External-cavity birefringence feedback effects of the microchip Nd:YAG laser are presented. When a birefringence element is placed in the external feedback cavity of the laser, two orthogonally polarized laser beams ...External-cavity birefringence feedback effects of the microchip Nd:YAG laser are presented. When a birefringence element is placed in the external feedback cavity of the laser, two orthogonally polarized laser beams with a phase difference are output. The phase difference is twice as large as the phase retardation in the external cavity along the two orthogonal directions. The variable extra-cavity birefringence, caused by rotation of the external-cavity birefringenee element, results in tunable phase difference between the two orthogonally polarized beams. This means that the roll angle information has been translated to phase difference of two output laser beams. A theoretical analysis based on the Fabry-Perot cavity equivalent model and refractive index ellipsoid is presented, which is in good agreement with the experimental results. This phenomenon has potential applications for roll angle measurement.展开更多
We propose a theoretical model to describe external-cavity distributed feedback semiconductor lasers and investigate the impact of the number of external feedback points on linewidth and side-mode suppression ratio th...We propose a theoretical model to describe external-cavity distributed feedback semiconductor lasers and investigate the impact of the number of external feedback points on linewidth and side-mode suppression ratio through numerical simulation. The simulation results demonstrate that the linewidth of external-cavity semiconductor lasers can be reduced by increasing the external cavity length and feedback ratio, and adding more external feedback points can further narrow the linewidth and enhance the side mode suppression ratio. This research provides insight into the external cavity distributed feedback mechanism and can guide the design of high-performance external cavity semiconductor lasers. .展开更多
This study investigates the impact of vegetation-climate feedback on the global land monsoon system during the Last Interglacial(LIG,127000 years BP)and the mid-Holocene(MH,6000 years BP)using the earth system model E...This study investigates the impact of vegetation-climate feedback on the global land monsoon system during the Last Interglacial(LIG,127000 years BP)and the mid-Holocene(MH,6000 years BP)using the earth system model EC-Earth3.Our findings indicate that vegetation changes significantly influence the global monsoon area and precipitation patterns,especially in the North African and Indian monsoon regions.The North African monsoon region experienced the most substantial increase in vegetation during both the LIG and MH,resulting in significant increases in monsoonal precipitation by 9.8%and 6.0%,respectively.The vegetation feedback also intensified the Saharan Heat Low,strengthened monsoonal flows,and enhanced precipitation over the North African monsoon region.In contrast,the Indian monsoon region exhibited divergent responses to vegetation changes.During the LIG,precipitation in the Indian monsoon region decreased by 2.2%,while it increased by 1.6%during the MH.These differences highlight the complex and region-specific impacts of vegetation feedback on monsoon systems.Overall,this study demonstrates that vegetation feedback exerts distinct influences on the global monsoon during the MH and LIG.These findings highlight the importance of considering vegetation-climate feedback in understanding past monsoon variability and in predicting future climate change impacts on monsoon systems.展开更多
A novel scheme for generating optical chaos is proposed and experimentally demonstrated,which supports to simultaneously produce two low-correlation chaotic signals with wideband spectrum and suppressed time-delay-sig...A novel scheme for generating optical chaos is proposed and experimentally demonstrated,which supports to simultaneously produce two low-correlation chaotic signals with wideband spectrum and suppressed time-delay-signature(TDS).In the proposed scheme,we use the output of an external-cavity semiconductor laser(ECSL)as the driving signal of a phase modulator to modulate the output of a CW laser.Then the phase-modulated continuous-wave(CW)light is split into two parts,one is injected back into the ECSL that outputs one chaotic signal,while the other part is passed through a dispersion module for generating another chaotic signal simultaneously.The experimental results prove that the proposed scheme has three merits.Firstly,it can improve the bandwidth of ECSL-based chaos by several times,and simultaneously generate another wideband flat-spectrum chaotic signal.Secondly,the undesired TDS characteristics of the simultaneously-generated chaotic signals can be efficiently suppressed to an indistinguishable level within a wide parameter range,as such the complexities of the chaotic signals are considerably high.Thirdly,the correlation coefficient between these two simultaneously-generated chaotic signals is smaller than 0.1.The proposed scheme provides an attractive solution for parallel multiple chaos generation,and shows great potential for multiple channel chaos communications and multiple random bit generations.展开更多
We demonstrate high-performance broadband tunable external-cavity lasers(ECLs) with the metal-organic chemical vapor deposition(MOCVD) grown In As/In P quantum dots(QDs) structures. Without cavity facet coatings, the ...We demonstrate high-performance broadband tunable external-cavity lasers(ECLs) with the metal-organic chemical vapor deposition(MOCVD) grown In As/In P quantum dots(QDs) structures. Without cavity facet coatings, the 3-d B spectral bandwidth of the Fabry–Perot(FP) laser is approximately 10.8 nm, while the tuning bandwidth of ECLs is 45 nm.Combined with the anti-reflection(AR)/high-reflection(HR) facet coating, a 92 nm bandwidth tuning range has been obtained with the wavelength covering from 1414 nm to 1506 nm. In most of the tuning range, the threshold current density is lower than 1.5 k A/cm2. The maximum output power of 6.5 m W was achieved under a 500 m A injection current.All achievements mentioned above were obtained under continuous-wave(CW) mode at room temperature(RT).展开更多
We report an external cavity quantum cascade laser (EC-QCL) operating near 6.9μm using the Littman Metcalf configuration. The EC-QCL works in a pulsed mode and can be tuned continuously from 1340 to 1640cm^-1 by on...We report an external cavity quantum cascade laser (EC-QCL) operating near 6.9μm using the Littman Metcalf configuration. The EC-QCL works in a pulsed mode and can be tuned continuously from 1340 to 1640cm^-1 by only tilting the tuning mirror. The fine tuning ability of the EC-QCL is demonstrated by measuring the absorption spectrum of water in the ambient air with a lock-in amplifier.展开更多
This paper outlines our studies of bifurcation, quasi-periodic road to chaos and other dynamic characteristics in an external-cavity multi-quantum-well laser with delay optical feedback. The bistable state of the lase...This paper outlines our studies of bifurcation, quasi-periodic road to chaos and other dynamic characteristics in an external-cavity multi-quantum-well laser with delay optical feedback. The bistable state of the laser is predicted by finding theoretically that the gain shifts abruptly between two values due to the feedback. We make a linear stability analysis of the dynamic behavior of the laser. We predict the stability scenario by using the characteristic equation while we make an approximate analysis of the stability of the equilibrium point and discuss the quantitative criteria of bifurcation. We deduce a formula for the relaxation oscillation frequency and prove theoretically that this formula function relates to the loss of carriers transferring between well regime and barrier regime, the feedback level, the delayed time and the other intrinsic parameters. We demonstrate the dynamic distribution and double relaxation oscillation frequency abruptly changing in periodic states and find the multi-frequency characteristic in a chaotic state. We illustrate a road to chaos from a stable state to quasi-periodic states by increasing the feedback level. The effects of the transfers of carriers and the escaping of carriers on dynamic behavior are analyzed, showing that they are contrary to each other via the bifurcation diagram. Also,we show another road to chaos after bifurcation through changing the linewidth enhancement factor, the photon loss rate and the transfer rate of carriers.展开更多
High power optically pumped vertical-external-cavity surface-emitting lasers with front and end pump are re-ported.The gain chip consists of 15 repeats of In0.26GaAs/GaAsP0.02 multiple quantum wells and 30 pairs of Al...High power optically pumped vertical-external-cavity surface-emitting lasers with front and end pump are re-ported.The gain chip consists of 15 repeats of In0.26GaAs/GaAsP0.02 multiple quantum wells and 30 pairs of Alo.2GaAs/Alo.98GaAs distributed Bragg reflectors.The maximum output power of 3 W,optical-to-optical conversion efficiency of 22.4%,and slope efficiency of 29.8%are obtained with 5-℃heatsink temperature under the front pump,while the maximum output power of 1.1 W,optical-to-optical conversion efficiency of 23.2%,and slope efficiency of 30.8%are reached with 5-℃heatsink temperature under the end pump.Influences of thermal effects on the output power of the laser with front and end pump are discussed.展开更多
By using an external-cavity frequency-doubling master oscillator fiber power amplifier (MOPA), a 700 mW continuous-wave single-frequency laser source at 780 nm is produced. It is shown that the frequency doubling ef...By using an external-cavity frequency-doubling master oscillator fiber power amplifier (MOPA), a 700 mW continuous-wave single-frequency laser source at 780 nm is produced. It is shown that the frequency doubling efficiency is improved when the seed diode laser is optically locked to a resonant frequency of a confocal Fabry-Perot (F-P) cavity. This phenomenon can be attributed to the narrowing of the 1.56 μm laser linewidth and explained by our presented theoretical model. The experimental results are found to be in good agreement with the theoretical predictions.展开更多
Dear Editor,This letter addresses the impulse game problem for a general scope of deterministic,multi-player,nonzero-sum differential games wherein all participants adopt impulse controls.Our objective is to formulate...Dear Editor,This letter addresses the impulse game problem for a general scope of deterministic,multi-player,nonzero-sum differential games wherein all participants adopt impulse controls.Our objective is to formulate this impulse game problem with the modified objective function including interaction costs among the players in a discontinuous fashion,and subsequently,to derive a verification theorem for identifying the feedback Nash equilibrium strategy.展开更多
This study constructs a reflective feedback model based on a pedagogical agent(PA)and explores its impact on students’problem-solving ability and cognitive load.A quasi-experimental design was used in the study,with ...This study constructs a reflective feedback model based on a pedagogical agent(PA)and explores its impact on students’problem-solving ability and cognitive load.A quasi-experimental design was used in the study,with 84 students from a middle school selected as the research subjects(44 in the experimental group and 40 in the control group).The experimental group used the reflective feedback model,while the control group used the factual feedback model.The results show that,compared with factual feedback,the reflective feedback model based on the pedagogical agent significantly improves students’problem-solving ability,especially at the action and thinking levels.In addition,this model effectively reduces students’cognitive load,especially in terms of internal and external load.展开更多
The output feedback active disturbance rejection control of a valve-controlled cylinder electro-hydraulic servo system is investigated in this paper.First,a comprehensive nonlinear mathematical model that encompasses ...The output feedback active disturbance rejection control of a valve-controlled cylinder electro-hydraulic servo system is investigated in this paper.First,a comprehensive nonlinear mathematical model that encompasses both matched and mismatched disturbances is formulated.Due to the fact that only position information can be measured,a linear Extended State Observer(ESO)is introduced to estimate unknown states and matched disturbances,while a dedicated disturbance observer is constructed to estimate mismatched disturbances.Different from the traditional observer results,the design of the disturbance observer used in this study is carried out under the constraint of output feedback.Furthermore,an output feedback nonlinear controller is proposed leveraging the aforementioned observers to achieve accurate trajectory tracking.To mitigate the inherent differential explosion problem of the traditional backstepping framework,a finite-time stable command filter is incorporated.Simultaneously,considering transient filtering errors,a set of error compensation signals are designed to counter their negative impact effectively.Theoretical analysis affirms that the proposed control strategy ensures the boundedness of all signals within the closed-loop system.Additionally,under the specific condition of only time-invariant disturbances in the system,the conclusion of asymptotic stability is established.Finally,the algorithm’s efficacy is validated through comparative experiments.展开更多
Written feedback in English writing classes serves as the primary mode of feedback.By comparing direct corrective feedback and indirect corrective feedback in addressing content and form,this paper argues that indirec...Written feedback in English writing classes serves as the primary mode of feedback.By comparing direct corrective feedback and indirect corrective feedback in addressing content and form,this paper argues that indirect corrective feedback better aligns with the needs of English majors.Multiple factors influence the choice of written feedback methods,and teachers should carefully select the most appropriate approach based on student characteristics to maximize the effectiveness of feedback.展开更多
Although substantial research shows the effectiveness of written corrective feedback(WCF)in treating simple grammar structures,more research is still needed to refute Truscott’s claim that WCF may not work on complex...Although substantial research shows the effectiveness of written corrective feedback(WCF)in treating simple grammar structures,more research is still needed to refute Truscott’s claim that WCF may not work on complex grammar structures.Similarly,a previous body of research has shown that the degree of explicitness of feedback moderates the efficacy of WCF.However,most WCF studies have systematically manipulated only direct corrective feedback.The current study was therefore conducted to fill these gaps in the literature.To this end,five intact classes of Functional English were recruited and later randomly assigned to four treatment groups:DCF,DCF+ME,ICF,and ICF+ME,and one control group that received no feedback.All the groups took part in three WCF treatment sessions,during which they wrote two different pieces:a news report and a picture description.Later,only the treatment groups received the WCF.The WCF’s effectiveness was measured by writing tests and grammaticality judgment tasks(GJT).The results demonstrated that WCF helped L2 learners improve their grammatical accuracy of passive voice tenses.The study further showed that the group that received the most explicit type of WCF fared better than the ones that received the least explicit type of WCF.Important pedagogical implications for ESL/EFL teachers are discussed.展开更多
Direct comparison of the difference in biomass between live and sterilized soils may result in deviations in biological plant-soil feedback(B-PSF)due to changes induced by sterilization in bulk soil microorganisms,soi...Direct comparison of the difference in biomass between live and sterilized soils may result in deviations in biological plant-soil feedback(B-PSF)due to changes induced by sterilization in bulk soil microorganisms,soil structure,and nutrient availability.The sterilization-induced deviation(sterilization-effect,SS_(c))to often-used method B-PSF_(ou) was corrected by adding a parallel experiment without conditioning by any plants(B-PSF_(c)).Plant-soil feedback experiments were conducted for two plants with contrasting in root traits and rhizosphere microbial community to test the reliability of the method(Kalidium foliatum and Reaumuria songaric).The specific root length(SRL),root tissue density(RTD)and of R.songarica was higher compared to that of K.foliatum,but the root diameter(RAD)of it was significantly lower than that of K.foliatum.The plasticity of root traits of K.foliatum was stronger than that of R.songarica.The B-PSF_(ou) of K.foliatum was four times negative than B-PSF_(c),whereas there was no statistically significant difference of B-PSF_(ou) and B-PSF_(c) for R.songarica.The correlation between B-PSF_(c) and the relative abundance of pathogens and EcMF was found to be stronger compared to B-PSF_(ou).We proposed method corrects the deviation in B-PSF.The variation of deviation between species may be related to root traits.展开更多
In order to identify the tilt direction of the self-mixing signals under weak feedback regime interfered by noise,a deep learning method is proposed.The one-dimensional U-Net(1D U-Net)neural network can identify the d...In order to identify the tilt direction of the self-mixing signals under weak feedback regime interfered by noise,a deep learning method is proposed.The one-dimensional U-Net(1D U-Net)neural network can identify the direction of the self-mixing fringes accurately and quickly.In the process of measurement,the measurement signal can be normalized and then the neural network can be used to discriminate the direction.Simulation and experimental results show that the proposed method is suitable for self-mixing interference signals with noise in the whole weak feedback regime,and can maintain a high discrimination accuracy for signals interfered by 5 dB large noise.Combined with fringe counting method,accurate and rapid displacement reconstruction can be realized.展开更多
We theoretically investigate a cooling scheme assisted by a quantum well(QW)and coherent feedback within a hybrid optomechanical system.Although the exciton mode in the QW and the mechanical resonator(MR)are initially...We theoretically investigate a cooling scheme assisted by a quantum well(QW)and coherent feedback within a hybrid optomechanical system.Although the exciton mode in the QW and the mechanical resonator(MR)are initially uncoupled,their interaction via the microcavity field leads to an indirect exciton-mode–mechanical-mode coupling.The coherent feedback loop is applied by feeding back a fraction of the output field of the cavity through a controllable beam splitter to the cavity’s input mirror.It is shown that the cooling capability is enhanced by effectively suppressing the Stokes process through coupling with the QW.Furthermore,the effect of the anti-Stokes process is enhanced through the application of the coherent feedback loop.This particular system configuration enables cooling of the mechanical resonator even in the unresolved sideband regime(USR).This study has some important guiding significance in the field of quantum information processing.展开更多
Background Haptic feedback plays a crucial role in virtual reality(VR)interaction,helping to improve the precision of user operation and enhancing the immersion of the user experience.Instrumental haptic feedback in v...Background Haptic feedback plays a crucial role in virtual reality(VR)interaction,helping to improve the precision of user operation and enhancing the immersion of the user experience.Instrumental haptic feedback in virtual environments is primarily realized using grounded force or vibration feedback devices.However,improvements are required in terms of the active space and feedback realism.Methods We propose a lightweight and flexible haptic feedback glove that can haptically render objects in VR environments via kinesthetic and vibration feedback,thereby enabling users to enjoy a rich virtual piano-playing experience.The kinesthetic feedback of the glove relies on a cable-pulling mechanism that rotates the mechanism and pulls the two cables connected to it,thereby changing the amount of force generated to simulate the hardness or softness of the object.Vibration feedback is provided by small vibration motors embedded in the bottom of the fingertips of the glove.We designed a piano-playing scenario in the virtual environment and conducted user tests.The evaluation metrics were clarity,realism,enjoyment,and satisfaction.Results A total of 14 subjects participated in the test,and the results showed that our proposed glove scored significantly higher on the four evaluation metrics than the nofeedback and vibration feedback methods.Conclusions Our proposed glove significantly enhances the user experience when interacting with virtual objects.展开更多
Force feedback bilateral teleoperation represents a pivotal advancement in control technology,finding widespread application in hazardous material transportation,perilous environments,space and deep-sea exploration,an...Force feedback bilateral teleoperation represents a pivotal advancement in control technology,finding widespread application in hazardous material transportation,perilous environments,space and deep-sea exploration,and healthcare domains.This paper traces the evolutionary trajectory of force feedback bilateral teleoperation from its conceptual inception to its current complexity.It elucidates the fundamental principles underpinning interaction forces and tactile exchanges,with a specific emphasis on the crucial role of tactile devices.In this review,a quantitative analysis of force feedback bilateral teleoperation development trends from 2011 to 2024 has been conducted,utilizing published journal article data as the primary source of information.The review accentuates classical control frameworks and algorithms,while also delving into existing research advancements and prospec-tive breakthrough directions.Moreover,it explores specific practical scenarios ranging from intricate surgeries to hazardous environment exploration,underscoring the technology’s potential to revolutionize industries by augmenting human manipulation of remote systems.This underscores the pivotal role of force feedback bilateral teleoperation as a transformative human-machine interface,capable of shaping flexible control strategies and addressing technological bottlenecks.Future research endeavors in force feedback bilateral teleoperation are expected to prioritize the creation of more immersive experiences,overcoming technical hurdles,fortifying human-machine collaboration,and broadening application domains,particularly within the realms of medical intervention and hazardous environments.With the continuous progression of technology,the integration of human intelligence and robotic capabilities is expected to produce more innovations and breakthroughs in the field of automatic control.展开更多
Channel state information(CSI)is essen-tial to unlock the potential of reconfigurable intelli-gent surfaces(RISs)in wireless communication sys-tems.Since massive RIS elements are typically imple-mented without baseban...Channel state information(CSI)is essen-tial to unlock the potential of reconfigurable intelli-gent surfaces(RISs)in wireless communication sys-tems.Since massive RIS elements are typically imple-mented without baseband signal processing capabili-ties,limited CSI feedback is necessary when design-ing the reflection/refraction coefficients of the RIS.In this article,the unique RIS-assisted channel features,such as the RIS position-dependent channel fluctua-tion,the ultra-high dimensional sub-channel matrix,and the structured sparsity,are distilled from recent advances in limited feedback and used as guidelines for designing feedback schemes.We begin by il-lustrating the use cases and the corresponding chal-lenges associated with RIS feedback.We then discuss how to leverage techniques such as channel customiza-tion,structured-sparsity,autoencoders,and others to reduce feedback overhead and complexity when de-vising feedback schemes.Finally,we identify poten-tial research directions by considering the unresolved challenges,the new RIS architecture,and the integra-tion with multi-modal information and artificial intel-ligence.展开更多
基金supported by the National Natural Science Foundation of China (Grant No 50575110)
文摘External-cavity birefringence feedback effects of the microchip Nd:YAG laser are presented. When a birefringence element is placed in the external feedback cavity of the laser, two orthogonally polarized laser beams with a phase difference are output. The phase difference is twice as large as the phase retardation in the external cavity along the two orthogonal directions. The variable extra-cavity birefringence, caused by rotation of the external-cavity birefringenee element, results in tunable phase difference between the two orthogonally polarized beams. This means that the roll angle information has been translated to phase difference of two output laser beams. A theoretical analysis based on the Fabry-Perot cavity equivalent model and refractive index ellipsoid is presented, which is in good agreement with the experimental results. This phenomenon has potential applications for roll angle measurement.
文摘We propose a theoretical model to describe external-cavity distributed feedback semiconductor lasers and investigate the impact of the number of external feedback points on linewidth and side-mode suppression ratio through numerical simulation. The simulation results demonstrate that the linewidth of external-cavity semiconductor lasers can be reduced by increasing the external cavity length and feedback ratio, and adding more external feedback points can further narrow the linewidth and enhance the side mode suppression ratio. This research provides insight into the external cavity distributed feedback mechanism and can guide the design of high-performance external cavity semiconductor lasers. .
基金supported by the Swedish Research Council(Vetenskapsradet,Grant No.202203129)the Project of Youth Science and Technology Fund of Gansu Province(Grant No.24JRRA439)partially funded by the Swedish Research Council(Vetenskapsradet,Grant No.2022-06725)。
文摘This study investigates the impact of vegetation-climate feedback on the global land monsoon system during the Last Interglacial(LIG,127000 years BP)and the mid-Holocene(MH,6000 years BP)using the earth system model EC-Earth3.Our findings indicate that vegetation changes significantly influence the global monsoon area and precipitation patterns,especially in the North African and Indian monsoon regions.The North African monsoon region experienced the most substantial increase in vegetation during both the LIG and MH,resulting in significant increases in monsoonal precipitation by 9.8%and 6.0%,respectively.The vegetation feedback also intensified the Saharan Heat Low,strengthened monsoonal flows,and enhanced precipitation over the North African monsoon region.In contrast,the Indian monsoon region exhibited divergent responses to vegetation changes.During the LIG,precipitation in the Indian monsoon region decreased by 2.2%,while it increased by 1.6%during the MH.These differences highlight the complex and region-specific impacts of vegetation feedback on monsoon systems.Overall,this study demonstrates that vegetation feedback exerts distinct influences on the global monsoon during the MH and LIG.These findings highlight the importance of considering vegetation-climate feedback in understanding past monsoon variability and in predicting future climate change impacts on monsoon systems.
基金This work was supported by the National Natural Science Foundation of China(Grant no.62171087,61671119)the Sichuan Science and Technology Program(Grant no.2021JDJQ0023)the Fundamental Research Funds for the Central Universities(Grant no.ZYGX2019J003).
文摘A novel scheme for generating optical chaos is proposed and experimentally demonstrated,which supports to simultaneously produce two low-correlation chaotic signals with wideband spectrum and suppressed time-delay-signature(TDS).In the proposed scheme,we use the output of an external-cavity semiconductor laser(ECSL)as the driving signal of a phase modulator to modulate the output of a CW laser.Then the phase-modulated continuous-wave(CW)light is split into two parts,one is injected back into the ECSL that outputs one chaotic signal,while the other part is passed through a dispersion module for generating another chaotic signal simultaneously.The experimental results prove that the proposed scheme has three merits.Firstly,it can improve the bandwidth of ECSL-based chaos by several times,and simultaneously generate another wideband flat-spectrum chaotic signal.Secondly,the undesired TDS characteristics of the simultaneously-generated chaotic signals can be efficiently suppressed to an indistinguishable level within a wide parameter range,as such the complexities of the chaotic signals are considerably high.Thirdly,the correlation coefficient between these two simultaneously-generated chaotic signals is smaller than 0.1.The proposed scheme provides an attractive solution for parallel multiple chaos generation,and shows great potential for multiple channel chaos communications and multiple random bit generations.
基金Project supported by the National Natural Science Foundation of China(Grant No.61974141)Tianjin Municipal Science and Technology BureauScience and Technology Innovation Bureau of China-Singapore Tianjin Eco-City。
文摘We demonstrate high-performance broadband tunable external-cavity lasers(ECLs) with the metal-organic chemical vapor deposition(MOCVD) grown In As/In P quantum dots(QDs) structures. Without cavity facet coatings, the 3-d B spectral bandwidth of the Fabry–Perot(FP) laser is approximately 10.8 nm, while the tuning bandwidth of ECLs is 45 nm.Combined with the anti-reflection(AR)/high-reflection(HR) facet coating, a 92 nm bandwidth tuning range has been obtained with the wavelength covering from 1414 nm to 1506 nm. In most of the tuning range, the threshold current density is lower than 1.5 k A/cm2. The maximum output power of 6.5 m W was achieved under a 500 m A injection current.All achievements mentioned above were obtained under continuous-wave(CW) mode at room temperature(RT).
基金Supported by the National Natural Science Foundation of China under Grant Nos 11174098 and 11574107the SelfDetermined Research Funds of Central China Normal University under Grant No CCNU15A02034
文摘We report an external cavity quantum cascade laser (EC-QCL) operating near 6.9μm using the Littman Metcalf configuration. The EC-QCL works in a pulsed mode and can be tuned continuously from 1340 to 1640cm^-1 by only tilting the tuning mirror. The fine tuning ability of the EC-QCL is demonstrated by measuring the absorption spectrum of water in the ambient air with a lock-in amplifier.
文摘This paper outlines our studies of bifurcation, quasi-periodic road to chaos and other dynamic characteristics in an external-cavity multi-quantum-well laser with delay optical feedback. The bistable state of the laser is predicted by finding theoretically that the gain shifts abruptly between two values due to the feedback. We make a linear stability analysis of the dynamic behavior of the laser. We predict the stability scenario by using the characteristic equation while we make an approximate analysis of the stability of the equilibrium point and discuss the quantitative criteria of bifurcation. We deduce a formula for the relaxation oscillation frequency and prove theoretically that this formula function relates to the loss of carriers transferring between well regime and barrier regime, the feedback level, the delayed time and the other intrinsic parameters. We demonstrate the dynamic distribution and double relaxation oscillation frequency abruptly changing in periodic states and find the multi-frequency characteristic in a chaotic state. We illustrate a road to chaos from a stable state to quasi-periodic states by increasing the feedback level. The effects of the transfers of carriers and the escaping of carriers on dynamic behavior are analyzed, showing that they are contrary to each other via the bifurcation diagram. Also,we show another road to chaos after bifurcation through changing the linewidth enhancement factor, the photon loss rate and the transfer rate of carriers.
基金Project supported by the Chongqing Research Program of Basic Research and Frontier Technology(Grant No.cstc2015jcyj BX0098)the National Natural Science Foundation of China(Grant No.61575011)the Foundation for the Creative Research Groups of Higher Education of Chongqing(Grant No.CXTDX201601016)
文摘High power optically pumped vertical-external-cavity surface-emitting lasers with front and end pump are re-ported.The gain chip consists of 15 repeats of In0.26GaAs/GaAsP0.02 multiple quantum wells and 30 pairs of Alo.2GaAs/Alo.98GaAs distributed Bragg reflectors.The maximum output power of 3 W,optical-to-optical conversion efficiency of 22.4%,and slope efficiency of 29.8%are obtained with 5-℃heatsink temperature under the front pump,while the maximum output power of 1.1 W,optical-to-optical conversion efficiency of 23.2%,and slope efficiency of 30.8%are reached with 5-℃heatsink temperature under the end pump.Influences of thermal effects on the output power of the laser with front and end pump are discussed.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60527003,60608011 and 60878003)the State Key Program for Basic Research of China (Grant No 2007CB316501)
文摘By using an external-cavity frequency-doubling master oscillator fiber power amplifier (MOPA), a 700 mW continuous-wave single-frequency laser source at 780 nm is produced. It is shown that the frequency doubling efficiency is improved when the seed diode laser is optically locked to a resonant frequency of a confocal Fabry-Perot (F-P) cavity. This phenomenon can be attributed to the narrowing of the 1.56 μm laser linewidth and explained by our presented theoretical model. The experimental results are found to be in good agreement with the theoretical predictions.
基金supported in part by the National Natural Science Foundation of China(62173051)the Fundamental Research Funds for the Central Universities(2024CDJCGJ012,2023CDJXY-010)+1 种基金the Chongqing Technology Innovation and Application Development Special Key Project(CSTB2022TIADCUX0015,CSTB2022TIAD-KPX0162)the China Postdoctoral Science Foundation(2024M763865)
文摘Dear Editor,This letter addresses the impulse game problem for a general scope of deterministic,multi-player,nonzero-sum differential games wherein all participants adopt impulse controls.Our objective is to formulate this impulse game problem with the modified objective function including interaction costs among the players in a discontinuous fashion,and subsequently,to derive a verification theorem for identifying the feedback Nash equilibrium strategy.
基金023 Zhejiang Provincial Department of Education General Project:Research on an interdisciplinary teaching model to promote the development of computational thinking in the context of the new curriculum standards[Grant NO:Y202351596]Key Project of Zhejiang Provincial Education Science Planning:Research on an interdisciplinary teaching model to promote students’computational thinking from multiple analytical perspectives[Grant NO:2025SB103].
文摘This study constructs a reflective feedback model based on a pedagogical agent(PA)and explores its impact on students’problem-solving ability and cognitive load.A quasi-experimental design was used in the study,with 84 students from a middle school selected as the research subjects(44 in the experimental group and 40 in the control group).The experimental group used the reflective feedback model,while the control group used the factual feedback model.The results show that,compared with factual feedback,the reflective feedback model based on the pedagogical agent significantly improves students’problem-solving ability,especially at the action and thinking levels.In addition,this model effectively reduces students’cognitive load,especially in terms of internal and external load.
基金supported by the National Key R&D Program of China(No.2021YFB2011300)the Special Funds Project for the Transformation of Scientific and Technological Achievements of Jiangsu Province,China(No.BA2023039)+1 种基金the National Natural Science Foundation of China(No.52075262)the Fundamental Research Funds for the Central Universities,China(No.30922010706).
文摘The output feedback active disturbance rejection control of a valve-controlled cylinder electro-hydraulic servo system is investigated in this paper.First,a comprehensive nonlinear mathematical model that encompasses both matched and mismatched disturbances is formulated.Due to the fact that only position information can be measured,a linear Extended State Observer(ESO)is introduced to estimate unknown states and matched disturbances,while a dedicated disturbance observer is constructed to estimate mismatched disturbances.Different from the traditional observer results,the design of the disturbance observer used in this study is carried out under the constraint of output feedback.Furthermore,an output feedback nonlinear controller is proposed leveraging the aforementioned observers to achieve accurate trajectory tracking.To mitigate the inherent differential explosion problem of the traditional backstepping framework,a finite-time stable command filter is incorporated.Simultaneously,considering transient filtering errors,a set of error compensation signals are designed to counter their negative impact effectively.Theoretical analysis affirms that the proposed control strategy ensures the boundedness of all signals within the closed-loop system.Additionally,under the specific condition of only time-invariant disturbances in the system,the conclusion of asymptotic stability is established.Finally,the algorithm’s efficacy is validated through comparative experiments.
文摘Written feedback in English writing classes serves as the primary mode of feedback.By comparing direct corrective feedback and indirect corrective feedback in addressing content and form,this paper argues that indirect corrective feedback better aligns with the needs of English majors.Multiple factors influence the choice of written feedback methods,and teachers should carefully select the most appropriate approach based on student characteristics to maximize the effectiveness of feedback.
文摘Although substantial research shows the effectiveness of written corrective feedback(WCF)in treating simple grammar structures,more research is still needed to refute Truscott’s claim that WCF may not work on complex grammar structures.Similarly,a previous body of research has shown that the degree of explicitness of feedback moderates the efficacy of WCF.However,most WCF studies have systematically manipulated only direct corrective feedback.The current study was therefore conducted to fill these gaps in the literature.To this end,five intact classes of Functional English were recruited and later randomly assigned to four treatment groups:DCF,DCF+ME,ICF,and ICF+ME,and one control group that received no feedback.All the groups took part in three WCF treatment sessions,during which they wrote two different pieces:a news report and a picture description.Later,only the treatment groups received the WCF.The WCF’s effectiveness was measured by writing tests and grammaticality judgment tasks(GJT).The results demonstrated that WCF helped L2 learners improve their grammatical accuracy of passive voice tenses.The study further showed that the group that received the most explicit type of WCF fared better than the ones that received the least explicit type of WCF.Important pedagogical implications for ESL/EFL teachers are discussed.
基金supported by Gansu Province Science and Technology Project(Grant No.21JR7RA070)the Natural Science Foundation of Gansu Province,China(Grant No.22JR5RA051)the Central Government Guides Local Funds Project for Science and Technology Development(Grant No.23ZYQHO_(2)98).
文摘Direct comparison of the difference in biomass between live and sterilized soils may result in deviations in biological plant-soil feedback(B-PSF)due to changes induced by sterilization in bulk soil microorganisms,soil structure,and nutrient availability.The sterilization-induced deviation(sterilization-effect,SS_(c))to often-used method B-PSF_(ou) was corrected by adding a parallel experiment without conditioning by any plants(B-PSF_(c)).Plant-soil feedback experiments were conducted for two plants with contrasting in root traits and rhizosphere microbial community to test the reliability of the method(Kalidium foliatum and Reaumuria songaric).The specific root length(SRL),root tissue density(RTD)and of R.songarica was higher compared to that of K.foliatum,but the root diameter(RAD)of it was significantly lower than that of K.foliatum.The plasticity of root traits of K.foliatum was stronger than that of R.songarica.The B-PSF_(ou) of K.foliatum was four times negative than B-PSF_(c),whereas there was no statistically significant difference of B-PSF_(ou) and B-PSF_(c) for R.songarica.The correlation between B-PSF_(c) and the relative abundance of pathogens and EcMF was found to be stronger compared to B-PSF_(ou).We proposed method corrects the deviation in B-PSF.The variation of deviation between species may be related to root traits.
文摘In order to identify the tilt direction of the self-mixing signals under weak feedback regime interfered by noise,a deep learning method is proposed.The one-dimensional U-Net(1D U-Net)neural network can identify the direction of the self-mixing fringes accurately and quickly.In the process of measurement,the measurement signal can be normalized and then the neural network can be used to discriminate the direction.Simulation and experimental results show that the proposed method is suitable for self-mixing interference signals with noise in the whole weak feedback regime,and can maintain a high discrimination accuracy for signals interfered by 5 dB large noise.Combined with fringe counting method,accurate and rapid displacement reconstruction can be realized.
基金supported by the National Natural Science Foundation of China(Grant Nos.62061028 and 62461035)the Key Project of Natural Science Foundation of Jiangxi Province(Grant No.20232ACB202003)+2 种基金the Finance Science and Technology Special“contract system”Project of Nanchang University Jiangxi Province(Grant No.ZBG20230418015)the Natural Science Foundation of Chongqing(Grant No.CSTB2024NSCQ-MSX0412)the Opening Project of Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology(Grant No.ammt2021A-4).
文摘We theoretically investigate a cooling scheme assisted by a quantum well(QW)and coherent feedback within a hybrid optomechanical system.Although the exciton mode in the QW and the mechanical resonator(MR)are initially uncoupled,their interaction via the microcavity field leads to an indirect exciton-mode–mechanical-mode coupling.The coherent feedback loop is applied by feeding back a fraction of the output field of the cavity through a controllable beam splitter to the cavity’s input mirror.It is shown that the cooling capability is enhanced by effectively suppressing the Stokes process through coupling with the QW.Furthermore,the effect of the anti-Stokes process is enhanced through the application of the coherent feedback loop.This particular system configuration enables cooling of the mechanical resonator even in the unresolved sideband regime(USR).This study has some important guiding significance in the field of quantum information processing.
基金Supported by the Natienal Natural Science Foundation of China(U23A20287).
文摘Background Haptic feedback plays a crucial role in virtual reality(VR)interaction,helping to improve the precision of user operation and enhancing the immersion of the user experience.Instrumental haptic feedback in virtual environments is primarily realized using grounded force or vibration feedback devices.However,improvements are required in terms of the active space and feedback realism.Methods We propose a lightweight and flexible haptic feedback glove that can haptically render objects in VR environments via kinesthetic and vibration feedback,thereby enabling users to enjoy a rich virtual piano-playing experience.The kinesthetic feedback of the glove relies on a cable-pulling mechanism that rotates the mechanism and pulls the two cables connected to it,thereby changing the amount of force generated to simulate the hardness or softness of the object.Vibration feedback is provided by small vibration motors embedded in the bottom of the fingertips of the glove.We designed a piano-playing scenario in the virtual environment and conducted user tests.The evaluation metrics were clarity,realism,enjoyment,and satisfaction.Results A total of 14 subjects participated in the test,and the results showed that our proposed glove scored significantly higher on the four evaluation metrics than the nofeedback and vibration feedback methods.Conclusions Our proposed glove significantly enhances the user experience when interacting with virtual objects.
基金supported by the MSIT(Ministry of Science and ICT),Republic of Korea,under the Convergence Security Core Talent Training Business Support Program(IITP-2024-RS-2024-00423071)supervised by the IITP(Institute of Information&Communications Technology Planning&Evaluation)supported by Sichuan Science and Technology Program(2023YFSY0026,2023YFH0004).
文摘Force feedback bilateral teleoperation represents a pivotal advancement in control technology,finding widespread application in hazardous material transportation,perilous environments,space and deep-sea exploration,and healthcare domains.This paper traces the evolutionary trajectory of force feedback bilateral teleoperation from its conceptual inception to its current complexity.It elucidates the fundamental principles underpinning interaction forces and tactile exchanges,with a specific emphasis on the crucial role of tactile devices.In this review,a quantitative analysis of force feedback bilateral teleoperation development trends from 2011 to 2024 has been conducted,utilizing published journal article data as the primary source of information.The review accentuates classical control frameworks and algorithms,while also delving into existing research advancements and prospec-tive breakthrough directions.Moreover,it explores specific practical scenarios ranging from intricate surgeries to hazardous environment exploration,underscoring the technology’s potential to revolutionize industries by augmenting human manipulation of remote systems.This underscores the pivotal role of force feedback bilateral teleoperation as a transformative human-machine interface,capable of shaping flexible control strategies and addressing technological bottlenecks.Future research endeavors in force feedback bilateral teleoperation are expected to prioritize the creation of more immersive experiences,overcoming technical hurdles,fortifying human-machine collaboration,and broadening application domains,particularly within the realms of medical intervention and hazardous environments.With the continuous progression of technology,the integration of human intelligence and robotic capabilities is expected to produce more innovations and breakthroughs in the field of automatic control.
基金supported in part by the Key Technologies Research and Development Program of Jiangsu(Prospective and Key Technologies for Industry)under Grant BE2023022 and BE2023022-1in part by National Natural Science Foundation of China(NSFC)under Grant 62401137,62401640,and 62231009+3 种基金in part by the Natural Science Foundation of Jiangsu Province under Grant BK20241281in part by the China National Postdoctoral Program for Innovative Talents under Grant BX20230065 and 2024M750421in part by the Jiangsu Excellent Postdoctoral Program under Grant 2023ZB476in part by the Guangdong Basic and Applied Basic Research Foundation under Grant 2023A1515110732.
文摘Channel state information(CSI)is essen-tial to unlock the potential of reconfigurable intelli-gent surfaces(RISs)in wireless communication sys-tems.Since massive RIS elements are typically imple-mented without baseband signal processing capabili-ties,limited CSI feedback is necessary when design-ing the reflection/refraction coefficients of the RIS.In this article,the unique RIS-assisted channel features,such as the RIS position-dependent channel fluctua-tion,the ultra-high dimensional sub-channel matrix,and the structured sparsity,are distilled from recent advances in limited feedback and used as guidelines for designing feedback schemes.We begin by il-lustrating the use cases and the corresponding chal-lenges associated with RIS feedback.We then discuss how to leverage techniques such as channel customiza-tion,structured-sparsity,autoencoders,and others to reduce feedback overhead and complexity when de-vising feedback schemes.Finally,we identify poten-tial research directions by considering the unresolved challenges,the new RIS architecture,and the integra-tion with multi-modal information and artificial intel-ligence.