Let G : Gn,p be a binomial random graph with n vertices and edge probability p = p(n), and f be a nonnegative integer-valued function defined on V(G) such that 0 〈 a ≤ f(x) ≤ b 〈 np- 2√nplogn for every ...Let G : Gn,p be a binomial random graph with n vertices and edge probability p = p(n), and f be a nonnegative integer-valued function defined on V(G) such that 0 〈 a ≤ f(x) ≤ b 〈 np- 2√nplogn for every E V(G). An fractional f-indicator function is an function h that assigns to each edge of a graph G a number h(e) in [0, 1] so that for each vertex x, we have d^hG(x) = f(x), where dh(x) = ∑ h(e) is the fractional degree xEe ofx inG. Set Eh = {e : e e E(G) and h(e) ≠ 0}. IfGh isaspanningsubgraphofGsuchthat E(Gh) = Eh, then Gh is called an fractional f-factor of G. In this paper, we prove that for any binomial random graph Gn,p 2 with p 〉 n^-2/3, almost surely Gn,p contains an fractional f-factor.展开更多
研究了单个线性关系是可闭线性关系的充分必要条件;并对L0=(A B C D),其中A,B,C,D是相应Hilbert空间上的线性关系,利用C相对A的有界性与B相对D的有界性及A,D的可闭性,推出了L_(0)也是可闭线性关系;同时,对于有界线性算子S=(S_(1) S_(2) ...研究了单个线性关系是可闭线性关系的充分必要条件;并对L0=(A B C D),其中A,B,C,D是相应Hilbert空间上的线性关系,利用C相对A的有界性与B相对D的有界性及A,D的可闭性,推出了L_(0)也是可闭线性关系;同时,对于有界线性算子S=(S_(1) S_(2) S_(3) S_(4)),得到当满足一定条件时L_(0)-μS的Frobenius-Schur分解公式,并得到了当L_(0)可闭时L_(0)的表达式,最后研究了L_(0)的S-本质谱。展开更多
基金Supported by NSFSD(No.ZR2013AM001)NSFC(No.11001055),NSFC11371355
文摘Let G : Gn,p be a binomial random graph with n vertices and edge probability p = p(n), and f be a nonnegative integer-valued function defined on V(G) such that 0 〈 a ≤ f(x) ≤ b 〈 np- 2√nplogn for every E V(G). An fractional f-indicator function is an function h that assigns to each edge of a graph G a number h(e) in [0, 1] so that for each vertex x, we have d^hG(x) = f(x), where dh(x) = ∑ h(e) is the fractional degree xEe ofx inG. Set Eh = {e : e e E(G) and h(e) ≠ 0}. IfGh isaspanningsubgraphofGsuchthat E(Gh) = Eh, then Gh is called an fractional f-factor of G. In this paper, we prove that for any binomial random graph Gn,p 2 with p 〉 n^-2/3, almost surely Gn,p contains an fractional f-factor.
文摘研究了单个线性关系是可闭线性关系的充分必要条件;并对L0=(A B C D),其中A,B,C,D是相应Hilbert空间上的线性关系,利用C相对A的有界性与B相对D的有界性及A,D的可闭性,推出了L_(0)也是可闭线性关系;同时,对于有界线性算子S=(S_(1) S_(2) S_(3) S_(4)),得到当满足一定条件时L_(0)-μS的Frobenius-Schur分解公式,并得到了当L_(0)可闭时L_(0)的表达式,最后研究了L_(0)的S-本质谱。