期刊文献+
共找到1,084篇文章
< 1 2 55 >
每页显示 20 50 100
Deep Learning-Based Natural Language Processing Model and Optical Character Recognition for Detection of Online Grooming on Social Networking Services
1
作者 Sangmin Kim Byeongcheon Lee +2 位作者 Muazzam Maqsood Jihoon Moon Seungmin Rho 《Computer Modeling in Engineering & Sciences》 2025年第5期2079-2108,共30页
The increased accessibility of social networking services(SNSs)has facilitated communication and information sharing among users.However,it has also heightened concerns about digital safety,particularly for children a... The increased accessibility of social networking services(SNSs)has facilitated communication and information sharing among users.However,it has also heightened concerns about digital safety,particularly for children and adolescents who are increasingly exposed to online grooming crimes.Early and accurate identification of grooming conversations is crucial in preventing long-term harm to victims.However,research on grooming detection in South Korea remains limited,as existing models trained primarily on English text and fail to reflect the unique linguistic features of SNS conversations,leading to inaccurate classifications.To address these issues,this study proposes a novel framework that integrates optical character recognition(OCR)technology with KcELECTRA,a deep learning-based natural language processing(NLP)model that shows excellent performance in processing the colloquial Korean language.In the proposed framework,the KcELECTRA model is fine-tuned by an extensive dataset,including Korean social media conversations,Korean ethical verification data from AI-Hub,and Korean hate speech data from Hug-gingFace,to enable more accurate classification of text extracted from social media conversation images.Experimental results show that the proposed framework achieves an accuracy of 0.953,outperforming existing transformer-based models.Furthermore,OCR technology shows high accuracy in extracting text from images,demonstrating that the proposed framework is effective for online grooming detection.The proposed framework is expected to contribute to the more accurate detection of grooming text and the prevention of grooming-related crimes. 展开更多
关键词 Online grooming KcELECTRA natural language processing optical character recognition social networking service text classification
在线阅读 下载PDF
An exemplification of the Evolving Process by Studying the Chinese Character Mao
2
作者 周吉红 伍光琴 《海外英语》 2013年第21期294-296,共3页
This paper tries to demarcate the evolving process of decategorization into three periods and exemplify it by studying the Chinese character Mao.The exemplification shows the correctness of the demarcation.
关键词 DECATEGORIZATION attributes demarcate Chinese CHAR
在线阅读 下载PDF
A Convolutional Neural Network Based Optical Character Recognition for Purely Handwritten Characters and Digits
3
作者 Syed Atir Raza Muhammad Shoaib Farooq +3 位作者 Uzma Farooq Hanen Karamti Tahir Khurshaid Imran Ashraf 《Computers, Materials & Continua》 2025年第8期3149-3173,共25页
Urdu,a prominent subcontinental language,serves as a versatile means of communication.However,its handwritten expressions present challenges for optical character recognition(OCR).While various OCR techniques have bee... Urdu,a prominent subcontinental language,serves as a versatile means of communication.However,its handwritten expressions present challenges for optical character recognition(OCR).While various OCR techniques have been proposed,most of them focus on recognizing printed Urdu characters and digits.To the best of our knowledge,very little research has focused solely on Urdu pure handwriting recognition,and the results of such proposed methods are often inadequate.In this study,we introduce a novel approach to recognizing Urdu pure handwritten digits and characters using Convolutional Neural Networks(CNN).Our proposed method utilizes convolutional layers to extract important features from input images and classifies them using fully connected layers,enabling efficient and accurate detection of Urdu handwritten digits and characters.We implemented the proposed technique on a large publicly available dataset of Urdu handwritten digits and characters.The findings demonstrate that the CNN model achieves an accuracy of 98.30%and an F1 score of 88.6%,indicating its effectiveness in detecting and classifyingUrdu handwritten digits and characters.These results have far-reaching implications for various applications,including document analysis,text recognition,and language understanding,which have previously been unexplored in the context of Urdu handwriting data.This work lays a solid foundation for future research and development in Urdu language detection and processing,opening up new opportunities for advancement in this field. 展开更多
关键词 Image processing natural language processing handwritten Urdu characters optical character recognition deep learning feature extraction CLASSIFICATION
在线阅读 下载PDF
INFLUENCE OF NON-PROCESS ELEMENTS ON REED PULP'S CHARACTERS DURING OXYGEN DELIGNIFICATION
4
作者 HuiLi YoumingLi +1 位作者 YanjinBi YuZhao 《天津科技大学学报》 CAS 2004年第A02期145-147,共3页
A series of Reed Pulps were prepared in which the level of Non-Process Elements(NPEs), including calcium, manganese,copper,iron were seclectively enriched and depleted, these pulps were then oxygen delignification,and... A series of Reed Pulps were prepared in which the level of Non-Process Elements(NPEs), including calcium, manganese,copper,iron were seclectively enriched and depleted, these pulps were then oxygen delignification,and the pulps were characterized according to kappa number,viscosity,brightness. The results indicated that the enrichment of NPEs have an important effulence on delignification,pulp viscosity and brightness, iron is the most harmful during oxygen delignification but manganese is just like a kind of aid and can enhance brightness and delignification. 展开更多
关键词 氧气 去木质素作用 芦苇纸浆 非加工元素 金属离子
在线阅读 下载PDF
The early Japanese books reorganization by combining image processing and deep learning 被引量:1
5
作者 Bing Lyu Hengyi Li +1 位作者 Ami Tanaka Lin Meng 《CAAI Transactions on Intelligence Technology》 SCIE EI 2022年第4期627-643,共17页
Many early Japanese books record a large amount of information,including historical politics,economics,culture,and so on,which are all valuable legacies.These books are waiting to be reorganized at the moment.However,... Many early Japanese books record a large amount of information,including historical politics,economics,culture,and so on,which are all valuable legacies.These books are waiting to be reorganized at the moment.However,a large amount of the books are described by Kuzushiji,a type of handwriting cursive script that is no longer in use today and only readable by a few experts.Therefore,researchers are trying to detect and recognise the characters from these books through modern techniques.Unfortunately,the characteristics of the Kuzushiji,such as Connect-Separate-characters and Manyvariation,hinder the modern technique assisted re-organisation.Connect-Separatecharacters refer to the case of some characters connecting each other or one character being separated into unconnected parts,which makes character detection hard.Manyvariation is one of the typical characteristics of Kuzushiji,defined as the case that the same character has several variations even if they are written by the same person in the same book at the same time,which increases the difficulty of character recognition.In this sense,this paper aims to construct an early Japanese book reorganisation system by combining image processing and deep learning techniques.The experimentation has been done by testing two early Japanese books.In terms of character detection,the final Recall,Precision and F-value reaches 79.8%,80.3%,and 80.0%,respectively.The deep learning based character recognition accuracy of Top3 reaches 69.52%,and the highest recognition rate reaches 82.57%,which verifies the effectiveness of our proposal. 展开更多
关键词 character recognition deep learning image processing Japanese books reorganization Kuzushiji
在线阅读 下载PDF
Structural recognition of ancient Chinese ideographic characters
6
作者 Li Ning Chen Dan 《仪器仪表学报》 EI CAS CSCD 北大核心 2014年第S2期233-237,共5页
Ancient Chinese characters, typically the ideographic characters on bones and bronze before Shang Dynasty(16th—11th century B.C.), are valuable culture legacy of history. However the recognition of Ancient Chinese ch... Ancient Chinese characters, typically the ideographic characters on bones and bronze before Shang Dynasty(16th—11th century B.C.), are valuable culture legacy of history. However the recognition of Ancient Chinese characters has been the task of paleography experts for long. With the help of modern computer technique, everyone can expect to be able to recognize the characters and understand the ancient inscriptions. This research is aimed to help people recognize and understand those ancient Chinese characters by combining Chinese paleography theory and computer information processing technology. Based on the analysis of ancient character features, a method for structural character recognition is proposed. The important characteristics of strokes and basic components or radicals used in recognition are introduced in detail. A system was implemented based on above method to show the effectiveness of the method. 展开更多
关键词 IDEOGRAPHIC character RECOGNITION STRUCTURAL RECOGNITION Chinese information processing
在线阅读 下载PDF
Retraction Note to:Gray Matter-Based Age Prediction Characterizes Different Regional Patterns
7
作者 Nianming Zuo Tianyu Hu +3 位作者 Hao Liu Jing Sui Yong Liu Tianzi Jiang 《Neuroscience Bulletin》 SCIE CAS CSCD 2023年第6期1037-1037,共1页
The authors have retracted this article.After publication we found an error in the implementation code that resulted in data leakage in the age-prediction model training process.We have redesigned the prediction model... The authors have retracted this article.After publication we found an error in the implementation code that resulted in data leakage in the age-prediction model training process.We have redesigned the prediction model and tested the mode with an extended dataset(around 2000 subjects,in contrast to the 600 subjects in this article). 展开更多
关键词 process. PREDICTION character
原文传递
Orthographic Processing of Developmental Dyslexic Children in China: Evidence from an Event-Related Potential Study
8
作者 Shu-ting TANG Fang-fang LIU +3 位作者 Zeng-chun LI Ke-gao DENG Ran-ran SONG Peng-xiang ZUO 《Current Medical Science》 SCIE CAS 2021年第6期1239-1246,共8页
Objective:This study aimed to explore the orthographic processing of simplified Chinese characters in developmental dyslexic children in Kashgar,Xinjiang,China,and provide a theoretical basis for intervention strategi... Objective:This study aimed to explore the orthographic processing of simplified Chinese characters in developmental dyslexic children in Kashgar,Xinjiang,China,and provide a theoretical basis for intervention strategies for developmental dyslexia in Chinese.Methods:Using event-related potential(ERP)measures,18 developmental dyslexic children and 23 typically developing children performed a character decision task with three types of stimuli:real characters(RCs),pseudocharacters(PCs),and noncharacters(NCs).Results:Behavioral results showed that the control children displayed a faster and higher accurate performance than the dyslexic children across PCs and NCs.ERP data revealed that the RCs and PCs elicited a stronger P200 than the NCs.Compared with the RCs and NCs,children in the control group showed more N400 negatives for PCs.It is worth mentioning that dyslexic children did not show any difference on N400,which reflected the insufficient orthographic processing of dyslexic children in China.Conclusion:These results show that Chinese dyslexic children had orthographic processing defects. 展开更多
关键词 developmental dyslexia orthographic processing radical position simplified Chinese characters event-related potential
在线阅读 下载PDF
Automated Handwriting Recognition and Speech Synthesizer for Indigenous Language Processing
9
作者 Bassam A.Y.Alqaralleh Fahad Aldhaban +1 位作者 Feras Mohammed A-Matarneh Esam A.AlQaralleh 《Computers, Materials & Continua》 SCIE EI 2022年第8期3913-3927,共15页
In recent years,researchers in handwriting recognition analysis relating to indigenous languages have gained significant internet among research communities.The recent developments of artificial intelligence(AI),natur... In recent years,researchers in handwriting recognition analysis relating to indigenous languages have gained significant internet among research communities.The recent developments of artificial intelligence(AI),natural language processing(NLP),and computational linguistics(CL)find useful in the analysis of regional low resource languages.Automatic lexical task participation might be elaborated to various applications in the NLP.It is apparent from the availability of effective machine recognition models and open access handwritten databases.Arabic language is a commonly spoken Semitic language,and it is written with the cursive Arabic alphabet from right to left.Arabic handwritten Character Recognition(HCR)is a crucial process in optical character recognition.In this view,this paper presents effective Computational linguistics with Deep Learning based Handwriting Recognition and Speech Synthesizer(CLDL-THRSS)for Indigenous Language.The presented CLDL-THRSS model involves two stages of operations namely automated handwriting recognition and speech recognition.Firstly,the automated handwriting recognition procedure involves preprocessing,segmentation,feature extraction,and classification.Also,the Capsule Network(CapsNet)based feature extractor is employed for the recognition of handwritten Arabic characters.For optimal hyperparameter tuning,the cuckoo search(CS)optimization technique was included to tune the parameters of the CapsNet method.Besides,deep neural network with hidden Markov model(DNN-HMM)model is employed for the automatic speech synthesizer.To validate the effective performance of the proposed CLDL-THRSS model,a detailed experimental validation process takes place and investigates the outcomes interms of different measures.The experimental outcomes denoted that the CLDL-THRSS technique has demonstrated the compared methods. 展开更多
关键词 Computational linguistics handwriting character recognition natural language processing indigenous language
在线阅读 下载PDF
Handwritten Numeric and Alphabetic Character Recognition and Signature Verification Using Neural Network
10
作者 Md. Hasan Hasnain Nashif Md. Badrul Alam Miah +6 位作者 Ahsan Habib Autish Chandra Moulik Md. Shariful Islam Mohammad Zakareya Arafat Ullah Md. Atiqur Rahman Md. Al Hasan 《Journal of Information Security》 2018年第3期209-224,共16页
Handwritten signature and character recognition has become challenging research topic due to its numerous applications. In this paper, we proposed a system that has three sub-systems. The three subsystems focus on off... Handwritten signature and character recognition has become challenging research topic due to its numerous applications. In this paper, we proposed a system that has three sub-systems. The three subsystems focus on offline recognition of handwritten English alphabetic characters (uppercase and lowercase), numeric characters (0 - 9) and individual signatures respectively. The system includes several stages like image preprocessing, the post-processing, the segmentation, the detection of the required amount of the character and signature, feature extraction and finally Neural Network recognition. At first, the scanned image is filtered after conversion of the scanned image into a gray image. Then image cropping method is applied to detect the signature. Then an accurate recognition is ensured by post-processing the cropped images. MATLAB has been used to design the system. The subsystems are then tested for several samples and the results are found satisfactory at about 97% success rate. The quality of the image plays a vital role as the images of poor or mediocre quality may lead to unsuccessful recognition and verification. 展开更多
关键词 SIGNATURE Handwritten character Image processing FEATURE EXTRACTION NEURAL Network RECOGNITION
在线阅读 下载PDF
Water level recognition based on deep learning and character interpolation strategy for stained water gauge
11
作者 Xiaolong Wang Zhong Li +1 位作者 Yanwei Zhang Guocheng An 《River》 2023年第4期506-517,共12页
Due to the diversity of climate and environment in China,the frequent occurrence of extreme rainfall events has brought great challenges to flood prevention.Water level measurement is one of the important research top... Due to the diversity of climate and environment in China,the frequent occurrence of extreme rainfall events has brought great challenges to flood prevention.Water level measurement is one of the important research topics of flood prevention.Recently,the image‐based water level recognition method has become an important part of water level measurement research due to its advantages in easy installation,low cost,and zero need of manual reading.However,there are two mainly shortcomings of the existing imagebased water level recognition methods:(1)severely affected by light intensity and(2)low accuracy of water level recognition for stained water gauges.To solve these two problems,this paper proposes a water level recognition method in consideration of complex scenarios.This method first uses a semantic segmentation convolutional neural network to extract the water gauge mask,and then uses the YOLOv5 object detection network to extract the letter“E”on the water gauge.Based on the character sequence inspection strategy,the algorithm dynamically compensates for the missed detection of characters of stained water gauges.Through a large number of experiments,the proposed water level measurement method has good robustness in complex scenarios,meeting the needs of flash flood defense. 展开更多
关键词 character sequence inspection image processing semantic segmentation water level recognition YOLOv5
在线阅读 下载PDF
“一致性”与字谜话语的生成
12
作者 徐盛桓 刘倩 《当代修辞学》 北大核心 2025年第5期32-42,共11页
汉语字谜的话语是按“一致性”的方式生成的,又是由作为谜底的“字”的张力造就出来的。谜底同谜面共同构成一个谜语话语共同体,这个共同体是一体两面的,两面相互依存,在一定条件下相互转化:从制谜来说,从谜底到谜面是一个经历从具体到... 汉语字谜的话语是按“一致性”的方式生成的,又是由作为谜底的“字”的张力造就出来的。谜底同谜面共同构成一个谜语话语共同体,这个共同体是一体两面的,两面相互依存,在一定条件下相互转化:从制谜来说,从谜底到谜面是一个经历从具体到抽象又从抽象上升到理性具体的思维过程,它将谜底的“字”所传递出来的信息构成一个逻辑严整的体系;从谜底转变为谜面经历了一个非线性的转换过程。作为谜底的“字”的语言动力学的内外张力,除使谜面有实际的语义内容外,还使它既有观赏性又有“欺骗”性,这个“字”的结构张力,表现出离合、增损、象形、会意、指事等特点,造就了有关的谜面。 展开更多
关键词 字谜 一致性 话语共同体 从具体到抽象/从抽象到具体 张力 非线性转换
原文传递
32个月季品种夏秋季观赏效果综合评价
13
作者 周丹燕 《安徽农学通报》 2025年第4期44-49,共6页
为筛选出在夏秋季观赏效果较好的月季品种,本研究采用层次分析法,从观赏性状(C1)、植株性状(C2)和抗性性状(C3)3个方面对32个月季品种(包括‘伊丽莎白斯图尔特’等19个灌木月季、‘粉冰山’等8个丰花月季和‘甜蜜生活’等5个杂种香水月... 为筛选出在夏秋季观赏效果较好的月季品种,本研究采用层次分析法,从观赏性状(C1)、植株性状(C2)和抗性性状(C3)3个方面对32个月季品种(包括‘伊丽莎白斯图尔特’等19个灌木月季、‘粉冰山’等8个丰花月季和‘甜蜜生活’等5个杂种香水月季)的花色、花径和花香等15个指标进行了综合评价。结果表明,C1的权重最高,为0.527 8;层次总排序分析表明,抗病虫害能力、单株花量和花色是影响月季夏秋季观赏效果的3个关键因素。综合评价将32个月季品种划分为4个等级:Ⅰ级包括‘爱弗的玫瑰’等9个品种,表现出较强的生长适应性和高观赏价值,较适合在园林中推广应用;Ⅱ级包括‘卖花姑娘’月季等12个品种,具有优良的适应性和观赏性,具备一定的推广和应用潜力;Ⅲ级包括‘冰山’等9个品种,观赏性欠佳,但其适应性较强;Ⅳ级包括‘香织装饰’等2个品种,其观赏性和适应性相对较低。研究结果为上海等地区月季品种的选择和园林应用提供参考,有助于提升城市绿化质量和居民的观赏体验。 展开更多
关键词 月季 层次分析法 观赏性状 综合评价 园林推广种植
在线阅读 下载PDF
基于中国生肖文化基因的IP形象智能生成设计方法研究 被引量:5
14
作者 林茂丛 米高峰 《包装工程》 北大核心 2025年第2期238-250,共13页
目的 为实现中国生肖文化遗产的数字化保护与可持续设计创新,提出基于文化基因分析,以Prompt权重计算调控IP形象呈现的智能生成设计方法。方法 结合深度学习技术与文化基因理论,以层次分析法计算生肖IP形象智能生成设计的Prompt权重,并... 目的 为实现中国生肖文化遗产的数字化保护与可持续设计创新,提出基于文化基因分析,以Prompt权重计算调控IP形象呈现的智能生成设计方法。方法 结合深度学习技术与文化基因理论,以层次分析法计算生肖IP形象智能生成设计的Prompt权重,并根据优先级融入Midjourney图像生成过程,通过分组实验进行模糊综合评价检验效果。结果 该方法在智能生成设计中高效、有导向性地调节了生肖IP形象的视觉表征,使其符合文化内涵并具备系列感。结论 在使用智能生成设计工具时,应强调人机协同与专业把控。基于对生肖文化中“主体性”“间体性”与“时代性”基因的分析,创作者能够更精准地对Prompt排序及表述进行优化,以调控生肖IP形象智能生成设计结果,在新时代助力珍贵民俗文化的活态传承、永续发展。 展开更多
关键词 生肖文化基因 IP形象 智能生成设计 Prompt权重计算 层次分析法(AHP)
在线阅读 下载PDF
一种防过切的文字加工刀具半径选择方法
15
作者 王敏娜 廖小平 +1 位作者 马俊燕 鲁娟 《机械设计与制造》 北大核心 2025年第6期356-360,共5页
为了提高文字加工效率和加工质量,提出了防过切的文字加工过程刀具半径选择方法。首先对文字轮廓进行分类,得到数据点凹凸处的最小曲率半径,并对原始轮廓的数据点进行简化。其次对原始轮廓进行偏移,将尖角处的局部自交点进行裁剪。基于... 为了提高文字加工效率和加工质量,提出了防过切的文字加工过程刀具半径选择方法。首先对文字轮廓进行分类,得到数据点凹凸处的最小曲率半径,并对原始轮廓的数据点进行简化。其次对原始轮廓进行偏移,将尖角处的局部自交点进行裁剪。基于文字笔划内部或者笔划与笔划之间的间距,对偏移距离进行累加,找到全局真交点出现时的刀具半径,再利用二分法得到临界的防过切刀具半径,防止文字笔划短缺。仿真与实验结果表明,刀具半径选择方法可以智能选择合适的刀具半径,减少人为选刀的主观性,并为文字的铣削加工提供了有利的理论基础。 展开更多
关键词 文字加工 过切 偏移距离 刀具半径
在线阅读 下载PDF
草莓VPE基因家族的全基因组鉴定与分子特征分析
16
作者 汪欣怡 段可 +2 位作者 杨静 倪迪安 高清华 《应用技术学报》 2025年第1期93-101,共9页
草莓是世界范围内重要的高效特色经济作物,其野生型和栽培种资源的基因组测序均已完成。液泡加工酶(VPE)是一类半胱氨酸蛋白酶,在植物液泡蛋白加工及激活过程中发挥重要作用,会诱发液泡破裂和启动蛋白水解级联介导植物细胞程序性死亡。... 草莓是世界范围内重要的高效特色经济作物,其野生型和栽培种资源的基因组测序均已完成。液泡加工酶(VPE)是一类半胱氨酸蛋白酶,在植物液泡蛋白加工及激活过程中发挥重要作用,会诱发液泡破裂和启动蛋白水解级联介导植物细胞程序性死亡。基于草莓中有关VPE基因家族的相关报道仍鲜见。开展了草莓VPE基因的全基因组鉴定及其分子特征分析,通过系统发育分析,总共鉴定到54个草莓VPE基因,均分布在植物液泡内,结构多样化但都具有保守的Peptidase_C13结构域。另外在栽培草莓中鉴定到野生草莓所没有的顺式作用调控元件,推测栽培草莓的部分VPE基因经过了独自进化。对草莓VPE基因家族分子进行特征分析,发现其在液泡介导的细胞编程性死亡过程中发挥功能,为今后探索草莓VPE蛋白在草莓生长和果实品质调控技术以及逆境响应分子机制奠定基础。 展开更多
关键词 草莓 液泡加工酶(VPE) 全基因组鉴定 分子特征
在线阅读 下载PDF
基于深度学习技术的古彝文字图像搜集与整理方法
17
作者 熊铁妞 邱吉芳 胡建 《智能系统学报》 北大核心 2025年第4期928-935,共8页
古彝文字是中华文化的重要载体之一,但人工搜集、整理大量古彝文字耗时耗力,而且能辨识古彝文字的人已非常稀缺且越来越少,这使得整理工作变得更为困难。对此,本文提出一种基于深度学习技术的古彝文字图像搜集与整理的新思路。在古彝文... 古彝文字是中华文化的重要载体之一,但人工搜集、整理大量古彝文字耗时耗力,而且能辨识古彝文字的人已非常稀缺且越来越少,这使得整理工作变得更为困难。对此,本文提出一种基于深度学习技术的古彝文字图像搜集与整理的新思路。在古彝文字图像搜集方面,通过目标检测模型得到每个古彝文字在彝文古籍图像中的位置,据此在彝文古籍图像中截取出古彝文字图像,实现古彝文字搜集。在古彝文图像整理方面,首先根据规范彝文来源于古彝文的事实,采用规范彝文字体文件自动生成彝文字图像用于构建数据集,并将数据集应用于训练古彝文字图像特征算法,这有效回避了目前因古彝文字数量庞大、异体字众多、整理尚未完成,而尚无古彝文字图像数据集的问题;然后,通过匹配所搜集的古彝文字图像的特征与现已收录的古彝文字图像的特征的相似性,判断所搜集的古彝文字图像是否已被收录,从而整理出未收录的古彝文字图像。实验在多种典型的特征提取算法和相似性计算方式下进行,实验结果验证了方法的有效性。 展开更多
关键词 深度学习 古彝文字 古籍 图像处理 相似度匹配 特征提取 目标检测 数字化
在线阅读 下载PDF
大模型时代的光学文字识别:现状及展望
18
作者 李鸿亮 刘禹良 +3 位作者 廖文辉 黄明鑫 张朔 金连文 《中国图象图形学报》 北大核心 2025年第6期2023-2050,共28页
随着深度学习技术的发展,光学字符识别(optical character recognition,OCR)技术逐步从传统方法转向基于深度神经网络的端到端学习模型,涌现出大量具备高准确率和强泛化能力的OCR大模型。多模态大模型通过融合视觉、语言等多种感知通道... 随着深度学习技术的发展,光学字符识别(optical character recognition,OCR)技术逐步从传统方法转向基于深度神经网络的端到端学习模型,涌现出大量具备高准确率和强泛化能力的OCR大模型。多模态大模型通过融合视觉、语言等多种感知通道,提高了模型在复杂场景下的理解与生成能力,而多任务统一大模型则通过构建通用架构,简化了模型设计,提升了多个OCR任务的处理效率。本文回顾了OCR和多模态学习领域的最新技术进展,重点介绍了OCR大模型在多模态学习和多任务统一模型中的应用与前沿进展。此外,本文还分析了OCR增强的多模态大模型、文档理解多模态大模型和针对特定OCR任务的多模态大模型的现状与挑战,探讨了OCR大模型面临的技术瓶颈和未来发展方向,包括提升分辨率处理能力、改进视觉标记压缩、增强结构化图形符号和复杂版面结构的感知与理解等,展望了其在文档数字化、程序自动化测试和智能教育等方面的广泛应用潜力。 展开更多
关键词 大语言模型(LLM) 多模态大模型(MLLM) 光学字符识别(OCR) 文档处理 文档理解
原文传递
纸笔手写与拼音输入:书写模式对汉字认知加工的影响
19
作者 蔡萍 王骏 《汉语学习》 北大核心 2025年第5期84-93,共10页
本研究基于E-Prime的心理学实验法,从字音和字形加工两个维度去比较手写和拼音输入经验对汉语二语者汉字学习的影响。研究发现,手写和拼音输入经验均有利于汉字的字音加工,但手写经验在汉字韵母加工中更有优势,拼音输入法的模糊音和联... 本研究基于E-Prime的心理学实验法,从字音和字形加工两个维度去比较手写和拼音输入经验对汉语二语者汉字学习的影响。研究发现,手写和拼音输入经验均有利于汉字的字音加工,但手写经验在汉字韵母加工中更有优势,拼音输入法的模糊音和联想记忆功能不利于韵母的学习。手写和拼音输入经验都会促进汉字字形的识记,键入的过程虽然缺乏从正字法到外周动作程序的转换,但可以借助“语音线索”和“选字环节”来强化汉字字形的掌握。总的来说,“手写动作优势”仍然存在于汉字学习中,但我们可以说拼音输入也具备“电写‘选择’优势”,如何融合二者的优势以促进教学效果的最优化是我们需要继续考察的课题。 展开更多
关键词 纸笔手写 拼音输入 汉语二语者 汉字认知加工
原文传递
太湖流域2421号台风“康妮”暴雨洪水特征分析
20
作者 姜悦美 甘月云 刘敏 《中国防汛抗旱》 2025年第11期71-74,共4页
2024年临近入冬,太湖流域受2421号台风“康妮”影响,出现了较强风暴潮,地区河网在初始水位普遍较低的情况下多站出现超警戒超保证水位。基于台风“康妮”期间实测水雨情资料,开展了降雨水位过程及特征分析,结果表明:在“康妮”影响下,... 2024年临近入冬,太湖流域受2421号台风“康妮”影响,出现了较强风暴潮,地区河网在初始水位普遍较低的情况下多站出现超警戒超保证水位。基于台风“康妮”期间实测水雨情资料,开展了降雨水位过程及特征分析,结果表明:在“康妮”影响下,太湖流域累计降雨量大,位列近30 a汛后第3位;暴雨历时短,雨强大;河网水位涨幅大,运河沿途全线超警戒,流域南部、东部7站水位超保证,其中嘉兴站水位涨幅较大,黄浦江干流米市渡站最高潮位位列历史第4位。研究可为汛后水文情报预报和台风防御工作提供参考。 展开更多
关键词 太湖流域 台风“康妮” 暴雨 洪水 过程 特征分析
在线阅读 下载PDF
上一页 1 2 55 下一页 到第
使用帮助 返回顶部