datasets, e.g., FG-NET and MORPH. 展开更多
关键词 Aging AUTHENTICATION BIOMETRICS Convolutional Neural networks (CNN) Deep Learning Ensemble Methods face Recognition INTEROPERABILITY Security
在线阅读 下载PDF
上一页 1 2 94 下一页 到第
使用帮助 返回顶部