The authors previous study reported the important role of extratropical intraseasonal oscillation(ISO)on the occurrence of a typical heatwave event over the Yangtze River Valley.Based on the ECMWF subseasonal reforeca...The authors previous study reported the important role of extratropical intraseasonal oscillation(ISO)on the occurrence of a typical heatwave event over the Yangtze River Valley.Based on the ECMWF subseasonal reforecast database,this follow-up study evaluates the extended-range prediction skill of the heatwave event and further unravels the close link between the ISO and extended-range prediction of the event.With a two-week lead time,this heatwave event fails to occur in the reforecast because the predicted surface temperature is signi cantly underesti-mated.More detailed analysis demonstrates that the biases for both the intensity and the location of the warming region are primarily attributable to the inaccurate extratropical intrasea-sonal traveling signals.This work strongly indicates that accurately capturing the extratropical intraseasonal signal from the Eurasian continent is indispensable for extended-range prediction of East Asian extreme heatwave events.展开更多
We examined the characteristic feature and predictability of low frequency variability (LFV) of the atmosphere in the Northern Hemisphere winter (January and February) by using the empirical orthogonal functions (EOFs...We examined the characteristic feature and predictability of low frequency variability (LFV) of the atmosphere in the Northern Hemisphere winter (January and February) by using the empirical orthogonal functions (EOFs) of the geopotential height at 500 hPa. In the discussion, we used the EOFs for geostrophic zonal wind (Uznl) and the height deviation from the zonal mean (Zeddy). The set of EOFs for Uznl and Zeddy was denoted as Uznl-1, Uznl-2, ..., Zeddy-1, Zeddy-2, ..., respectively. We used the data samples of 396 pentads derived from 33 years of NMC, ECMWF and JMA analyses, from January 1963 to 1995. From the calculated scores for Uznl-1, Uznl-2, Zeddy-1, Zeddy-2 and so on we found that Uznl-1 and Zeddy-1 were statistically stable and their scores were more persistent than those of the other EOFs. A close relationship existed between the scores of Uznl-1 and those of Zeddy-1. 30-day forecast experiments were carried out with the medium resolution version of JMA global spectral model for 20 cases in January and February for the period of 1984-1992. Results showed that Zeddy-1 was more predictable than the other EOFs for Zeddy. Considering these results, we argued that prediction of the Zeddy-1 was to be one of the main target of extended-range forecasting.展开更多
Utilizing the Community Atmosphere Model,version 4,the influence of Arctic sea-ice concentration(SIC)on the extended-range prediction of three simulated cold events(CEs)in East Asia is investigated.Numerical results s...Utilizing the Community Atmosphere Model,version 4,the influence of Arctic sea-ice concentration(SIC)on the extended-range prediction of three simulated cold events(CEs)in East Asia is investigated.Numerical results show that the Arctic SIC is crucial for the extended-range prediction of CEs in East Asia.The conditional nonlinear optimal perturbation approach is adopted to identify the optimal Arctic SIC perturbations with the largest influence on CE prediction on the extended-range time scale.It shows that the optimal SIC perturbations are more inclined to weaken the CEs and cause large prediction errors in the fourth pentad,as compared with random SIC perturbations under the same constraint.Further diagnosis reveals that the optimal SIC perturbations first modulate the local temperature through the diabatic process,and then influence the remote temperature by horizontal advection and vertical convection terms.Consequently,the optimal SIC perturbations trigger a warming center in East Asia through the propagation of Rossby wave trains,leading to the largest prediction uncertainty of the CEs in the fourth pentad.These results may provide scientific support for targeted observation of Arctic SIC to improve the extended-range CE prediction skill.展开更多
In this paper,a dual deep Q-network(DDQN)energy management model based on long-short memory neural network(LSTM)speed prediction is proposed under the model predictive control(MPC)framework.The initial learning rate a...In this paper,a dual deep Q-network(DDQN)energy management model based on long-short memory neural network(LSTM)speed prediction is proposed under the model predictive control(MPC)framework.The initial learning rate and neuron dropout probability of the LSTM speed prediction model are optimized by the genetic algorithm(GA).The prediction results show that the root-mean-square error of the GA-LSTM speed prediction method is smaller than the SVR method in different speed prediction horizons.The predicted demand power,the state of charge(SOC),and the demand power at the current moment are used as the state input of the agent,and the real-time control of the control strategy is realized by the MPC method.The simulation results show that the proposed control strategy reduces the equivalent fuel consumption by 0.0354 kg compared with DDQN,0.8439 kg compared with ECMS,and 0.742 kg compared with the power-following control strategy.The difference between the proposed control strategy and the dynamic planning control strategy is only 0.0048 kg,0.193%,while the SOC of the power battery remains stable.Finally,the hardware-in-the-loop simulation verifies that the proposed control strategy has good real-time performance.展开更多
Although extended-range forecasting has exceeded the limit of daily predictability of weather,there are still partially predictable characteristics of meteorological fields in such forecasts.A targeted forecast scheme...Although extended-range forecasting has exceeded the limit of daily predictability of weather,there are still partially predictable characteristics of meteorological fields in such forecasts.A targeted forecast scheme and strategy for extended-range predictable components is proposed.Based on chaotic characteristics of the atmosphere,predictable components and unpredictable random components are separated by using the standpoint of error growth in a numerical model.The predictable components are defined as those with slow error growth at a given range,which are not sensitive to small errors in initial conditions. A numerical model for predictable components(NMPC)is established,by filtering random components with poor predictability.The aim is to maintain predictable components and avoid the influence of rapidly growing forecast errors on small scales. Meanwhile,the analogue-dynamical approach(ADA)is used to correct forecast errors of predictable components,to decrease model error and statistically take into account the influence of random components.The scheme is applied to operational dynamical extended-range forecast(DERF)model of the National Climate Center of China Meteorological Administration (NCC/CMA).Prediction results show that the scheme can improve forecast skill of predictable components to some extent, especially in high predictability regions.Forecast skill at zonal wave zero is improved more than for ultra-long waves and synoptic-scale waves.Results show good agreement with predictability of spatial scale.As a result,the scheme can reduce forecast errors and improve forecast skill,which favors operational use.展开更多
This paper refers to the CNOP-related algorithms and formulates the practical method and forecast techniques of extracting predictable components in a numerical model for predictable components on extended-range scale...This paper refers to the CNOP-related algorithms and formulates the practical method and forecast techniques of extracting predictable components in a numerical model for predictable components on extended-range scales.Model variables are divided into predictable components and unpredictable chaotic components from the angle of model prediction error growth.The predictable components are defined as those with a slow error growth at a given range.A targeted numerical model for predictable components is established based on the operational dynamical extended-range forecast(DERF)model of the National Climate Center.At the same time,useful information in historical data are combined to find the fields for predictable components in the numerical model that are similar to those for the predictable components in historical data,reducing the variable dimensions in a similar judgment process and further correcting prediction errors of predictable components.Historical data is used to obtain the expected value and variance of the chaotic components through the ensemble forecast method.The numerical experiment results show that this method can effectively improve the forecast skill of the atmospheric circulation field in the 10–30 days extended-range numerical model and has good prospects for operational applications.展开更多
A continuous overcast-rainy weather(CORW) process occurred over the mid-lower reaches of the Yangtze River(MLRYR) in China from February 14 to March 9 in 2009,with a large stretch and long duration that was rarely see...A continuous overcast-rainy weather(CORW) process occurred over the mid-lower reaches of the Yangtze River(MLRYR) in China from February 14 to March 9 in 2009,with a large stretch and long duration that was rarely seen in historical records.Using the empirical orthogonal function(EOF),we analyzed the geopotential height anomaly field of the NCEP-DOE Reanalysis II in the same period,and defined the stable components of extended-range(10-30 days) weather forecast(ERWF).Furthermore,we defined anomalous and climatic stable components based on the variation characteristics of the variance contribution ratio of EOF components.The climatic stable components were able to explain the impact of climatically averaged information on the ERWF,and the anomalous stable components revealed the abnormal characteristics of the continuous overcast-rainy days.Our results show that the stable components,especially the anomalous stable components,can maintain the stability for a longer time(more than 10 days) and manifest as monthly scale low-frequency variation and ultra-long-wave activities.They also behave as ultra-long waves of planetary scale with a stable and vertically coherent structure,reflect the variation of general circulation in mid-high latitudes,display the cycle of the zonal circulation and the movement and adjustment of the ultra-long waves,and are closely linked to the surface CORW process.展开更多
Daily 850-hPa meridional wind fields in East Asia from March to September 2002 were used to establish a model of the principal oscillation pattern (POP). This model was then used to conduct independent extended-rang...Daily 850-hPa meridional wind fields in East Asia from March to September 2002 were used to establish a model of the principal oscillation pattern (POP). This model was then used to conduct independent extended-range forecasts of the principal temporal and spatial variations in the low-frequency meridional wind field on a time scale of 20-30 days. These variations affect the occurrence of heavy precipitation events in the lower reaches of the Yangtze River valley (LYRV). The results of 135 forecast experiments during the summer half year show that the predicted and observed anomalies are strongly correlated at a lead time of 20 days (mean correlation greater than 0.50). This strong correlation indicates that the model is capable of accurately forecasting the low-frequency variations in meridional wind that corresponded to the 3 heavy precipitation events in the LYRV during the summer of 2002. Further forecast experiments based on data from multiple years with significant 20-30-day oscillations show that these prediction modes are effective tools for forecasting the space-time evolution of the low-frequency circulation. These findings offer potential for improving the accuracy of forecasts of heavy precipitation over the LYRV at lead times of 3-4 weeks.展开更多
In recent decades,the damage and economic losses caused by climate change and extreme climate events have been increasing rapidly.Although scientists all over the world have made great efforts to understand and predic...In recent decades,the damage and economic losses caused by climate change and extreme climate events have been increasing rapidly.Although scientists all over the world have made great efforts to understand and predict climatic variations,there are still several major problems for improving climate prediction.In 2020,the Center for Climate System Prediction Research(CCSP) was established with support from the National Natural Science Foundation of China.CCSP aims to tackle three scientific problems related to climate prediction—namely,El Ni?o-Southern Oscillation(ENSO) prediction,extended-range weather forecasting,and interannual-to-decadal climate prediction—and hence provide a solid scientific basis for more reliable climate predictions and disaster prevention.In this paper,the major objectives and scientific challenges of CCSP are reported,along with related achievements of its research groups in monsoon dynamics,land-atmosphere interaction and model development,ENSO variability,intraseasonal oscillation,and climate prediction.CCSP will endeavor to tackle key scientific problems in these areas.展开更多
An analysis of a large number of cases of 500 hPa height monthly prediction shows that systematic errors exist in the zonal mean components which account for a large portion of the total forecast errors, and such erro...An analysis of a large number of cases of 500 hPa height monthly prediction shows that systematic errors exist in the zonal mean components which account for a large portion of the total forecast errors, and such errors are commonly seen in other prediction models. To overcome the difficulties of the numerical model, the authors attempt a 'hybrid' approach to improving the dynamical extended-range (monthly) prediction. The monthly pentad-mean nonlinear dynamical regional prediction model of the zonal-mean geopotential height (wave number 0) based on a large amount of data is constituted by employing the reconstruction of phase-space theory and the spatio-temporal series predictive method. The dynamical prediction of the numerical model is then combined with that of the nonlinear model, i.e., the pentadmean zonal-mean height produced by the nonlinear model is transformed to its counterpart in the numerical model by nudging during the time integration. The forecast experiment results show that the above hybrid approach not only reduces the systematic error in zonal mean height by the numerical model, but also makes an improvement in the non-axisymmetric components due to the wave-flow interaction.展开更多
In February 2022,a persistent low-temperature rain and snow event(LRSE)occurred in the central Pan-Pearl River Delta(CPPRD)region of southern China,causing severe damage and economic losses.During the LRSE,both the te...In February 2022,a persistent low-temperature rain and snow event(LRSE)occurred in the central Pan-Pearl River Delta(CPPRD)region of southern China,causing severe damage and economic losses.During the LRSE,both the temperature and precipitation fields exhibited quasi-biweekly oscillation(QBWO)signals over the CPPRD region.Circulation analysis revealed that the eastward propagation of Rossby waves at mid–high latitudes enhanced the Baikal blocking high and the Mongolian high,facilitating the continuous southward migration of cold air.The strengthening India–Burma trough(i.e.,the southern branch trough)brought abundant warm and humid airflow,converging with cold air from the north in the CPPRD region.Moreover,deep convective activity originating in the northern Indian Ocean became exceptionally active,propagating to southern China and providing dynamic lifting conditions for precipitation in the study region.The combined effects of tropical and extratropical weather systems resulted in the LRSE occurrence.Partial lateral forcing(PLF)experiments were performed to quantify the contributions of the QBWO signals from different boundaries of the region.The extratropical QBWO signal from the northern boundary led to a temperature decrease of 1.61℃,with 77.83%of the whole region experiencing cooling greater than 1℃,whereas the tropical QBWO signal from the southwestern boundary caused an increase in precipitation of 13.1 mm day^(−1),with more than 40%of the entire region experiencing a precipitation increase of over 5 mm day^(−1).This study provides quantitative evidence that the QBWO was a key factor contributing to the occurrence of the LRSE,which can be used as a precursor signal for extended-range forecasts of future LRSEs.展开更多
It is difficult to make full use of the electrical energy of the power battery for extended-range electric tractors because the battery’s state of charge may be relatively high at the end of the running mileage.To ad...It is difficult to make full use of the electrical energy of the power battery for extended-range electric tractors because the battery’s state of charge may be relatively high at the end of the running mileage.To address this situation,this paper aimed to study the control parameter adjustment in relation to the power battery’s electrical consumption and the diesel engine’s fuel consumption energy management strategy.Based on the AVL-Cruise simulation platform,the vehicle model of the tractor was established,and the control module of AVL-Cruise was used to compile the energy management strategy.In order to verify the superiority of the proposed strategy,the contrast strategy was employed in terms of the diesel engine start and stop control plus fixed point energy management strategy(FPEMS).The applicability of the proposed strategy was tested through continuous transfer operation and the small area deep loosening operation.The simulation results show that the proposed strategy was of good applicability.Compared with the FPEMS,the fuel consumption reduced significantly,and the electrical consumption of the power battery increased obviously.展开更多
From January 10 to February 2, 2008, a severe and persistent freezing-rain event occurred in southern and southwestern China. Here we use an observational analysis to compare the persistent freezing-rain event in the ...From January 10 to February 2, 2008, a severe and persistent freezing-rain event occurred in southern and southwestern China. Here we use an observational analysis to compare the persistent freezing-rain event in the early 2008 with the winter precipita- tion in the late 2007 over south of the Yangtze River (Jiangnan). The persistent freezing-rain event was directly linked to the activity of quasi-stationary front. The gradient of equivalent temperature (ET) can well indicate the frontal genesis of moist atmosphere (moisture front) and its activity as well as its relationship with precipitation belt. The precipitation types (snow and freezing rains) are related to the vertical structure of moisture front. The inversion profile of ET vertical distribution is a typical synoptic condition that caused the freezing-rain event. The horizontal gradient of ET with a criterion of 10℃ / 100 km, which reflects the accumulation and release of atmospheric energy, can be applied to predict the precipitation 5-10 days in advance.展开更多
A regional coupled prediction system for the Asia-Pacific(AP-RCP)(38°E-180°,20°S-60°N) area has been established.The AP-RCP system consists of WRF-ROMS(Weather Research and Forecast,and Regional Oc...A regional coupled prediction system for the Asia-Pacific(AP-RCP)(38°E-180°,20°S-60°N) area has been established.The AP-RCP system consists of WRF-ROMS(Weather Research and Forecast,and Regional Ocean Model System) coupled models combined with local observational information through dynamically downscaling coupled data assimilation(CDA).The system generates 18-day forecasts for the atmosphere and ocean environment on a daily quasi-operational schedule at Pilot National Laboratory for Marine Science and Technology(Qingdao)(QNLM),consisting of 2 different-resolution coupled models:27 km WRF coupled with 9 km ROMS,9 km WRF coupled with 3 km ROMS,while a version of 3 km WRF coupled with 3 km ROMS is in a test mode.This study is a first step to evaluate the impact of high-resolution coupled model with dynamically downscaling CDA on the extended-range predictions,focusing on forecasts of typhoon onset,improved precipitation and typhoon intensity forecasts as well as simulation of the Kuroshio current variability associated with mesoscale oceanic activities.The results show that for realizing the extended-range predictability of atmospheric and oceanic environment characterized by statistics of mesoscale activities,a fine resolution coupled model resolving local mesoscale phenomena with balanced and coherent coupled initialization is a necessary first step.The next challenges include improving the planetary boundary physics and the representation of air-sea and air-land interactions to enable the model to resolve kilometer or sub-kilometer processes.展开更多
基金supported by the National Key R&D Program of China(Grant No.2018YFC1505903)the National Natural Science Foundation of China(Grant No.41775071)the National Key R&D Program of China(Grant No.2016YFA0602401)
文摘The authors previous study reported the important role of extratropical intraseasonal oscillation(ISO)on the occurrence of a typical heatwave event over the Yangtze River Valley.Based on the ECMWF subseasonal reforecast database,this follow-up study evaluates the extended-range prediction skill of the heatwave event and further unravels the close link between the ISO and extended-range prediction of the event.With a two-week lead time,this heatwave event fails to occur in the reforecast because the predicted surface temperature is signi cantly underesti-mated.More detailed analysis demonstrates that the biases for both the intensity and the location of the warming region are primarily attributable to the inaccurate extratropical intrasea-sonal traveling signals.This work strongly indicates that accurately capturing the extratropical intraseasonal signal from the Eurasian continent is indispensable for extended-range prediction of East Asian extreme heatwave events.
文摘We examined the characteristic feature and predictability of low frequency variability (LFV) of the atmosphere in the Northern Hemisphere winter (January and February) by using the empirical orthogonal functions (EOFs) of the geopotential height at 500 hPa. In the discussion, we used the EOFs for geostrophic zonal wind (Uznl) and the height deviation from the zonal mean (Zeddy). The set of EOFs for Uznl and Zeddy was denoted as Uznl-1, Uznl-2, ..., Zeddy-1, Zeddy-2, ..., respectively. We used the data samples of 396 pentads derived from 33 years of NMC, ECMWF and JMA analyses, from January 1963 to 1995. From the calculated scores for Uznl-1, Uznl-2, Zeddy-1, Zeddy-2 and so on we found that Uznl-1 and Zeddy-1 were statistically stable and their scores were more persistent than those of the other EOFs. A close relationship existed between the scores of Uznl-1 and those of Zeddy-1. 30-day forecast experiments were carried out with the medium resolution version of JMA global spectral model for 20 cases in January and February for the period of 1984-1992. Results showed that Zeddy-1 was more predictable than the other EOFs for Zeddy. Considering these results, we argued that prediction of the Zeddy-1 was to be one of the main target of extended-range forecasting.
基金the National Natural Science Foundation of China(Grant Nos.42288101,41790475,42175051,and 42005046)the State Key Laboratory of Tropical Oceanography(South China Sea Institute of Oceanology,Chinese Academy of Sciences+1 种基金Grant No.LTO2109)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2021A1515011868).
文摘Utilizing the Community Atmosphere Model,version 4,the influence of Arctic sea-ice concentration(SIC)on the extended-range prediction of three simulated cold events(CEs)in East Asia is investigated.Numerical results show that the Arctic SIC is crucial for the extended-range prediction of CEs in East Asia.The conditional nonlinear optimal perturbation approach is adopted to identify the optimal Arctic SIC perturbations with the largest influence on CE prediction on the extended-range time scale.It shows that the optimal SIC perturbations are more inclined to weaken the CEs and cause large prediction errors in the fourth pentad,as compared with random SIC perturbations under the same constraint.Further diagnosis reveals that the optimal SIC perturbations first modulate the local temperature through the diabatic process,and then influence the remote temperature by horizontal advection and vertical convection terms.Consequently,the optimal SIC perturbations trigger a warming center in East Asia through the propagation of Rossby wave trains,leading to the largest prediction uncertainty of the CEs in the fourth pentad.These results may provide scientific support for targeted observation of Arctic SIC to improve the extended-range CE prediction skill.
基金supported by the National Natural Science Foundation of China(No.52175236)Research and development and demonstration application of heavy-duty diesel vehicle exhaust emission testing technology,China(No.24-8-cspz-18-nsh)Qingdao Civi Science and Technology Plan,China(No.19-6-1-88-nsh).
文摘In this paper,a dual deep Q-network(DDQN)energy management model based on long-short memory neural network(LSTM)speed prediction is proposed under the model predictive control(MPC)framework.The initial learning rate and neuron dropout probability of the LSTM speed prediction model are optimized by the genetic algorithm(GA).The prediction results show that the root-mean-square error of the GA-LSTM speed prediction method is smaller than the SVR method in different speed prediction horizons.The predicted demand power,the state of charge(SOC),and the demand power at the current moment are used as the state input of the agent,and the real-time control of the control strategy is realized by the MPC method.The simulation results show that the proposed control strategy reduces the equivalent fuel consumption by 0.0354 kg compared with DDQN,0.8439 kg compared with ECMS,and 0.742 kg compared with the power-following control strategy.The difference between the proposed control strategy and the dynamic planning control strategy is only 0.0048 kg,0.193%,while the SOC of the power battery remains stable.Finally,the hardware-in-the-loop simulation verifies that the proposed control strategy has good real-time performance.
基金supported by National Natural Science Foundation of China (Grant Nos.41105070,40930952 and 41005041)State Key Program of Science and Technology of China(Grant No.2009BAC51B04)Meteorological Special Project of China(Grant No.GYHY 201106016)
文摘Although extended-range forecasting has exceeded the limit of daily predictability of weather,there are still partially predictable characteristics of meteorological fields in such forecasts.A targeted forecast scheme and strategy for extended-range predictable components is proposed.Based on chaotic characteristics of the atmosphere,predictable components and unpredictable random components are separated by using the standpoint of error growth in a numerical model.The predictable components are defined as those with slow error growth at a given range,which are not sensitive to small errors in initial conditions. A numerical model for predictable components(NMPC)is established,by filtering random components with poor predictability.The aim is to maintain predictable components and avoid the influence of rapidly growing forecast errors on small scales. Meanwhile,the analogue-dynamical approach(ADA)is used to correct forecast errors of predictable components,to decrease model error and statistically take into account the influence of random components.The scheme is applied to operational dynamical extended-range forecast(DERF)model of the National Climate Center of China Meteorological Administration (NCC/CMA).Prediction results show that the scheme can improve forecast skill of predictable components to some extent, especially in high predictability regions.Forecast skill at zonal wave zero is improved more than for ultra-long waves and synoptic-scale waves.Results show good agreement with predictability of spatial scale.As a result,the scheme can reduce forecast errors and improve forecast skill,which favors operational use.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40930952, 41105055)Global Change Study of Major National Scientific Research Plan of China (Grant No. 2012CB955902)Meteorological Special Project of China (Grant Nos. GYHY201106016, GYHY201106015)
文摘This paper refers to the CNOP-related algorithms and formulates the practical method and forecast techniques of extracting predictable components in a numerical model for predictable components on extended-range scales.Model variables are divided into predictable components and unpredictable chaotic components from the angle of model prediction error growth.The predictable components are defined as those with a slow error growth at a given range.A targeted numerical model for predictable components is established based on the operational dynamical extended-range forecast(DERF)model of the National Climate Center.At the same time,useful information in historical data are combined to find the fields for predictable components in the numerical model that are similar to those for the predictable components in historical data,reducing the variable dimensions in a similar judgment process and further correcting prediction errors of predictable components.Historical data is used to obtain the expected value and variance of the chaotic components through the ensemble forecast method.The numerical experiment results show that this method can effectively improve the forecast skill of the atmospheric circulation field in the 10–30 days extended-range numerical model and has good prospects for operational applications.
基金supported by National Natural Science Foundation of China (Grant No.40930952)Science and Technology Supporting Project (Grant No.2009BAC51B04)
文摘A continuous overcast-rainy weather(CORW) process occurred over the mid-lower reaches of the Yangtze River(MLRYR) in China from February 14 to March 9 in 2009,with a large stretch and long duration that was rarely seen in historical records.Using the empirical orthogonal function(EOF),we analyzed the geopotential height anomaly field of the NCEP-DOE Reanalysis II in the same period,and defined the stable components of extended-range(10-30 days) weather forecast(ERWF).Furthermore,we defined anomalous and climatic stable components based on the variation characteristics of the variance contribution ratio of EOF components.The climatic stable components were able to explain the impact of climatically averaged information on the ERWF,and the anomalous stable components revealed the abnormal characteristics of the continuous overcast-rainy days.Our results show that the stable components,especially the anomalous stable components,can maintain the stability for a longer time(more than 10 days) and manifest as monthly scale low-frequency variation and ultra-long-wave activities.They also behave as ultra-long waves of planetary scale with a stable and vertically coherent structure,reflect the variation of general circulation in mid-high latitudes,display the cycle of the zonal circulation and the movement and adjustment of the ultra-long waves,and are closely linked to the surface CORW process.
基金Supported by the National Natural Science Foundation of China (41175082)
文摘Daily 850-hPa meridional wind fields in East Asia from March to September 2002 were used to establish a model of the principal oscillation pattern (POP). This model was then used to conduct independent extended-range forecasts of the principal temporal and spatial variations in the low-frequency meridional wind field on a time scale of 20-30 days. These variations affect the occurrence of heavy precipitation events in the lower reaches of the Yangtze River valley (LYRV). The results of 135 forecast experiments during the summer half year show that the predicted and observed anomalies are strongly correlated at a lead time of 20 days (mean correlation greater than 0.50). This strong correlation indicates that the model is capable of accurately forecasting the low-frequency variations in meridional wind that corresponded to the 3 heavy precipitation events in the LYRV during the summer of 2002. Further forecast experiments based on data from multiple years with significant 20-30-day oscillations show that these prediction modes are effective tools for forecasting the space-time evolution of the low-frequency circulation. These findings offer potential for improving the accuracy of forecasts of heavy precipitation over the LYRV at lead times of 3-4 weeks.
基金supported by the National Natural Science Foundation of China [grant number 42088101]。
文摘In recent decades,the damage and economic losses caused by climate change and extreme climate events have been increasing rapidly.Although scientists all over the world have made great efforts to understand and predict climatic variations,there are still several major problems for improving climate prediction.In 2020,the Center for Climate System Prediction Research(CCSP) was established with support from the National Natural Science Foundation of China.CCSP aims to tackle three scientific problems related to climate prediction—namely,El Ni?o-Southern Oscillation(ENSO) prediction,extended-range weather forecasting,and interannual-to-decadal climate prediction—and hence provide a solid scientific basis for more reliable climate predictions and disaster prevention.In this paper,the major objectives and scientific challenges of CCSP are reported,along with related achievements of its research groups in monsoon dynamics,land-atmosphere interaction and model development,ENSO variability,intraseasonal oscillation,and climate prediction.CCSP will endeavor to tackle key scientific problems in these areas.
基金The study was financed by theNational Key Project for Development of Science and Tech-nology(96-908-02),by the National Natural Science Foun-dation of China under Grant No.40175013,and partly bythe Project of the Chinese Academy of Sciences (ZKC)
文摘An analysis of a large number of cases of 500 hPa height monthly prediction shows that systematic errors exist in the zonal mean components which account for a large portion of the total forecast errors, and such errors are commonly seen in other prediction models. To overcome the difficulties of the numerical model, the authors attempt a 'hybrid' approach to improving the dynamical extended-range (monthly) prediction. The monthly pentad-mean nonlinear dynamical regional prediction model of the zonal-mean geopotential height (wave number 0) based on a large amount of data is constituted by employing the reconstruction of phase-space theory and the spatio-temporal series predictive method. The dynamical prediction of the numerical model is then combined with that of the nonlinear model, i.e., the pentadmean zonal-mean height produced by the nonlinear model is transformed to its counterpart in the numerical model by nudging during the time integration. The forecast experiment results show that the above hybrid approach not only reduces the systematic error in zonal mean height by the numerical model, but also makes an improvement in the non-axisymmetric components due to the wave-flow interaction.
基金Supported by the National Key Research and Development Program of China (2018YFC1505602)National Natural Science Foundation of China (41705055)+2 种基金Graduate Innovation Project of Jiangsu Province (CXZZ11_0485)Innovation Teams of Jiangsu Qinglan ProjectPriority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘In February 2022,a persistent low-temperature rain and snow event(LRSE)occurred in the central Pan-Pearl River Delta(CPPRD)region of southern China,causing severe damage and economic losses.During the LRSE,both the temperature and precipitation fields exhibited quasi-biweekly oscillation(QBWO)signals over the CPPRD region.Circulation analysis revealed that the eastward propagation of Rossby waves at mid–high latitudes enhanced the Baikal blocking high and the Mongolian high,facilitating the continuous southward migration of cold air.The strengthening India–Burma trough(i.e.,the southern branch trough)brought abundant warm and humid airflow,converging with cold air from the north in the CPPRD region.Moreover,deep convective activity originating in the northern Indian Ocean became exceptionally active,propagating to southern China and providing dynamic lifting conditions for precipitation in the study region.The combined effects of tropical and extratropical weather systems resulted in the LRSE occurrence.Partial lateral forcing(PLF)experiments were performed to quantify the contributions of the QBWO signals from different boundaries of the region.The extratropical QBWO signal from the northern boundary led to a temperature decrease of 1.61℃,with 77.83%of the whole region experiencing cooling greater than 1℃,whereas the tropical QBWO signal from the southwestern boundary caused an increase in precipitation of 13.1 mm day^(−1),with more than 40%of the entire region experiencing a precipitation increase of over 5 mm day^(−1).This study provides quantitative evidence that the QBWO was a key factor contributing to the occurrence of the LRSE,which can be used as a precursor signal for extended-range forecasts of future LRSEs.
基金supported by the National Key Research and Development Program of China during the 13th Five-Year Plan Period(No.2016YFD0701002)Henan University of Science and Technology Innovation Talents Support Program(No.18HASTIT026)Research Program of Application Foundation and Advanced Technology of Henan Province(No.152300410080).
文摘It is difficult to make full use of the electrical energy of the power battery for extended-range electric tractors because the battery’s state of charge may be relatively high at the end of the running mileage.To address this situation,this paper aimed to study the control parameter adjustment in relation to the power battery’s electrical consumption and the diesel engine’s fuel consumption energy management strategy.Based on the AVL-Cruise simulation platform,the vehicle model of the tractor was established,and the control module of AVL-Cruise was used to compile the energy management strategy.In order to verify the superiority of the proposed strategy,the contrast strategy was employed in terms of the diesel engine start and stop control plus fixed point energy management strategy(FPEMS).The applicability of the proposed strategy was tested through continuous transfer operation and the small area deep loosening operation.The simulation results show that the proposed strategy was of good applicability.Compared with the FPEMS,the fuel consumption reduced significantly,and the electrical consumption of the power battery increased obviously.
基金supported by National Basic Research Program of China (Grant No. 2006CB403602)National Natural Science Foundation of China (Grant No. 40975039)
文摘From January 10 to February 2, 2008, a severe and persistent freezing-rain event occurred in southern and southwestern China. Here we use an observational analysis to compare the persistent freezing-rain event in the early 2008 with the winter precipita- tion in the late 2007 over south of the Yangtze River (Jiangnan). The persistent freezing-rain event was directly linked to the activity of quasi-stationary front. The gradient of equivalent temperature (ET) can well indicate the frontal genesis of moist atmosphere (moisture front) and its activity as well as its relationship with precipitation belt. The precipitation types (snow and freezing rains) are related to the vertical structure of moisture front. The inversion profile of ET vertical distribution is a typical synoptic condition that caused the freezing-rain event. The horizontal gradient of ET with a criterion of 10℃ / 100 km, which reflects the accumulation and release of atmospheric energy, can be applied to predict the precipitation 5-10 days in advance.
基金supported by the National Key Research and Development Program of China(2017YFC1404100,2017YFC1404104)the National Natural Science Foundation of China(41775100,41830964)+1 种基金the Shandong Province’s"Taishan"Scientist Project(2018012919)the collaborative project between the Ocean University of China(OUC),Texas A&M University(TAMU)and the National Center for Atmospheric Research(NCAR)and completed through the International Laboratory for High Resolution Earth System Prediction(iHESP)-a collaboration among QNLM,TAMU and NCAR。
文摘A regional coupled prediction system for the Asia-Pacific(AP-RCP)(38°E-180°,20°S-60°N) area has been established.The AP-RCP system consists of WRF-ROMS(Weather Research and Forecast,and Regional Ocean Model System) coupled models combined with local observational information through dynamically downscaling coupled data assimilation(CDA).The system generates 18-day forecasts for the atmosphere and ocean environment on a daily quasi-operational schedule at Pilot National Laboratory for Marine Science and Technology(Qingdao)(QNLM),consisting of 2 different-resolution coupled models:27 km WRF coupled with 9 km ROMS,9 km WRF coupled with 3 km ROMS,while a version of 3 km WRF coupled with 3 km ROMS is in a test mode.This study is a first step to evaluate the impact of high-resolution coupled model with dynamically downscaling CDA on the extended-range predictions,focusing on forecasts of typhoon onset,improved precipitation and typhoon intensity forecasts as well as simulation of the Kuroshio current variability associated with mesoscale oceanic activities.The results show that for realizing the extended-range predictability of atmospheric and oceanic environment characterized by statistics of mesoscale activities,a fine resolution coupled model resolving local mesoscale phenomena with balanced and coherent coupled initialization is a necessary first step.The next challenges include improving the planetary boundary physics and the representation of air-sea and air-land interactions to enable the model to resolve kilometer or sub-kilometer processes.