期刊文献+
共找到285,287篇文章
< 1 2 250 >
每页显示 20 50 100
Conversion of Metallurgical Waste:The Impact of Reduction Ferrum Extraction on the Phase Composition and Cementitious Materials Reactivity of Jinchuan Ferronickel Slag
1
作者 SONG Yanning FENG Qiong +2 位作者 QIAO Hongxia WEI Chao ZHENG Jianghua 《Journal of Wuhan University of Technology(Materials Science)》 2025年第2期546-557,共12页
In order to avoid the waste of iron caused by the direct use of ferronickel slag(FNS)in building materials,the effects of reduction iron extraction on the physical and chemical properties,cementitious reactivity and h... In order to avoid the waste of iron caused by the direct use of ferronickel slag(FNS)in building materials,the effects of reduction iron extraction on the physical and chemical properties,cementitious reactivity and hydration reaction characteristics of FNS and ferrum extraction tailing of nickel slag(FETNS)were studied.The experimental results show that the reduction ferrum extraction method changes the mineral phase composition of the waste slag,breaks the Si-O-Si bond,forms the tetrahedral structure of Si-O-NBO or Si-O-2NBO,and increases the content of active components such as Ca,Si,Mg,and Al.Compared with FNS,the 28 d compressive strength of pastes prepared by FETNS increases by 16.12%,22.57%,33.13%,44.26%,and 57.65%,respectively.The degree of hydration reaction of the composite cementitious systems in the FETNS group is higher than that in the FNS group at different ages,and the content of hydration products such as C-S-H gel and ettringite(AFt)is also higher than that in the FNS group.More hydration products can improve the curing ability to Cr and Mn of the composite cementitious systems in the FETNS group,and reduce the leaching value of Cr and Mn. 展开更多
关键词 ferronickel slag reduction ferrum extraction physical and chemical properties cementitious material
原文传递
Preparation of silver nanoparticles through the reduction of straw-extracted lignin and its antibacterial hydrogel 被引量:1
2
作者 Lou Zhang Shuo Li +4 位作者 Fu Tang Jingkai Zhang Yuetong Kang Hean Zhang Lidong Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期504-514,共11页
Silver nanoparticles(Ag NPs)have attracted attention in the field of biomaterials due to their excellent antibacterial property.However,the reducing and stabilizing agents used for the chemical reduction of Ag NPs are... Silver nanoparticles(Ag NPs)have attracted attention in the field of biomaterials due to their excellent antibacterial property.However,the reducing and stabilizing agents used for the chemical reduction of Ag NPs are usually toxic and may cause water pollution.In this work,Ag NPs(31.2 nm in diameter)were prepared using the extract of straw,an agricultural waste,as the reducing and stabilizing agent.Experimental analysis revealed that the straw extract contained lignin,the structure of which possesses phenolic hydroxyl and methoxy groups that facilitate the reduction of silver salts into Ag NPs.The surfaces of Ag NPs were negatively charged due to the encapsulation of a thin layer of lignin molecules that prevented their aggregation.After the prepared Ag NPs were added to the precursor solution of acrylamide,free radical polymerization was triggered without the need for extra heating or light irradiation,resulting in the rapid formation of an Ag NP-polyacrylamide composite hydrogel.The inhibition zone test proved that the composite hydrogel possessed excellent antibacterial ability due to the presence of Ag NPs.The prepared hydrogel may have potential applications in the fabrication of biomedical materials,such as antibacterial dressings. 展开更多
关键词 silver nanoparticles HYDROGEL STRAW extraction ANTIBACTERIAL
在线阅读 下载PDF
Preferentially selective extraction of lithium from spent LiCoO_(2)cathodes by medium-temperature carbon reduction roasting 被引量:3
3
作者 Daixiang Wei Wei Wang +6 位作者 Longjin Jiang Zhidong Chang Hualei Zhou Bin Dong Dekun Gao Minghui Zhang Chaofan Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期315-322,共8页
Lithium recovery from spent lithium-ion batteries(LIBs)have attracted extensive attention due to the skyrocketing price of lithium.The medium-temperature carbon reduction roasting was proposed to preferential selectiv... Lithium recovery from spent lithium-ion batteries(LIBs)have attracted extensive attention due to the skyrocketing price of lithium.The medium-temperature carbon reduction roasting was proposed to preferential selective extraction of lithium from spent Li-CoO_(2)(LCO)cathodes to overcome the incomplete recovery and loss of lithium during the recycling process.The LCO layered structure was destroyed and lithium was completely converted into water-soluble Li2CO_(3)under a suitable temperature to control the reduced state of the cobalt oxide.The Co metal agglomerates generated during medium-temperature carbon reduction roasting were broken by wet grinding and ultrasonic crushing to release the entrained lithium.The results showed that 99.10%of the whole lithium could be recovered as Li2CO_(3)with a purity of 99.55%.This work provided a new perspective on the preferentially selective extraction of lithium from spent lithium batteries. 展开更多
关键词 spent LiCoO_(2)cathodes medium-temperature carbon reduction lithium extraction priority crystal transformation macro-scopic transport resistance
在线阅读 下载PDF
Chemically bonded BiVO_(4)/Bi_(19)Cl_(3)S_(27) heterojunction with fast hole extraction dynamics for continuous CO_(2) photoreduction 被引量:2
4
作者 Baojing Huang Xinxin Fu +5 位作者 Kai Wang Liang Wang Hualei Zhang Zhongyi Liu Bin Liu Jun Li 《Advanced Powder Materials》 2024年第1期13-21,共9页
Surface charge localization and inferior charge transfer efficiency seriously restrict the supply of reactive hydrogen and the reaction dynamics of CO_(2) photoreduction performance of photocatalysts.Herein,chemically... Surface charge localization and inferior charge transfer efficiency seriously restrict the supply of reactive hydrogen and the reaction dynamics of CO_(2) photoreduction performance of photocatalysts.Herein,chemically bonded BiVO_(4)/Bi_(19)Cl_(3)S_(27)(BVO/BCS)S-scheme heterojunction with a strong internal electric field is designed.Experimental and density function theory calculation results confirm that the elaborated heterojunction accelerates the vectorial migration of photogenerated charges from BiVO_(4) to Bi_(19)Cl_(3)S_(27) via the interfacial chemical bonding interactions(i.e.,Bi-O and Bi-S bonds)between Bi atoms of BVO and S atoms of BCS or Bi atoms of BCS and O atoms of BVO under light irradiation,breaking the interfacial barrier and surface charge localization of Bi_(19)Cl_(3)S_(27),and further decreasing the energy of reactive hydrogen generation,CO_(2) absorption and activation.The separation efficiency of photogenerated carriers is much more efficient than that counterpart individual in BVO/BCS S-scheme heterojunction system.As a result,BVO/BCS heterojunction exhibits a significantly improved continuous photocatalytic performance for CO_(2) reduction and the 24 h CO yield reaches 678.27μmol⋅g^(-1).This work provides an atomic-level insight into charge transfer kinetics and CO_(2) reduction mechanism in S-scheme heterojunction. 展开更多
关键词 extraction dynamics Activated hydrogen Interfacial chemical bonds S-scheme CO_(2)photoreduction
在线阅读 下载PDF
Manganese extraction by reduction-acid leaching from low-grade manganese oxide ores using CaS as reductant 被引量:3
5
作者 李昌新 钟宏 +3 位作者 王帅 薛建荣 武芳芳 张振宇 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第5期1677-1684,共8页
The extraction of manganese from low-grade manganese oxide ores using Ca S derived from Ca SO4 as reductant was investigated. The effects of mass ratio of Ca S to ore, reduction temperature, reduction time, liquid to ... The extraction of manganese from low-grade manganese oxide ores using Ca S derived from Ca SO4 as reductant was investigated. The effects of mass ratio of Ca S to ore, reduction temperature, reduction time, liquid to solid ratio(L/S ratio), stirring speed, leaching temperature, leaching time and H2SO4 concentration on the leaching rates of Mn and Fe during the reduction–acid leaching process were discussed. The leaching rates of 96.47% for Mn and 19.24% for Fe were obtained under the optimized conditions of mass ratio of Ca S to manganese oxide ore 1:6.7, L/S ratio 5:1, stirring speed 300 r/min, reduction temperature of 95 °C for 2.0 h in the reduction process and leaching stirring speed of 200 r/min, H2SO4 concentration of 1.5 mol/L, leaching temperature of 80 °C for 5 min in the leaching process. In addition, this process can be employed in the recovery of manganese from various manganese oxide ores, and Mn leaching rate above 95% is obtained. 展开更多
关键词 MANGANESE manganese oxide ore calcium sulfide reduction LEACHING
在线阅读 下载PDF
Construction of a Maritime Knowledge Graph Using GraphRAG for Entity and Relationship Extraction from Maritime Documents 被引量:1
6
作者 Yi Han Tao Yang +2 位作者 Meng Yuan Pinghua Hu Chen Li 《Journal of Computer and Communications》 2025年第2期68-93,共26页
In the international shipping industry, digital intelligence transformation has become essential, with both governments and enterprises actively working to integrate diverse datasets. The domain of maritime and shippi... In the international shipping industry, digital intelligence transformation has become essential, with both governments and enterprises actively working to integrate diverse datasets. The domain of maritime and shipping is characterized by a vast array of document types, filled with complex, large-scale, and often chaotic knowledge and relationships. Effectively managing these documents is crucial for developing a Large Language Model (LLM) in the maritime domain, enabling practitioners to access and leverage valuable information. A Knowledge Graph (KG) offers a state-of-the-art solution for enhancing knowledge retrieval, providing more accurate responses and enabling context-aware reasoning. This paper presents a framework for utilizing maritime and shipping documents to construct a knowledge graph using GraphRAG, a hybrid tool combining graph-based retrieval and generation capabilities. The extraction of entities and relationships from these documents and the KG construction process are detailed. Furthermore, the KG is integrated with an LLM to develop a Q&A system, demonstrating that the system significantly improves answer accuracy compared to traditional LLMs. Additionally, the KG construction process is up to 50% faster than conventional LLM-based approaches, underscoring the efficiency of our method. This study provides a promising approach to digital intelligence in shipping, advancing knowledge accessibility and decision-making. 展开更多
关键词 Maritime Knowledge Graph GraphRAG Entity and Relationship extraction Document Management
在线阅读 下载PDF
Review on micro-mechanism of forming emulsification during rare earth extraction by acidic extractants 被引量:2
7
作者 Jie Liu Yuxiu Zhao +6 位作者 Zhirong Wang Minghui Jia Wenxiang Xia Guizhi Wu Wenda Guo Ru'an Chi Kun Huang 《Journal of Rare Earths》 2025年第1期9-20,I0001,共13页
Solvent extraction is the main method used to separate and purify rare earth elements.In the process of rare earths extraction,emulsification often generated due to the instability of the aqueous and organic phases or... Solvent extraction is the main method used to separate and purify rare earth elements.In the process of rare earths extraction,emulsification often generated due to the instability of the aqueous and organic phases or improper operating conditions.Once emulsification occurs,it would not only lead to low rare earths recovery efficiency,small product quantities,high production costs and the losing of extractant and rare earth resources,but also result in serious environmental pollution.Therefore,it is very important to study the micro-mechanisms of emulsification and establish new methods to prevent emulsification at the source.In this paper,possible factors resulting in emulsification,such as the compositions and properties of the organic and aqueous phases,the operating conditions of the rare earths extraction are reviewed.The micro-mechanisms of emulsification are summarized basing on the microscopic structures in the bulk phase,aggregations of the extractants at the organic-aqueous interface,spectral characterizations and computational simulations.On this basis,new formation mechanisms are proposed for emulsification.Preliminary explorations are employed to verify the correctness of these new viewpoints.Finally,future directions for studies of the emulsification micro-mechanism are proposed.This study provides a theoretical basis for further understanding the micro-mechanisms of interfacial instability resulting in emulsification in the process of rare earths extraction. 展开更多
关键词 extraction Rare earths EMULSIFICATION Mechanism Interface
原文传递
Numerical simulation of the deformation risk in thin slab continuous casting process with liquid core reduction 被引量:1
8
作者 Zhida Zhang Jize Chen +3 位作者 Cheng Ji Yutang Ma Miaoyong Zhu Wenxue Wang 《International Journal of Minerals,Metallurgy and Materials》 2025年第5期1114-1127,共14页
The application of liquid core reduction(LCR)technology in thin slab continuous casting can refine the internal microstruc-tures of slabs and improve their production efficiency.To avoid crack risks caused by large de... The application of liquid core reduction(LCR)technology in thin slab continuous casting can refine the internal microstruc-tures of slabs and improve their production efficiency.To avoid crack risks caused by large deformation during the LCR process and to minimize the thickness of the slab in bending segments,the maximum theoretical reduction amount and the corresponding reduction scheme for the LCR process must be determined.With SPA-H weathering steel as a specific research steel grade,the distributions of tem-perature and deformation fields of a slab with the LCR process were analyzed using a three-dimensional thermal-mechanical finite ele-ment model.High-temperature tensile tests were designed to determine the critical strain of corner crack propagation and intermediate crack initiation with various strain rates and temperatures,and a prediction model of the critical strain for two typical cracks,combining the effects of strain rate and temperature,was proposed by incorporating the Zener-Hollomon parameter.The crack risks with different LCR schemes were calculated using the crack risk prediction model,and the maximum theoretical reduction amount for the SPA-H slab with a transverse section of 145 mm×1600 mm was 41.8 mm,with corresponding reduction amounts for Segment 0 to Segment 4 of 15.8,7.3,6.5,6.4,and 5.8 mm,respectively. 展开更多
关键词 thin slab continuous casting liquid core reduction three-dimensional thermal-mechanical critical strain crack risk maxim-um theoretical reduction amount
在线阅读 下载PDF
Nitrogen-cycling processes under long-term compound heavy metal(loids)pressure around a gold mine:Stimulation of nitrite reduction 被引量:1
9
作者 Xuesong Hu Xiaoxia Liu +1 位作者 Shuo Zhang Caihong Yu 《Journal of Environmental Sciences》 2025年第1期571-581,共11页
Mining and tailings deposition can cause serious heavy metal(loids)pollution to the surrounding soil environment.Soil microorganisms adapt their metabolism to such conditions,driving alterations in soil function.This ... Mining and tailings deposition can cause serious heavy metal(loids)pollution to the surrounding soil environment.Soil microorganisms adapt their metabolism to such conditions,driving alterations in soil function.This study aims to elucidate the response patterns of nitrogen-cycling microorganisms under long-term heavy metal(loids)exposure.The results showed that the diversity and abundance of nitrogen-cyclingmicroorganisms showed negative feedback to heavy metal(loids)concentrations.Denitrifying microorganisms were shown to be the dominant microorganisms with over 60%of relative abundance and a complex community structure including 27 phyla.Further,the key bacterial species in the denitrification process were calculated using a random forest model,where the top three key species(Pseudomonas stutzei,Sphingobium japonicum and Leifsonia rubra)were found to play a prominent role in nitrite reduction.Functional gene analysis and qPCR revealed that nirK,which is involved in nitrite reduction,significantly accumulated in the most metal-rich soil with the increase of absolute abundance of 63.86%.The experimental results confirmed that the activity of nitrite reductase(Nir)encoded by nirK in the soil was increased at high concentrations of heavy metal(loids).Partial least squares-path model identified three potential modes of nitrite reduction processes being stimulated by heavy metal(loids),the most prominent of which contributed to enhanced nirK abundance and soil Nir activity through positive stimulation of key species.The results provide new insights and preliminary evidence on the stimulation of nitrite reduction processes by heavy metal(loids). 展开更多
关键词 N cycle Nitrite reduction Nitrite reductase METAGENOME Key species
原文传递
Interfacial Pt-N coordination for promoting oxygen reduction reaction 被引量:1
10
作者 Jialin Cai Yizhe Chen +5 位作者 Ruiwen Zhang Cheng Yuan Zeyu Jin Yongting Chen Shiming Zhang Jiujun Zhang 《Chinese Chemical Letters》 2025年第2期481-485,共5页
Nitrogen-doping of carbon support(N-C)for platinum(Pt)nanoparticles to form Pt/N-C catalyst represents an effective strategy to promote the electrocatalysis of cathodic oxygen reduction reaction(ORR)in proton exchange... Nitrogen-doping of carbon support(N-C)for platinum(Pt)nanoparticles to form Pt/N-C catalyst represents an effective strategy to promote the electrocatalysis of cathodic oxygen reduction reaction(ORR)in proton exchange membrane fuel cells.For fundamental understanding,clearly identifying the metalsupport effect on enhancement mechanisms of ORR electrocatalysis is definitely needed.In this work,the impact of Pt-support interaction via interfacial Pt-N coordination on electrocatalytic ORR activity and stability in Pt/N-C catalyst is deeply studied through structural/compositional characterizations,electrochemical measurements and theoretical DFT-calculations/AIMD-simulations.The resulting Pt/N-C catalyst exhibits a superior electrocatalytic performance compared to the commercial Pt/C catalyst in both half-cell and H_(2)-O_(2)fuel cell.Experimental and theoretical results reveal that the interfacial Pt-N coordination enables electron transfer from N-C support to Pt nanoparticles,which can weaken the adsorption strength of oxygen intermediates on Pt surface to improve ORR activity and induce the strong Pt-support interaction to enhance electrochemical stability. 展开更多
关键词 Oxygen reduction reaction N-doped carbon PLATINUM Pt-N Theoretical calculations
原文传递
Understanding amorphous PrO_(x)-based N-doped carbon catalyst as an efficient electrocatalyst for oxygen reduction reaction 被引量:1
11
作者 Xiao Man Ying Chang +2 位作者 Shaohong Guo Meilin Jia Jingchun Jia 《Journal of Rare Earths》 2025年第1期73-80,I0003,共9页
The development of an e fficacious and easily prepared no nprecious metal electrocatalyst is crucial for the oxygen reduction reaction(ORR).This work used a dual template method to prepare the amorphous rare earth-bas... The development of an e fficacious and easily prepared no nprecious metal electrocatalyst is crucial for the oxygen reduction reaction(ORR).This work used a dual template method to prepare the amorphous rare earth-based catalyst PrO_(x)-NC,and optimized the calcination temperature and proportion.The PrO_(x)-NC-900 catalyst has high durability and activity and exhibits superior ORR performance in alkaline electrolytes with an onset potential(E_(0))of 0.96 V and a half-wave potential(E_(1/2))of 0.85 V.The research results indicate that the ORR performance of rare earth oxide composite carbon catalysts can be improved by adjusting oxygen vacancies(Ov).In addition,high specific surface area,N rich defect carbon.increased oxygen vacancies,and the synergistic effect of oxygen vacancies and N-doped carbon interfacial layer play a significant part in the enhancement of ORR.The performance of the zinc air battery assembled with PrO_(x)-NC-900 is significantly improved,and rare earth oxides and carbon frameworks originating from metal organic frameworks(MOFs)contribute to the oxygen electrocatalyst and electron transfer rate of the zinc air battery.This catalyst provides promising information for the development of rare earth metal oxide nanostructures as potential candidate materials for ORR in alkaline media. 展开更多
关键词 Rare earths Metal-organic framework Oxygen reduction reaction Zn-air batteries
原文传递
Radiation reduction modification of sp^(2) carbon-conjugated covalent organic frameworks for enhanced photocatalytic chromium(Ⅵ) removal 被引量:1
12
作者 Shouchao Zhong Yue Wang +6 位作者 Mingshu Xie Yiqian Wu Jiuqiang Li Jing Peng Liyong Yuan Maolin Zhai Weiqun Shi 《Chinese Chemical Letters》 2025年第5期277-282,共6页
A sp^(2) carbon-conjugated covalent organic framework (BDATN) was modified through γ-ray radiation reduction and subsequent acidification with hydrochloric acid to yield a novel functional COF (named rBDATN-HCl) for ... A sp^(2) carbon-conjugated covalent organic framework (BDATN) was modified through γ-ray radiation reduction and subsequent acidification with hydrochloric acid to yield a novel functional COF (named rBDATN-HCl) for Cr(Ⅵ) removal.The morphology and structure of rBDATN-HCl were analyzed and identified by SEM,FTIR,XRD and solid-state13C NMR.It is found that the active functional groups,such as hydroxyl and amide,were introduced into BDATN after radiation reduction and acidification.The prepared rBDATN-HCl demonstrates a photocatalytic reduction removal rate of Cr(Ⅵ) above 99%after 60min of illumination with a solid-liquid ratio of 0.5 mg/mL,showing outstanding performance,which is attributed to the increase of dispersibility and adsorption sites of r BDATN-HCl.In comparison to the cBDATN-HCl synthesized with chemical reduction,rBDATN-HCl exhibits a better photoreduction performance for Cr(Ⅵ),demonstrating the advantages of radiation preparation of rBDATN-HCl.It is expected that more functionalized sp^(2) carbon-conjugated COFs could be obtained by this radiation-induced reduction strategy. 展开更多
关键词 Covalent organic framework Gamma radiation Photocatalytic reduction CHROMIUM Water purification
原文传递
Iron-doping regulated light absorption and active sites in LiTaO_(3) single crystal for photocatalytic nitrogen reduction 被引量:1
13
作者 Zhenfei Tang Yunwu Zhang +10 位作者 Zhiyuan Yang Haifeng Yuan Tong Wu Yue Li Guixiang Zhang Xingzhi Wang Bin Chang Dehui Sun Hong Liu Lili Zhao Weijia Zhou 《Chinese Chemical Letters》 2025年第3期206-211,共6页
In contrast to research on active sites in nanomaterials,lithium tantalate single crystals,known for their exceptional optical properties and long-range ordered lattice structure,present a promising avenue for in-dept... In contrast to research on active sites in nanomaterials,lithium tantalate single crystals,known for their exceptional optical properties and long-range ordered lattice structure,present a promising avenue for in-depth exploration of photocatalytic reaction systems with fewer constraints imposed by surface chemistry.Typically,the isotropy of a specific facet provides a perfect support for studying heteroatom doping.Herein,this work delves into the intrinsic catalytic sites for photocatalytic nitrogen fixation in iron-doped lithium tantalate single crystals.The presence of iron not only modifies the electronic structure of lithium tantalate,improving its light absorption capacity,but also functions as an active site for the nitrogen adsorption and activation.The photocatalytic ammonia production rate of the iron-doped lithium tantalate in pure water is maximum 26.95μg cm^(−2)h^(−1),which is three times higher than that of undoped lithium tantalate.The combination of first-principles simulations with in situ characterizations confirms that iron doping promotes the rate-determining step and changes the pathway of hydrogenation to associative alternating.This study provides a new perspective on in-depth investigation of intrinsic catalytic active sites in photocatalysis and other catalytic processes. 展开更多
关键词 Nitrogen reduction PHOTOCATALYSIS Fe doping Single crystal Lithium tantalate crystal
原文传递
Influence of heavy reduction during solidification process of billets based on 3D reconstruction of dendrites 被引量:1
14
作者 Yi Nian You-cheng Zong +3 位作者 Chao-jie Zhang Xin-yu Tang Jia-le Li Li-qiang Zhang 《Journal of Iron and Steel Research International》 2025年第6期1596-1611,共16页
The impact of heavy reduction on dendritic morphology was explored by combining experimental research and numerical simulation in metallurgy,including a detailed three-dimensional(3D)analysis and reconstruction of den... The impact of heavy reduction on dendritic morphology was explored by combining experimental research and numerical simulation in metallurgy,including a detailed three-dimensional(3D)analysis and reconstruction of dendritic solidification structures.Combining scanning electron microscopy and energy-dispersive scanning analysis and ANSYS simulation,the high-precision image processing software Mimics Research was utilized to conduct the extraction of dendritic morphologies.Reverse engineering software NX Imageware was employed for the 3D reconstruction of two-dimensional dendritic morphologies,restoring the dendritic characteristics in three-dimensional space.The results demonstrate that in a two-dimensional plane,dendrites connect with each other to form irregularly shaped“ring-like”structures.These dendrites have a thickness greater than 0.1 mm along the Z-axis direction,leading to the envelopment of molten steel by dendrites in a 3D space of at least 0.1 mm.This results in obstructed flow,confirming the“bridging”of dendrites in three-dimensional space,resulting in a tendency for central segregation.Dense and dispersed tiny dendrites,under the influence of heat flow direction,interconnect and continuously grow,gradually forming primary and secondary dendrites in three-dimensional space.After the completion of dendritic solidification and growth,these microdendrites appear dense and dispersed on the two-dimensional plane,providing the nuclei for the formation of new dendrites.When reduction occurs at a solid fraction of 0.46,there is a noticeable decrease in dendritic spacing,resulting in improved central segregation. 展开更多
关键词 SOLIDIFICATION Dendritic growth 3D reconstruction Heavy reduction Central segregation
原文传递
In situ construction of Cu(Ⅰ)-Cu(Ⅱ) pairs for efficient electrocatalytic nitrate reduction reaction to ammonia 被引量:1
15
作者 Muyun Zheng Yuchi Wan +7 位作者 Leping Yang Shen Ao Wangyang Fu Zhengjun Zhang Zheng-Hong Huang Tao Ling Feiyu Kang Ruitao Lv 《Journal of Energy Chemistry》 2025年第1期106-113,共8页
Electrocatalytic nitrate reduction reaction (NO_(3)-RR) to ammonia under ambient conditions is expected to be a green process for ammonia synthesis and alleviate water pollution issues.We report a CuO nanoparticles in... Electrocatalytic nitrate reduction reaction (NO_(3)-RR) to ammonia under ambient conditions is expected to be a green process for ammonia synthesis and alleviate water pollution issues.We report a CuO nanoparticles incorporated on nitrogen-doped porous carbon (CuO@NC) catalyst for NO_(3)-RR.Part of Cu(Ⅱ) is reduced to Cu(Ⅰ) during the NO_(3)-RR process to construct Cu(Ⅰ)-Cu(Ⅱ) pairs,confirmed by in situ X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy.Density functional theory (DFT) calculations indicated that the formation of Cu(Ⅰ) could provide a reaction path with smaller energy barrier for NO_(3)-RR,while Cu(Ⅱ) effectively suppressed the competition of hydrogen evolution reaction (HER).As a result,CuO@NC catalyst achieved a Faradaic efficiency of 84.2% at -0.49 V versus reversible hydrogen electrode (RHE),and a NH_(3)yield rate of 17.2 mg h^(-1)mg^(-1)cat.at -0.79 V vs.RHE,higher than the HaberBosch process (<3.4 g h^(-1)g^(-1)cat.).This work may open a new avenue for effective NO_(3)-RR by modulating oxidation states. 展开更多
关键词 Ammonia synthesis Cu oxidation state ELECTROCHEMISTRY Nitrate reduction In situ XPS
在线阅读 下载PDF
Application of a low-cost and high-efficiency polymer non-catalytic reduction technology for NO_(x) removal in waste-to-energy plant 被引量:1
16
作者 Shuai Xiao Congbo Li +4 位作者 Xueyan Zheng Liya Li Jingzhong Si Xiuqi Shu Xianqiong Zeng 《Journal of Environmental Sciences》 2025年第12期112-125,共14页
Ultra-low emission of nitrogen oxide(NO_(x))is an irreversible trend for the development of waste-to-energy industry.But traditional approaches to remove NO_(x) face significant challenge s,such as low denitration eff... Ultra-low emission of nitrogen oxide(NO_(x))is an irreversible trend for the development of waste-to-energy industry.But traditional approaches to remove NO_(x) face significant challenge s,such as low denitration efficiency,complex denitration system,and high investment and operating cost.Here we put forward a novel polymer non-catalytic reduction(PNCR)technology that utilized a new type of polymer agent to remove NO_(x),and the proposed PNCR technology was applied to the existing waste-to-energy plant to test the denitration performance.The PNCR technology demonstrated excellent denitration performance with a NO_(x) emission concentration of<100 mg/Nm^(3) and high denitration efficiency of>75%at the temperature range of 800-900℃,which showed the application feasibility even on the complex and unstable industrial operating conditions.In addition,PNCR and hybrid polymer/selective non-catalytic reduction(PNCR/SNCR)technology possessed remarkable economic advantages including low investment fee and low operating cost of<10 CNY per ton of municipal solid waste(MSW)compared with selective catalytic reduction(SCR)technology.The excellent denitration performance of PNCR technology forebodes a broad industrial application prospect in the field of flue gas cleaning for waste-to-energy plants. 展开更多
关键词 Polymer non-catalytic reduction High denitration efficiency Low operating cost Waste-to-energy plant
原文传递
Biomass-derived single atom catalysts with phosphorus-coordinated Fe-N_(3)P configuration for efficient oxygen reduction reaction 被引量:1
17
作者 Peng-Peng Guo Abrar Qadir +6 位作者 Chao Xu Kun-Zu Yang Yong-Zhi Su Xin Liu Ping-Jie Wei Qinggang He Jin-Gang Liu 《Green Energy & Environment》 2025年第5期1064-1072,共9页
Exploiting non-precious metal catalysts with excellent oxygen reduction reaction(ORR)performance for energy devices is paramount essential for the green and sustainable society development.Herein,low-cost,high-perform... Exploiting non-precious metal catalysts with excellent oxygen reduction reaction(ORR)performance for energy devices is paramount essential for the green and sustainable society development.Herein,low-cost,high-performance biomass-derived ORR catalysts with an asymmetric Fe-N_(3)P configuration was prepared by a simple pyrolysis-etching technique,where carboxymethyl cellulose(CMC)was used as the carbon source,urea and 1,10-phenanthroline iron complex(FePhen)as additives,and Na_(3)PO_(4)as the phosphorus dopant and a pore-forming agent.The CMC-derived FeNPC catalyst displayed a large specific area(BET:1235 m^(2)g^(-1))with atomically dispersed Fe-N_(3)P active sites,which exhibited superior ORR activity and stability in alkaline solution(E_(1/2)=0.90 V vs.RHE)and Zn-air batteries(P_(max)=149 mW cm^(-2))to commercial Pt/C catalyst(E_(1/2)=0.87 V,P_(max)=118 mW cm^(-2))under similar experimental conditions.This work provides a feasible and costeffective route toward highly efficient ORR catalysts and their application to Zn-air batteries for energy conversion. 展开更多
关键词 Oxygen reduction reaction Biomass-derived electrocatalyst Single atom catalyst Phosphorus dopant Zn-air battery
在线阅读 下载PDF
Effects of ultrasonic-assisted extraction on bioactive compounds,volatile flavors and antioxidant activities of vine tea water extracts
18
作者 Xiao-Long Zhou Wei-Jin Jiang +2 位作者 Ji Yu Mao-Jun Yao Yun-Tong Li 《Traditional Medicine Research》 2025年第1期73-81,共9页
Background:Ampelopsis grossedentata,vine tea,which is the tea alternative beverages in China.In vine tea processing,a large amount of broken tea is produced,which has low commercial value.Methods:This study investigat... Background:Ampelopsis grossedentata,vine tea,which is the tea alternative beverages in China.In vine tea processing,a large amount of broken tea is produced,which has low commercial value.Methods:This study investigates the influence of different extraction methods(room temperature water extraction,boiling water extraction,ultrasonic-assisted room temperature water extraction,and ultrasonic-assisted boiling water extraction,referred to as room temperature water extraction(RE),boiling water extraction(BE),ultrasonic assistance at room temperature water extraction(URE),and ultrasonic assistance in boiling water extraction(UBE))on the yield,dihydromyricetin(DMY)content,free amino acid composition,volatile aroma components,and antioxidant properties of vine tea extracts.Results:A notable influence of extraction temperature on the yield of vine tea extracts(P<0.05),with BE yielding the highest at 43.13±0.26%,higher than that of RE(34.29±0.81%).Ultrasound-assisted extraction significantly increased the DMY content of the extracts(P<0.05),whereas DMY content in the RE extracts was 59.94±1.70%,that of URE reached 66.14±2.78%.Analysis revealed 17 amino acids,with L-serine and aspartic acid being the most abundant in the extracts,nevertheless ultrasound-assisted extraction reduced total free amino acid content.Gas chromatography-mass spectrometry analysis demonstrated an increase in the diversity and quantity of compounds in the vine tea water extracts obtained through ultrasonic-assisted extraction.Specifically,69 and 68 volatile compounds were found in URE and UBE extracts,which were higher than the number found in RE and BE extracts.In vitro,antioxidant activity assessments revealed varying antioxidant capacities among different extraction methods,with RE exhibiting the highest DPPH scavenging rate,URE leading in ABTS•+free radical scavenging,and BE demonstrating superior ferric ion reducing antioxidant activity.Conclusion:The findings suggest that extraction methods significantly influence the chemical composition and antioxidant properties of vine tea extracts.Ultrasonic-assisted extraction proved instrumental in elevating the DMY content in vine tea extracts,thereby enriching its flavor profile while maintaining its antioxidant properties. 展开更多
关键词 vine tea DIHYDROMYRICETIN ultrasonic-assisted extraction volatile aroma components
暂未订购
Relative vacuum reduction innovative processes applied in primary magnesium production-Comprehensive analysis of thermodynamics,resource,energy flow,and carbon emission 被引量:1
19
作者 Xiaolong Li Tingan Zhang +3 位作者 Yan Liu Junhua Guo Jingzhong Xu Yuanyuan Liang 《Journal of Magnesium and Alloys》 2025年第7期3134-3149,共16页
Magnesium and magnesium alloys,serving as crucial lightweight structural materials and hydrogen storage elements,find extensive applications in space technology,aviation,automotive,and magnesium-based hydrogen industr... Magnesium and magnesium alloys,serving as crucial lightweight structural materials and hydrogen storage elements,find extensive applications in space technology,aviation,automotive,and magnesium-based hydrogen industries.The global production of primary magnesium has reached approximately 1.2 million tons per year,with anticipated diversification in future applications and significant market demand.Nevertheless,approximately 80%of the world’s primary magnesium is still manufactured through the Pidgeon process,grappling with formidable issues including high energy consumption,massive carbon emission,significant resource depletion,and environmental pollution.The implementation of the relative vacuum method shows potential in breaking through technological challenges in the Pidgeon process,facilitating clean,low-carbon continuous magnesium smelting.This paper begins by introducing the principles of the relative vacuum method.Subsequently,it elucidates various innovative process routes,including relative vacuum ferrosilicon reduction,aluminum thermal reduction co-production of spinel,and aluminum thermal reduction co-production of calcium aluminate.Finally,and thermodynamic foundations of the relative vacuum,a quantitative analysis of the material,energy flows,carbon emission,and production cost for several new processes is conducted,comparing and analyzing them against the Pidgeon process.The study findings reveal that,with identical raw materials,the relative vacuum silicon thermal reduction process significantly decreases raw material consumption,energy consumption,and carbon dioxide emissions by 15.86%,30.89%,and 26.27%,respectively,compared to the Pidgeon process.The relative vacuum process,using magnesite as the raw material and aluminum as the reducing agent,has the lowest magnesium-to-feed ratio,at only 3.385.Additionally,its energy consumption and carbon dioxide emissions are the lowest,at 1.817 tce/t Mg and 7.782 t CO_(2)/t Mg,respectively.The energy consumption and carbon emissions of the relative vacuum magnesium smelting process co-producing calcium aluminate(12CaO·7Al_(2)O_(3),3CaO·Al_(2)O_(3),and CaO·Al_(2)O_(3))are highly correlated with the consumption of dolomite in the raw materials.When the reduction temperature is around 1473.15 K,the critical volume fraction of magnesium vapor for different processes varies within the range of 5%–40%.Production cost analysis shows that the relative vacuum primary magnesium smelting process has significant economic benefits.This paper offers essential data support and theoretical guidance for achieving energy efficiency,carbon reduction in magnesium smelting,and the industrial adoption of innovative processes. 展开更多
关键词 Magnesium smelting Relative vacuum reduction process THERMODYNAMICS Resource and energy flow Carbon emission
在线阅读 下载PDF
Mindfulness-based stress reduction and mental health in department of emergency nurses:A narrative review 被引量:1
20
作者 Rong-Rong Zhou Ling-Long Chen Le-Dan Lin 《World Journal of Psychiatry》 2025年第9期111-117,共7页
Emergency department nurses face severe occupational stress leading to anxiety,depression,and burnout,which significantly impair their well-being and patientcare quality.This narrative review examined the role of mind... Emergency department nurses face severe occupational stress leading to anxiety,depression,and burnout,which significantly impair their well-being and patientcare quality.This narrative review examined the role of mindfulness-based stress reduction(MBSR)in addressing these challenges.Rooted in nonjudgmental present-moment awareness,MBSR enhances emotional regulation and reduces psychological distress by fostering adaptive coping strategies.Studies have demonstrated its efficacy in lowering anxiety,depressive symptoms,and emotional exhaustion,while improving workplace well-being,empathy,and job satisfaction.Mechanistically,MBSR improves interoceptive awareness and autonomic balance,as evidenced by physiological markers such as heart rate variability.However,gaps remain in long-term efficacy assessments,personalized interventions,and integration with multidisciplinary approaches.Future research should prioritize tailored biomarker-driven programs,longitudinal studies,and scalable implementation strategies in high-stress clinical settings.This review underscores MBSR’s potential as a sustainable,evidence-based tool to enhance emergency department nurses’mental health and professional performance,advocating for broader adoption and further refinement of its practical applications. 展开更多
关键词 Job satisfaction Emotional regulation Mental health Occupational stress Mindfulness-based stress reduction Emergency department nurses
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部