This research study fabrics to ensure that they are free from carcinogenic dyes. It has been observed that there are poor-quality fabrics and consumers go to buy them without paying attention to the risks of using pro...This research study fabrics to ensure that they are free from carcinogenic dyes. It has been observed that there are poor-quality fabrics and consumers go to buy them without paying attention to the risks of using prohibited materials in the manufacture of these fabrics, and the use of unknown dyes has proven that some of them cause diseases to humans, especially children, that cause cancerous diseases. With the study sample consisting of (7), the study results indicate the presence of toxic formaldehyde in all sample dyes obtained from discount markets and online shopping.展开更多
Nanotechnology is transforming the textile industry by embedding UV-blocking and antimicrobial agents into fabric fibres at the molecular level. This study explores the development of biocomposites and nanocomposite m...Nanotechnology is transforming the textile industry by embedding UV-blocking and antimicrobial agents into fabric fibres at the molecular level. This study explores the development of biocomposites and nanocomposite materials for UV protection and microbial resistance in clothing. Nanoscale UV-blocking agents enhance the protection of textiles against harmful ultraviolet radiation. Recent studies on composites such as ZnO/carboxymethyl chitosan, polyacrylonitrile with UV absorbers and TiO2 nanoparticles, and lignin-TiO composites have shown significant improvements in UV protection and some antibacterial activity. Techniques such as electrospinning, hydrothermal synthesis, and natural fibre welding were used to create these composites, focusing on ZnO and TiO2 nanoparticles for dual functionality. Research on nanoscale UV-blocking agents could revolutionise sun protection in clothing and offer better safety against ultraviolet radiation. Multifunctional composites with UV-blocking and antibacterial properties could advance the use of protective clothing in various industries and outdoor activities. Emphasising natural fibres and sustainable materials aligns with the global trend towards eco-friendly solutions, leading to more environmentally friendly products. This literature review aims to comprehensively review and analyze current research on UV protective knit fabrics using nanotechnology, nanocomposites, and biocomposites. It seeks to identify research gaps, evaluate different approaches, and provide insights for future developments in this field.展开更多
Self-regulating heating and self-powered flexibility are pivotal for future wearable devices.However,the low energy-conversion rate of wearable devices at low temperatures limits their application in plateaus and othe...Self-regulating heating and self-powered flexibility are pivotal for future wearable devices.However,the low energy-conversion rate of wearable devices at low temperatures limits their application in plateaus and other environments.This study introduces an azopolymer with remarkable semicrystallinity and reversible photoinduced solid-liquid transition ability that is obtained through copolymerization of azoben-zene(Azo)monomers and styrene.A composite of one such copolymer with an Azo:styrene molar ratio of 9:1(copolymer is denoted as PAzo9:1-co-polystyrene(PS))and nylon fabrics(NFs)is prepared(composite is denoted as PAzo9:1-co-PS@NF).PAzo9:1-co-PS@NF exhibits hydrophobicity and high wear resistance.Moreover,it shows good responsiveness(0.624 s^(−1))during isomerization under solid ultraviolet(UV)light(365 nm)with an energy density of 70.6 kJ kg^(−1).In addition,the open-circuit voltage,short-circuit current and quantity values of PAzo9:1-co-PS@NF exhibit small variations in a temperature range of−20°C to 25°C and remain at 170 V,5 μA,and 62 nC,respectively.Notably,the involved NFs were cut and sewn into gloves to be worn on a human hand model.When the model was exposed to both UV radiation and friction,the temperature of the finger coated with PAzo9:1-co-PS was approximately 6.0°C higher than that of the other parts.Therefore,developing triboelectric nanogenerators based on the in situ photothermal cycles of Azo in wearable devices is important to develop low-temperature self-regulating heating and self-powered flexible devices for extreme environments.展开更多
In today's fast-paced modern life, whether for fitness training, outdoor adventures, or daily commutes, we all yearn for quick-dry apparel that can rapidly wick away moisture and keep our bodies dry and comfortabl...In today's fast-paced modern life, whether for fitness training, outdoor adventures, or daily commutes, we all yearn for quick-dry apparel that can rapidly wick away moisture and keep our bodies dry and comfortable. As a standout in functional textiles, quick-dry fabrics are becoming the top choice for more and more people, thanks to their exceptional moisture-wicking performance and rapid drying capabilities.展开更多
Have we ever seen such a shocking garment in the fashion industry?A down jacket that claims to be one but uses absolutely no down,yet possesses remarkable heating and insulating properties,all designed with a colorles...Have we ever seen such a shocking garment in the fashion industry?A down jacket that claims to be one but uses absolutely no down,yet possesses remarkable heating and insulating properties,all designed with a colorless aesthetic.It resembles clothing that has come from the future.The secret behind this captivating design lies in"SOLAMENTR■"developed by Sumitomo Metal Mining Co.,Ltd.展开更多
Surface modification of fabrics is an effective way to endow them with antifouling properties while still maintaining their key advantages such as comfort,softness and stretchability.Herein,an atmospheric pressure die...Surface modification of fabrics is an effective way to endow them with antifouling properties while still maintaining their key advantages such as comfort,softness and stretchability.Herein,an atmospheric pressure dielectric barrier discharge(DBD)plasma method is demonstrated for the processing of silk fabrics using 1H,1H,2H,2H-perfluorodecyltriethoxysilane(PFDS)as the precursor.The results showed the successful grafting of PFDS groups onto the surface of silk fabrics without causing damage.Meanwhile,the gas temperature is rather low during the whole processing procedure,suggesting the non-equilibrium characteristics of DBD plasma.The influence on fabrics of the processing parameters(PFDS concentration,plasma treatment time and plasma discharge power)was systematically investigated.An optimum processing condition was determined to be a PFDS concentration of 8wt%,a plasma processing time of 40 s and a plasma power of 11.87 W.However,with prolonged plasma processing time or enhanced plasma power,the plasma-grafted PFDS films could be degraded.Further study revealed that plasma processing of silk fabrics with PFDS would lead to a change in their chemical composition and surface roughness.As a result,the surface energy of the fabrics was reduced,accompanied by improved water and oil repellency as well as enhanced antifouling performance.Besides,the plasma-grafted PFDS films also had good durability and stability.By extending the method to polyester and wool against different oil-/water-based stains,the DBD plasma surface modification technique demonstrated good versatility in improving the antifouling properties of fabrics.This work provides guidance for the surface modification of fabrics using DBD plasma to confer them with desirable functionalities.展开更多
Inspired by the thermal stability mechanism of thermophilic protein,which presents ionic bonds that have better stability at higher temperatures,this paper proposes the introduction of electrostatic interactions by ad...Inspired by the thermal stability mechanism of thermophilic protein,which presents ionic bonds that have better stability at higher temperatures,this paper proposes the introduction of electrostatic interactions by adding carboxyl-modified silica(C-SiO2),PAA,and CaCl_(2) to achieve higher viscosity over 25℃.The rheological behavior of C-SiO_(2)-based shear thickening fluid(CS-STF)was investigated at a temperature range of 25–55℃.Unlike SiO_(2)-based STF,which exhibits single-step thickening and a negative correlation between viscosity and temperature.As the C-SiO_(2) content was 41%(w/w)and the mass ratio of PAA:CaCl_(2):C-SiO_(2) was 3:1:10,the CS-STF displayed a double-thickening behavior,and the peak viscosity reached 1330 Pa·s at 35℃.From the yarn pull-out test,the inter-yarn force was significantly increased with the increasing CS-STF content.Treating UHMWPE fabrics with CS-STF improved the impact resistance effectively.In the blunt impact test,the U-CS fabrics with high CS-STF content(121.45 wt%)experienced penetration failure under high impact energy(18 J)due to stress concentration caused by the shear thickening behavior.The knife stabbing test demonstrated that U-CS fabrics with appropriate content(88.38 wt%)have the best stabbing resistance in various impact energies.Overall,this study proposed a high-performence STF showing double-thickening and enhancing shear-thickening behavior at a wide temperature range,the composite fabrics with the performance of resisting both the blunt and stab impact had broad application prospects in the field of personal protection.展开更多
On March l3th,the three-day Intertextile Shanghai Apparel Fabrics-Spring Edition 2025 concluded successfully at the National Exhibition andConvention Center(Shanghai).This bustling event,carrying the expectationsof th...On March l3th,the three-day Intertextile Shanghai Apparel Fabrics-Spring Edition 2025 concluded successfully at the National Exhibition andConvention Center(Shanghai).This bustling event,carrying the expectationsof the industry,conveyed the enthusiasm for business cooperation in China'stextile industry at the beginning of 2025 through its exhibition data.展开更多
The Janus fabrics designed for personal moisture/thermal regulation have garnered significant attention for their potential to enhance human comfort.However,the development of smart and dynamic fabrics capable of mana...The Janus fabrics designed for personal moisture/thermal regulation have garnered significant attention for their potential to enhance human comfort.However,the development of smart and dynamic fabrics capable of managing personal moisture/thermal comfort in response to changing external environments remains a challenge.Herein,a smart cellulose-based Janus fabric was designed to dynamically manage personal moisture/heat.The cotton fabric was grafted with N-isopropylacrylamide to construct a temperature-stimulated transport channel.Subsequently,hydrophobic ethyl cellulose and hydrophilic cellulose nanofiber were sprayed on the bottom and top sides of the fabric to obtain wettability gradient.The fabric exhibits anti-gravity directional liquid transportation from hydrophobic side to hydrophilic side,and can dynamically and continuously control the transportation time in a wide range of 3–66 s as the temperature increases from 10 to 40℃.This smart fabric can quickly dissipate heat at high temperatures,while at low temperatures,it can slow down the heat dissipation rate and prevent the human from becoming too cold.In addition,the fabric has UV shielding and photodynamic antibacterial properties through depositing graphitic carbon nitride nanosheets on the hydrophilic side.This smart fabric offers an innovative approach to maximizing personal comfort in environments with significant temperature variations.展开更多
Functional superhydrophobic coatings have attracted considerable attention because of their potential for a wide range of applications.In this study,a novel cyclotetrasiloxane-based hybrid superhydrophobic modifier(F-...Functional superhydrophobic coatings have attracted considerable attention because of their potential for a wide range of applications.In this study,a novel cyclotetrasiloxane-based hybrid superhydrophobic modifier(F-D_(4))was prepared for the first time using a mild thiolene click reaction of 2,4,6,8-tetravinyl-2,4,6,8-tetramethylcyclotetrasiloxane(Vi-D_(4))with perfluorohexylethanethiol(PFOT)and mercaptopropyltrimethoxysilane(MPTMS)as the raw materials.Then,F-D_(4) was introduced into the fabric via a sol-gel process,resulting in a superhydrophobic fabric(F-D_(4)-Fabric).The surface characteristics of the modified fabric were determined using scanning electron microscopy(SEM),Fourier transform infrared spectroscopy(FTIR),X-ray photoelectron spectroscopy(XPS),and water contact angle(WCA).The coated fabrics have outstanding mechanical,physical,and chemical stability,and exhibit excellent self-cleaning and anti-fouling properties.Owing to its superhydrophobicity,FD_(4)-Fabric could efficiently separate a range of oil/water mixtures with a separation efficiency of up to 99.99%.The study showed that the modification strategy used in the dip-coating process greatly affected the superhydrophobicity of the cotton fabric,which is useful for oil/water separation and self-cleaning applications.展开更多
Thermotherapy,renowned for its non-invasive alleviation of musculoskeletal pain,faces constraints due to the scarcity of flexible and lightweight wearable heating solutions.In this study,we introduce an innovative fle...Thermotherapy,renowned for its non-invasive alleviation of musculoskeletal pain,faces constraints due to the scarcity of flexible and lightweight wearable heating solutions.In this study,we introduce an innovative flexible wearable film designed for effective thermotherapy.The film is engineered by in-situ immobilization of copper sulfide(CuS)nanoparticles onto a bicomponent PET@PE nonwoven fabric,subsequently enhanced through a straightforward hot-pressing process.This method results in an all-in-one integrated PET@PE/CuS film that possesses intrinsic self-enhancement and remarkable photothermal conversion capabilities.Upon exposure to near-infrared(NIR)laser,infrared(IR)therapeutic light,or simulated sunlight,the film maintains stable and precisely regulated temperatures,catering to the optimal thermotherapy temperature range.Its high mechanical robustness and chemical stability,as evidenced by rigorous mechanical and chemical testing,ensure the film’s suitability and long-term serviceability in wearable thermotherapy applications.Our study provides an affordable and sustainable strategy for the development of comfortable wearable thermotherapy devices,offering a promising avenue for pain management and rehabilitation.展开更多
A comprehensive literature review was performed to create an inventory of thermal-physiological quantities for fabrics from different fiber materials, material blends, and fabric structures. The goal was to derive ove...A comprehensive literature review was performed to create an inventory of thermal-physiological quantities for fabrics from different fiber materials, material blends, and fabric structures. The goal was to derive over-arching concepts that cannot be seen by the individual studies alone. Equations of best fits suggest non-linear changes for fabric thickness, thermal and water-vapor resistance with changes in material blend ratio. Air permeability decreases with increasing fabric density and fabric weight wherein the degree of decrease differs among fabric materials, blend ratio, and fabric structure. Water-vapor transmission rates strongly depend on fabric thickness, material, and blend, but marginally depend on fabric structure as long as the fabric and material thickness remain the same.展开更多
High magnetic protective fabrics with rare earth Nd doped Fe_(3)O_(4)nanoparticles were fabricated via a grafting method.The structure,crystal form,and elemental composition of nanoparticles were investigated by trans...High magnetic protective fabrics with rare earth Nd doped Fe_(3)O_(4)nanoparticles were fabricated via a grafting method.The structure,crystal form,and elemental composition of nanoparticles were investigated by transmission electron microscopy,energy dispersive X-ray,X-ray powder diffraction,and X-ray photoelectron spectroscopy.The obtained NdFe_(2)O_(4)nanoparticles show spherical shape with fine dispersion and reasonable element composition.However,they demonstrate fine superparamagnetic properties with a magnetic saturation value of 29.25 A·m^(2)/g and low coercivity of 1.902 mT through the vibrating sample magnetometry technique,which can be well developed in magnetic shielding protective applications.Then,the cotton fabrics with plain weave were finished by a proofing rapier loom as a carrier.The NdFe_(2)O_(4)nanoparticles underwent some appropriate surface modification and then were grafted onto the cotton fabrics by a bridge agent of N,N’-dissuccinimidyl carbonate.The morphology,structure,dispersion effect,and electromagnetic protective properties of the fabrics were observed through scanning electron microscopy,Fourier infrared spectroscopy,thermogravimetric analysisdifferential scanning calorimetry(TG-DSC),and a vector network analyzer.The reliable fabrics with grafting reaction on the interface are expected to have potential applications in the field of electromagnetic protection and biomedicine fields.展开更多
Microwave absorption(MA)materials are essential for protecting against harmful electromagnetic radiation.In this study,highly efficient and ultrawide-band microwave-absorbing fabrics with superhydrophobic surface feat...Microwave absorption(MA)materials are essential for protecting against harmful electromagnetic radiation.In this study,highly efficient and ultrawide-band microwave-absorbing fabrics with superhydrophobic surface features were developed using a facile dip-coating method involving in situ graphene oxide(GO)reduction,deposition of TiO_(2) nanoparticles,and subsequent coating of a mixture of polydimethylsiloxane(PDMS)and octadecylamine(ODA)on polyester fabrics.Owing to the presence of hierarchically structured surfaces and low-surface-energy materials,the resultant reduced GO(rGO)/TiO_(2)-ODA/PDMS-coated fabrics demonstrate superhydrophobicity with a water contact angle of 159°and sliding angle of 5°.Under the synergistic effects of conduction loss,interface polarization loss,and surface roughness topography,the optimized fabrics show excellent microwave absorbing performances with a minimum reflection loss(RL_(min))of47.4 dB and a maximum effective absorption bandwidth(EAB_(max))of 7.7 GHz at a small rGO loading of 6.9 wt%.In addition,the rGO/TiO_(2)-ODA/PDMS coating was robust,and the coated fabrics could withstand repeated washing,soiling,long-term ultraviolet irradiation,and chemical attacks without losing their superhydrophobicity and MA properties.Moreover,the coating imparts self-healing properties to the fabrics.This study provides a promising and effective route for the development of robust and flexible materials with microwave-absorbing properties.展开更多
Fabrics,a class of carriers,have been pioneered in electromagnetic protection,but their microwave absorbing potential has not been fully explored for a considerable period.Herein,aramid nanofibers(ANFs)enhanced reduce...Fabrics,a class of carriers,have been pioneered in electromagnetic protection,but their microwave absorbing potential has not been fully explored for a considerable period.Herein,aramid nanofibers(ANFs)enhanced reduced graphene oxide fabrics(ANF/rGO fabrics)were synthesized by wet spinning-chemical reduction.The ANF/rGO fabrics can achieve the minimum reflection loss(RLmin)of−15.8 dB with a thickness of 2.7 mm.On this basis,ANF/rGO fabrics grown with polyaniline(ANF/rGO-PANi fabrics)through in-situ doping polymerization were obtained.Polyaniline compensates for the lack of conductivity of the dielectric fabrics,bringing higher impedance matching and attenuation capability.The corresponding RLmin can reach−52.3 dB under 2.9 mm and the effective absorption bandwidth(EAB)increases to 6 GHz covering the whole Ku band under 2.5 mm.The fabrics woven by high-strength graphene-based hybrid fibers proposed in this study provide a new angle to achieve high-efficiency microwave absorption.展开更多
The silk fabrics were matching dyed with three natural edible pigments(red rice red,ginger yellow and gardenia blue).By investigating the dyeing rates and lifting properties of these pigments,it was observed that thei...The silk fabrics were matching dyed with three natural edible pigments(red rice red,ginger yellow and gardenia blue).By investigating the dyeing rates and lifting properties of these pigments,it was observed that their compatibilities were excellent in the dyeing process:dye dosage 2.5%(omf),mordant alum dosage 2.0%(omf),dyeing temperature 80℃and dyeing time 40 min.The silk fabrics dyed with secondary colors exhibited vibrant and vivid color owing to the remarkable lightness and chroma of ginger yellow.However,gardenia blue exhibited multiple absorption peaks in the visible light range,resulting in significantly lower lightness and chroma for the silk fabrics dyed with tertiary colors,thus making it suitable only for matte-colored fabrics with low chroma levels.In addition,the silk fabrics dyed with these three pigments had a color fastness that exceeded grade 3 in resistance to perspiration,soap washing and light exposure,indicating acceptable wearing properties.The dyeing process described in this research exhibited a wide range of potential applications in matching dyeing of protein-based textiles with natural colorants.展开更多
Fabric multifunctionality offers resource savings and enhanced human comfort.This study innovatively integrates cooling,heating,and antimicrobial properties within a Janus fabric,surpassing previous research focused s...Fabric multifunctionality offers resource savings and enhanced human comfort.This study innovatively integrates cooling,heating,and antimicrobial properties within a Janus fabric,surpassing previous research focused solely on cooling or heating.Different effects are achieved by applying distinct coatings to each side of the fabric.One graphene oxide(GO)coating exhibits exceptional light-to-heat conversion,absorbing and transforming light energy into heat,thereby elevating fabric temperature by 15.4℃,22.7℃,and 43.7℃ under 0.2,0.5,and 1 sun irradiation,respectively.Conversely,a hydrogel coating on one side absorbs water,facilitating heat dissipation through evaporation upon light exposure,reducing fabric temperature by 5.9℃,8.4℃,and 7.1℃ in 0.2,0.5,and 1 sun irradiation,respectively.Moreover,both sides of Janus fabric exhibit potent antimicrobial properties,ensuring fabric hygiene.This work presents a feasible solution to address crucial challenges in fabric thermal regulation,providing a smart approach for intelligent adjustment of body comfort in both summer and winter.By integrating heating and cooling capabilities along with antimicrobial properties,this study promotes sustainable development in textile techniques.展开更多
Flexible thermoelectric(TE)materials that convert heat into electricity have been widely used in wearable electronics and other flexible devices.In this work,inorganic TE pillars were combined with thermoplastic polyu...Flexible thermoelectric(TE)materials that convert heat into electricity have been widely used in wearable electronics and other flexible devices.In this work,inorganic TE pillars were combined with thermoplastic polyurethane(TPU)to assemble a flexible string-shaped TE generator(TEG)for the fabrication of the thermoelectric fabric(TEF).Moreover,finite element analysis(FEA)was used to optimize the dimensions of the TE string and evaluate its performance.The FEA results showed that the inter-pillar spacing significantly affected the temperature difference,the output voltage and the internal resistance.A maximum power density of 3.43μW/cm^(2)(temperate gradientΔT=10.5 K)was achieved by the TE string with a diameter of 3.5 mm and an inter-pillar spacing of 2 mm.However,under the experimental condition,the achievable power density of the fabricated three-dimensional(3D)TEF was limited to 29%of the simulation result because of the inclination of the TE string within the fabric concerning heat plate contact and copper wire-TE pillar connections.The actual TE string also demonstrated high flexibility and stable mechanical properties after 450 bending cycles.Thus,the study would provide a foundation for future research in developing more efficient TEFs to offer a comfortable and conformable option for wearable energy harvesting applications.展开更多
Recently, the textile industry has increasingly advocated for natural resource-based healthcare textiles. This research presents a facile and eco-friendly approach to developing durable antibacterial polyester fabrics...Recently, the textile industry has increasingly advocated for natural resource-based healthcare textiles. This research presents a facile and eco-friendly approach to developing durable antibacterial polyester fabrics. Polyester fabric was first subjected to an alkaline hydrolysis to impart hydroxyl groups on the fiber surface. A natural antibacterial agent, betaine, was then covalently bonded to the hydrolyzed polyester fiber surface through esterification. XPS, Raman, SEM, and Wicking measurements were carried out to verify the esterification reaction. Antibacterial tests confirmed that betaine treatment grafted polyester fabrics revealed a remarkable antibacterial effect with inhibition rates > 99.9% against both E. coli and S. aureus and still remained inhibition rates of up to 91.5% against both bacteria after home washing for 20 cycles. Moreover, the modification significantly increased the capillary effect of polyester fabric but did not cause apparent adverse effects on the fabric’s hand or tensile strength. Overall, this grafting strategy for durable, antibacterial polyester fabric represents a significant practicality in the textile industry.展开更多
Stitch density is one of the critical quality parameters of knit fabrics. This parameter is closely related to other physical quality parameters like fabric weight, fabric tightness factor, fiber types, blend ratio, y...Stitch density is one of the critical quality parameters of knit fabrics. This parameter is closely related to other physical quality parameters like fabric weight, fabric tightness factor, fiber types, blend ratio, yarn diameter and linear density, and fabric structure. Selecting stitch density (wales per inch, course per inch) is essential to getting the appropriate fabric weight and desired quality. Usually, no rules or assumptions exist to get the desired stitch density in the finished fabric stage. Fifteen types of blended knit fabrics were prepared to conduct the study. The varying percentages of cotton, polyester, and elastane are incorporated in the blends. Regression analysis and regression ANOVA tests were done to predict the stitch density of finished fabrics. A suitable regression equation is established to get the desired results. The study also found that the stitch density value in the finished stage fabric decreases by approximately 15% compared to the stitch density in the grey fabric stage. This study will help the fabric manufacturers get the finished fabric stitch density in advance by utilizing the grey fabric stitch density data set. The author expects this research to benefit the knitting and dyeing industry, new researchers, and advanced researchers.展开更多
文摘This research study fabrics to ensure that they are free from carcinogenic dyes. It has been observed that there are poor-quality fabrics and consumers go to buy them without paying attention to the risks of using prohibited materials in the manufacture of these fabrics, and the use of unknown dyes has proven that some of them cause diseases to humans, especially children, that cause cancerous diseases. With the study sample consisting of (7), the study results indicate the presence of toxic formaldehyde in all sample dyes obtained from discount markets and online shopping.
文摘Nanotechnology is transforming the textile industry by embedding UV-blocking and antimicrobial agents into fabric fibres at the molecular level. This study explores the development of biocomposites and nanocomposite materials for UV protection and microbial resistance in clothing. Nanoscale UV-blocking agents enhance the protection of textiles against harmful ultraviolet radiation. Recent studies on composites such as ZnO/carboxymethyl chitosan, polyacrylonitrile with UV absorbers and TiO2 nanoparticles, and lignin-TiO composites have shown significant improvements in UV protection and some antibacterial activity. Techniques such as electrospinning, hydrothermal synthesis, and natural fibre welding were used to create these composites, focusing on ZnO and TiO2 nanoparticles for dual functionality. Research on nanoscale UV-blocking agents could revolutionise sun protection in clothing and offer better safety against ultraviolet radiation. Multifunctional composites with UV-blocking and antibacterial properties could advance the use of protective clothing in various industries and outdoor activities. Emphasising natural fibres and sustainable materials aligns with the global trend towards eco-friendly solutions, leading to more environmentally friendly products. This literature review aims to comprehensively review and analyze current research on UV protective knit fabrics using nanotechnology, nanocomposites, and biocomposites. It seeks to identify research gaps, evaluate different approaches, and provide insights for future developments in this field.
基金supported by the China Postdoctoral Science Foundation(No.2023M732344)the National Natural Science Foundation of China(Nos.51973119,52327802,52173078)+4 种基金Shenzhen Key Laboratory of Photonics and Biophotonics(ZDSYS20210623092006020)Shenzhen Key Laboratory for Low-carbon Natural Science Foundation of Guangdong Province(No.2024A1515010639)Construction Material and Technology(No.ZDSYS20220606100406016)National Key Laboratory of Green and Long-Life Road Engineering in Extreme Environment(Shenzhen)(No.868-000003010103)Joint Funds of Ministry of Education(No.8091B022225).
文摘Self-regulating heating and self-powered flexibility are pivotal for future wearable devices.However,the low energy-conversion rate of wearable devices at low temperatures limits their application in plateaus and other environments.This study introduces an azopolymer with remarkable semicrystallinity and reversible photoinduced solid-liquid transition ability that is obtained through copolymerization of azoben-zene(Azo)monomers and styrene.A composite of one such copolymer with an Azo:styrene molar ratio of 9:1(copolymer is denoted as PAzo9:1-co-polystyrene(PS))and nylon fabrics(NFs)is prepared(composite is denoted as PAzo9:1-co-PS@NF).PAzo9:1-co-PS@NF exhibits hydrophobicity and high wear resistance.Moreover,it shows good responsiveness(0.624 s^(−1))during isomerization under solid ultraviolet(UV)light(365 nm)with an energy density of 70.6 kJ kg^(−1).In addition,the open-circuit voltage,short-circuit current and quantity values of PAzo9:1-co-PS@NF exhibit small variations in a temperature range of−20°C to 25°C and remain at 170 V,5 μA,and 62 nC,respectively.Notably,the involved NFs were cut and sewn into gloves to be worn on a human hand model.When the model was exposed to both UV radiation and friction,the temperature of the finger coated with PAzo9:1-co-PS was approximately 6.0°C higher than that of the other parts.Therefore,developing triboelectric nanogenerators based on the in situ photothermal cycles of Azo in wearable devices is important to develop low-temperature self-regulating heating and self-powered flexible devices for extreme environments.
文摘In today's fast-paced modern life, whether for fitness training, outdoor adventures, or daily commutes, we all yearn for quick-dry apparel that can rapidly wick away moisture and keep our bodies dry and comfortable. As a standout in functional textiles, quick-dry fabrics are becoming the top choice for more and more people, thanks to their exceptional moisture-wicking performance and rapid drying capabilities.
文摘Have we ever seen such a shocking garment in the fashion industry?A down jacket that claims to be one but uses absolutely no down,yet possesses remarkable heating and insulating properties,all designed with a colorless aesthetic.It resembles clothing that has come from the future.The secret behind this captivating design lies in"SOLAMENTR■"developed by Sumitomo Metal Mining Co.,Ltd.
基金the financial support from National Natural Science Foundation of China(Nos.22078125 and 52004102)Postdoctoral Science Foundation of China(No.2023M741472)。
文摘Surface modification of fabrics is an effective way to endow them with antifouling properties while still maintaining their key advantages such as comfort,softness and stretchability.Herein,an atmospheric pressure dielectric barrier discharge(DBD)plasma method is demonstrated for the processing of silk fabrics using 1H,1H,2H,2H-perfluorodecyltriethoxysilane(PFDS)as the precursor.The results showed the successful grafting of PFDS groups onto the surface of silk fabrics without causing damage.Meanwhile,the gas temperature is rather low during the whole processing procedure,suggesting the non-equilibrium characteristics of DBD plasma.The influence on fabrics of the processing parameters(PFDS concentration,plasma treatment time and plasma discharge power)was systematically investigated.An optimum processing condition was determined to be a PFDS concentration of 8wt%,a plasma processing time of 40 s and a plasma power of 11.87 W.However,with prolonged plasma processing time or enhanced plasma power,the plasma-grafted PFDS films could be degraded.Further study revealed that plasma processing of silk fabrics with PFDS would lead to a change in their chemical composition and surface roughness.As a result,the surface energy of the fabrics was reduced,accompanied by improved water and oil repellency as well as enhanced antifouling performance.Besides,the plasma-grafted PFDS films also had good durability and stability.By extending the method to polyester and wool against different oil-/water-based stains,the DBD plasma surface modification technique demonstrated good versatility in improving the antifouling properties of fabrics.This work provides guidance for the surface modification of fabrics using DBD plasma to confer them with desirable functionalities.
基金the Major Science and Technology Demonstration Projects in Jiangsu Province(Grant No.BE2022608).
文摘Inspired by the thermal stability mechanism of thermophilic protein,which presents ionic bonds that have better stability at higher temperatures,this paper proposes the introduction of electrostatic interactions by adding carboxyl-modified silica(C-SiO2),PAA,and CaCl_(2) to achieve higher viscosity over 25℃.The rheological behavior of C-SiO_(2)-based shear thickening fluid(CS-STF)was investigated at a temperature range of 25–55℃.Unlike SiO_(2)-based STF,which exhibits single-step thickening and a negative correlation between viscosity and temperature.As the C-SiO_(2) content was 41%(w/w)and the mass ratio of PAA:CaCl_(2):C-SiO_(2) was 3:1:10,the CS-STF displayed a double-thickening behavior,and the peak viscosity reached 1330 Pa·s at 35℃.From the yarn pull-out test,the inter-yarn force was significantly increased with the increasing CS-STF content.Treating UHMWPE fabrics with CS-STF improved the impact resistance effectively.In the blunt impact test,the U-CS fabrics with high CS-STF content(121.45 wt%)experienced penetration failure under high impact energy(18 J)due to stress concentration caused by the shear thickening behavior.The knife stabbing test demonstrated that U-CS fabrics with appropriate content(88.38 wt%)have the best stabbing resistance in various impact energies.Overall,this study proposed a high-performence STF showing double-thickening and enhancing shear-thickening behavior at a wide temperature range,the composite fabrics with the performance of resisting both the blunt and stab impact had broad application prospects in the field of personal protection.
文摘On March l3th,the three-day Intertextile Shanghai Apparel Fabrics-Spring Edition 2025 concluded successfully at the National Exhibition andConvention Center(Shanghai).This bustling event,carrying the expectationsof the industry,conveyed the enthusiasm for business cooperation in China'stextile industry at the beginning of 2025 through its exhibition data.
基金support of this work by National Key Research and Development Program of China(2019YFC19059003)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(23KJB430024)+1 种基金Jiangsu Funding Program for Excellent Postdoctoral Talent(2023ZB680)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)are gratefully acknowledged.
文摘The Janus fabrics designed for personal moisture/thermal regulation have garnered significant attention for their potential to enhance human comfort.However,the development of smart and dynamic fabrics capable of managing personal moisture/thermal comfort in response to changing external environments remains a challenge.Herein,a smart cellulose-based Janus fabric was designed to dynamically manage personal moisture/heat.The cotton fabric was grafted with N-isopropylacrylamide to construct a temperature-stimulated transport channel.Subsequently,hydrophobic ethyl cellulose and hydrophilic cellulose nanofiber were sprayed on the bottom and top sides of the fabric to obtain wettability gradient.The fabric exhibits anti-gravity directional liquid transportation from hydrophobic side to hydrophilic side,and can dynamically and continuously control the transportation time in a wide range of 3–66 s as the temperature increases from 10 to 40℃.This smart fabric can quickly dissipate heat at high temperatures,while at low temperatures,it can slow down the heat dissipation rate and prevent the human from becoming too cold.In addition,the fabric has UV shielding and photodynamic antibacterial properties through depositing graphitic carbon nitride nanosheets on the hydrophilic side.This smart fabric offers an innovative approach to maximizing personal comfort in environments with significant temperature variations.
基金financially supported by the National Key R&D Program of China(No.2022YFE0197000)。
文摘Functional superhydrophobic coatings have attracted considerable attention because of their potential for a wide range of applications.In this study,a novel cyclotetrasiloxane-based hybrid superhydrophobic modifier(F-D_(4))was prepared for the first time using a mild thiolene click reaction of 2,4,6,8-tetravinyl-2,4,6,8-tetramethylcyclotetrasiloxane(Vi-D_(4))with perfluorohexylethanethiol(PFOT)and mercaptopropyltrimethoxysilane(MPTMS)as the raw materials.Then,F-D_(4) was introduced into the fabric via a sol-gel process,resulting in a superhydrophobic fabric(F-D_(4)-Fabric).The surface characteristics of the modified fabric were determined using scanning electron microscopy(SEM),Fourier transform infrared spectroscopy(FTIR),X-ray photoelectron spectroscopy(XPS),and water contact angle(WCA).The coated fabrics have outstanding mechanical,physical,and chemical stability,and exhibit excellent self-cleaning and anti-fouling properties.Owing to its superhydrophobicity,FD_(4)-Fabric could efficiently separate a range of oil/water mixtures with a separation efficiency of up to 99.99%.The study showed that the modification strategy used in the dip-coating process greatly affected the superhydrophobicity of the cotton fabric,which is useful for oil/water separation and self-cleaning applications.
基金support from the National Natural Science Foundation of China(No.52473029)the Shanghai Oriental Talent Program,and the Fundamental Research Funds for the Central Universities(No.CUSF-DH-T-2024020)。
文摘Thermotherapy,renowned for its non-invasive alleviation of musculoskeletal pain,faces constraints due to the scarcity of flexible and lightweight wearable heating solutions.In this study,we introduce an innovative flexible wearable film designed for effective thermotherapy.The film is engineered by in-situ immobilization of copper sulfide(CuS)nanoparticles onto a bicomponent PET@PE nonwoven fabric,subsequently enhanced through a straightforward hot-pressing process.This method results in an all-in-one integrated PET@PE/CuS film that possesses intrinsic self-enhancement and remarkable photothermal conversion capabilities.Upon exposure to near-infrared(NIR)laser,infrared(IR)therapeutic light,or simulated sunlight,the film maintains stable and precisely regulated temperatures,catering to the optimal thermotherapy temperature range.Its high mechanical robustness and chemical stability,as evidenced by rigorous mechanical and chemical testing,ensure the film’s suitability and long-term serviceability in wearable thermotherapy applications.Our study provides an affordable and sustainable strategy for the development of comfortable wearable thermotherapy devices,offering a promising avenue for pain management and rehabilitation.
文摘A comprehensive literature review was performed to create an inventory of thermal-physiological quantities for fabrics from different fiber materials, material blends, and fabric structures. The goal was to derive over-arching concepts that cannot be seen by the individual studies alone. Equations of best fits suggest non-linear changes for fabric thickness, thermal and water-vapor resistance with changes in material blend ratio. Air permeability decreases with increasing fabric density and fabric weight wherein the degree of decrease differs among fabric materials, blend ratio, and fabric structure. Water-vapor transmission rates strongly depend on fabric thickness, material, and blend, but marginally depend on fabric structure as long as the fabric and material thickness remain the same.
基金Project supported by the Natural Science Foundation of Fujian Province(2020J01849)Major Science and Technology Project of Fuzhou(2021ZD298)+1 种基金Science and Technology Projects of Fujian Province(2021H0037)Research Project of the Fashu Foundation(MFK23004)。
文摘High magnetic protective fabrics with rare earth Nd doped Fe_(3)O_(4)nanoparticles were fabricated via a grafting method.The structure,crystal form,and elemental composition of nanoparticles were investigated by transmission electron microscopy,energy dispersive X-ray,X-ray powder diffraction,and X-ray photoelectron spectroscopy.The obtained NdFe_(2)O_(4)nanoparticles show spherical shape with fine dispersion and reasonable element composition.However,they demonstrate fine superparamagnetic properties with a magnetic saturation value of 29.25 A·m^(2)/g and low coercivity of 1.902 mT through the vibrating sample magnetometry technique,which can be well developed in magnetic shielding protective applications.Then,the cotton fabrics with plain weave were finished by a proofing rapier loom as a carrier.The NdFe_(2)O_(4)nanoparticles underwent some appropriate surface modification and then were grafted onto the cotton fabrics by a bridge agent of N,N’-dissuccinimidyl carbonate.The morphology,structure,dispersion effect,and electromagnetic protective properties of the fabrics were observed through scanning electron microscopy,Fourier infrared spectroscopy,thermogravimetric analysisdifferential scanning calorimetry(TG-DSC),and a vector network analyzer.The reliable fabrics with grafting reaction on the interface are expected to have potential applications in the field of electromagnetic protection and biomedicine fields.
基金supported by the National Natural Science Foundation of China(22372087)the Natural Science Foundation of Shandong Province(ZR2021ME039)+4 种基金the Applied Basic Research Programs of National Textile Industry Federation(J202106)the Newtech Textile Technology Development(Shanghai)Co.,Ltd.,Chinathe Jiangsu New Vison Advanced Functional Fiber Innovation Centersupport from both the Research Centre of Textiles for Future Fashion at The Hong Kong Polytechnic UniversityThe Hong Kong Jockey Club Charities Trust.
文摘Microwave absorption(MA)materials are essential for protecting against harmful electromagnetic radiation.In this study,highly efficient and ultrawide-band microwave-absorbing fabrics with superhydrophobic surface features were developed using a facile dip-coating method involving in situ graphene oxide(GO)reduction,deposition of TiO_(2) nanoparticles,and subsequent coating of a mixture of polydimethylsiloxane(PDMS)and octadecylamine(ODA)on polyester fabrics.Owing to the presence of hierarchically structured surfaces and low-surface-energy materials,the resultant reduced GO(rGO)/TiO_(2)-ODA/PDMS-coated fabrics demonstrate superhydrophobicity with a water contact angle of 159°and sliding angle of 5°.Under the synergistic effects of conduction loss,interface polarization loss,and surface roughness topography,the optimized fabrics show excellent microwave absorbing performances with a minimum reflection loss(RL_(min))of47.4 dB and a maximum effective absorption bandwidth(EAB_(max))of 7.7 GHz at a small rGO loading of 6.9 wt%.In addition,the rGO/TiO_(2)-ODA/PDMS coating was robust,and the coated fabrics could withstand repeated washing,soiling,long-term ultraviolet irradiation,and chemical attacks without losing their superhydrophobicity and MA properties.Moreover,the coating imparts self-healing properties to the fabrics.This study provides a promising and effective route for the development of robust and flexible materials with microwave-absorbing properties.
基金supported by the National Nat-ural Science Foundation of China(NSFC,Nos.51903213 and 5217130190)the Science and Technology Planning Project of Sichuan Province(Nos.2023NSFSC1952 and 2022ZYD0028)+1 种基金the Central Government Guides the Local Science and Technology Development Special Funds(No.2021Szvup124)the Fundamental Research Funds for the Central Universities(Nos.2682021GF004 and 2682022CG005)to freely explore basic research projects.
文摘Fabrics,a class of carriers,have been pioneered in electromagnetic protection,but their microwave absorbing potential has not been fully explored for a considerable period.Herein,aramid nanofibers(ANFs)enhanced reduced graphene oxide fabrics(ANF/rGO fabrics)were synthesized by wet spinning-chemical reduction.The ANF/rGO fabrics can achieve the minimum reflection loss(RLmin)of−15.8 dB with a thickness of 2.7 mm.On this basis,ANF/rGO fabrics grown with polyaniline(ANF/rGO-PANi fabrics)through in-situ doping polymerization were obtained.Polyaniline compensates for the lack of conductivity of the dielectric fabrics,bringing higher impedance matching and attenuation capability.The corresponding RLmin can reach−52.3 dB under 2.9 mm and the effective absorption bandwidth(EAB)increases to 6 GHz covering the whole Ku band under 2.5 mm.The fabrics woven by high-strength graphene-based hybrid fibers proposed in this study provide a new angle to achieve high-efficiency microwave absorption.
基金Fujian External Cooperation Project of Natural Science Foundation,China(No.2022I0042)。
文摘The silk fabrics were matching dyed with three natural edible pigments(red rice red,ginger yellow and gardenia blue).By investigating the dyeing rates and lifting properties of these pigments,it was observed that their compatibilities were excellent in the dyeing process:dye dosage 2.5%(omf),mordant alum dosage 2.0%(omf),dyeing temperature 80℃and dyeing time 40 min.The silk fabrics dyed with secondary colors exhibited vibrant and vivid color owing to the remarkable lightness and chroma of ginger yellow.However,gardenia blue exhibited multiple absorption peaks in the visible light range,resulting in significantly lower lightness and chroma for the silk fabrics dyed with tertiary colors,thus making it suitable only for matte-colored fabrics with low chroma levels.In addition,the silk fabrics dyed with these three pigments had a color fastness that exceeded grade 3 in resistance to perspiration,soap washing and light exposure,indicating acceptable wearing properties.The dyeing process described in this research exhibited a wide range of potential applications in matching dyeing of protein-based textiles with natural colorants.
基金supported by National Natural Science Foundation of China(21801219)the“Qing-Lan”Project of Jiangsu Province,Top-notch Academic Programs Project of Jiangsu Higher Education Institutions(TAPP)the start-up fund from Yangzhou University.
文摘Fabric multifunctionality offers resource savings and enhanced human comfort.This study innovatively integrates cooling,heating,and antimicrobial properties within a Janus fabric,surpassing previous research focused solely on cooling or heating.Different effects are achieved by applying distinct coatings to each side of the fabric.One graphene oxide(GO)coating exhibits exceptional light-to-heat conversion,absorbing and transforming light energy into heat,thereby elevating fabric temperature by 15.4℃,22.7℃,and 43.7℃ under 0.2,0.5,and 1 sun irradiation,respectively.Conversely,a hydrogel coating on one side absorbs water,facilitating heat dissipation through evaporation upon light exposure,reducing fabric temperature by 5.9℃,8.4℃,and 7.1℃ in 0.2,0.5,and 1 sun irradiation,respectively.Moreover,both sides of Janus fabric exhibit potent antimicrobial properties,ensuring fabric hygiene.This work presents a feasible solution to address crucial challenges in fabric thermal regulation,providing a smart approach for intelligent adjustment of body comfort in both summer and winter.By integrating heating and cooling capabilities along with antimicrobial properties,this study promotes sustainable development in textile techniques.
基金National Natural Science Foundation of China(No.51973034)Natural Science Foundation of Shanghai,China(No.23ZR1402500)Fundamental Research Funds for the Central Universities,China(Nos.2232022G01 and 19D110106)。
文摘Flexible thermoelectric(TE)materials that convert heat into electricity have been widely used in wearable electronics and other flexible devices.In this work,inorganic TE pillars were combined with thermoplastic polyurethane(TPU)to assemble a flexible string-shaped TE generator(TEG)for the fabrication of the thermoelectric fabric(TEF).Moreover,finite element analysis(FEA)was used to optimize the dimensions of the TE string and evaluate its performance.The FEA results showed that the inter-pillar spacing significantly affected the temperature difference,the output voltage and the internal resistance.A maximum power density of 3.43μW/cm^(2)(temperate gradientΔT=10.5 K)was achieved by the TE string with a diameter of 3.5 mm and an inter-pillar spacing of 2 mm.However,under the experimental condition,the achievable power density of the fabricated three-dimensional(3D)TEF was limited to 29%of the simulation result because of the inclination of the TE string within the fabric concerning heat plate contact and copper wire-TE pillar connections.The actual TE string also demonstrated high flexibility and stable mechanical properties after 450 bending cycles.Thus,the study would provide a foundation for future research in developing more efficient TEFs to offer a comfortable and conformable option for wearable energy harvesting applications.
文摘Recently, the textile industry has increasingly advocated for natural resource-based healthcare textiles. This research presents a facile and eco-friendly approach to developing durable antibacterial polyester fabrics. Polyester fabric was first subjected to an alkaline hydrolysis to impart hydroxyl groups on the fiber surface. A natural antibacterial agent, betaine, was then covalently bonded to the hydrolyzed polyester fiber surface through esterification. XPS, Raman, SEM, and Wicking measurements were carried out to verify the esterification reaction. Antibacterial tests confirmed that betaine treatment grafted polyester fabrics revealed a remarkable antibacterial effect with inhibition rates > 99.9% against both E. coli and S. aureus and still remained inhibition rates of up to 91.5% against both bacteria after home washing for 20 cycles. Moreover, the modification significantly increased the capillary effect of polyester fabric but did not cause apparent adverse effects on the fabric’s hand or tensile strength. Overall, this grafting strategy for durable, antibacterial polyester fabric represents a significant practicality in the textile industry.
文摘Stitch density is one of the critical quality parameters of knit fabrics. This parameter is closely related to other physical quality parameters like fabric weight, fabric tightness factor, fiber types, blend ratio, yarn diameter and linear density, and fabric structure. Selecting stitch density (wales per inch, course per inch) is essential to getting the appropriate fabric weight and desired quality. Usually, no rules or assumptions exist to get the desired stitch density in the finished fabric stage. Fifteen types of blended knit fabrics were prepared to conduct the study. The varying percentages of cotton, polyester, and elastane are incorporated in the blends. Regression analysis and regression ANOVA tests were done to predict the stitch density of finished fabrics. A suitable regression equation is established to get the desired results. The study also found that the stitch density value in the finished stage fabric decreases by approximately 15% compared to the stitch density in the grey fabric stage. This study will help the fabric manufacturers get the finished fabric stitch density in advance by utilizing the grey fabric stitch density data set. The author expects this research to benefit the knitting and dyeing industry, new researchers, and advanced researchers.