As an evaluation index,the natural frequency has the advantages of easy acquisition and quantitative evaluation.In this paper,the natural frequency is used to evaluate the performance of external cable reinforced brid...As an evaluation index,the natural frequency has the advantages of easy acquisition and quantitative evaluation.In this paper,the natural frequency is used to evaluate the performance of external cable reinforced bridges.Numerical examples show that compared with the natural frequencies of first-order modes,the natural frequencies of higher-order modes are more sensitive and can reflect the damage situation and external cable reinforcement effect of T-beam bridges.For damaged bridges,as the damage to the T-beam increases,the natural frequency value of the bridge gradually decreases.When the degree of local damage to the beam reaches 60%,the amplitude of natural frequency change exceeds 10%for the first time.The natural frequencies of the firstorder vibration mode and higher-order vibration mode can be selected as indexes for different degrees of the damaged T-beam bridges.For damaged bridges reinforced with external cables,the traditional natural frequency of the first-order vibration mode cannot be used as the index,which is insensitive to changes in prestress of the external cable.Some natural frequencies of higher-order vibration modes can be selected as indexes,which can reflect the reinforcement effect of externally prestressed damaged T-beam bridges,and its numerical value increases with the increase of external prestressed cable force.展开更多
基金supported by Henan Province Science and Technology Research Funding Project(No.222102320129)the Key Research Project of Henan Higher Education Institutions(Grant Nos.22A560004,22A56005).
文摘As an evaluation index,the natural frequency has the advantages of easy acquisition and quantitative evaluation.In this paper,the natural frequency is used to evaluate the performance of external cable reinforced bridges.Numerical examples show that compared with the natural frequencies of first-order modes,the natural frequencies of higher-order modes are more sensitive and can reflect the damage situation and external cable reinforcement effect of T-beam bridges.For damaged bridges,as the damage to the T-beam increases,the natural frequency value of the bridge gradually decreases.When the degree of local damage to the beam reaches 60%,the amplitude of natural frequency change exceeds 10%for the first time.The natural frequencies of the firstorder vibration mode and higher-order vibration mode can be selected as indexes for different degrees of the damaged T-beam bridges.For damaged bridges reinforced with external cables,the traditional natural frequency of the first-order vibration mode cannot be used as the index,which is insensitive to changes in prestress of the external cable.Some natural frequencies of higher-order vibration modes can be selected as indexes,which can reflect the reinforcement effect of externally prestressed damaged T-beam bridges,and its numerical value increases with the increase of external prestressed cable force.