When the proton exchange membrane fuel cell(PEMFC)system is running,there will be a condition that does not require power output for a short time.In order to achieve zero power output under low power consumption,it is...When the proton exchange membrane fuel cell(PEMFC)system is running,there will be a condition that does not require power output for a short time.In order to achieve zero power output under low power consumption,it is necessary to consider the diversity of control targets and the complexity of dynamic models,which brings the challenge of high-precision tracking control of the stack output power and cathode intake flow.For system idle speed control,a modelbased nonlinear control framework is constructed in this paper.Firstly,the nonlinear dynamic model of output power and cathode intake flow is derived.Secondly,a control scheme combining nonlinear extended Kalman filter observer and state feedback controller is designed.Finally,the control scheme is verified on the PEMFC experimental platform and compared with the proportion-integration-differentiation(PID)controller.The experimental results show that the control strategy proposed in this paper can realize the idle speed control of the fuel cell system and achieve the purpose of zero power output.Compared with PID controller,it has faster response speed and better system dynamics.展开更多
For air-to-air missiles, the terminal guidance’s preci-sion is directly contingent upon the tracking capabilities of the roll-pitch seeker. This paper presents a combined non-singular fast terminal sliding mode contr...For air-to-air missiles, the terminal guidance’s preci-sion is directly contingent upon the tracking capabilities of the roll-pitch seeker. This paper presents a combined non-singular fast terminal sliding mode control method, aimed at resolving the frame control problem of roll-pitch seeker tracking high maneu-vering target. The sliding mode surface is structured around the principle of segmentation, which enables the control system’s rapid attainment of the zero point and ensure global fast conver-gence. The system’s state is more swiftly converged to the slid-ing mode surface through an improved adaptive fast dual power reaching law. Utilizing an extended state observer, the overall disturbance is both identified and compensated. The validation of the system’s stability and its convergence within a finite-time is grounded in Lyapunov’s stability criteria. The performance of the introduced control method is confirmed through roll-pitch seeker tracking control simulation. Data analysis reveals that newly proposed control technique significantly outperforms existing sliding mode control methods by rapidly converging the frame to the target angle, reduce the tracking error of the detec-tor for the target, and bolster tracking precision of the roll-pitch seeker huring disturbed conditions.展开更多
This study investigates the stabilization challenge at the boundaries of a type II thermoelastic network with n-star configuration and terminal masses,which experiences non-uniform bounded external disturbances at its...This study investigates the stabilization challenge at the boundaries of a type II thermoelastic network with n-star configuration and terminal masses,which experiences non-uniform bounded external disturbances at its control boundary.This research employs an advanced active disturbance rejection control framework,incorporating an innovative observer with adaptive gain characteristics for precise disturbance estimation,coupled with a robust feedback control mechanism for disturbance compensation.The theoretical analysis establishes rigorous convergence proofs for the proposed time-dependent extended state observer.Furthermore,this investigation utilizes semigroup theory to validate the closed-loop system’s well-posed.Through comprehensive Lyapunov-based analysis,this study confirms the system’s capability to achieve exponential convergence of tracking errors while effectively mitigating disturbance effects.Extensive numerical experiments corroborate the theoretical findings,demonstrating the control scheme’s practical efficacy.展开更多
Active Disturbance Rejection Control(ADRC)possesses robust disturbance rejection capabilities,making it well-suited for longitudinal velocity control.However,the conventional Extended State Observer(ESO)in ADRC fails ...Active Disturbance Rejection Control(ADRC)possesses robust disturbance rejection capabilities,making it well-suited for longitudinal velocity control.However,the conventional Extended State Observer(ESO)in ADRC fails to fully exploit feedback from first-order and higher-order estimation errors and tracking error simultaneously,thereby diminishing the control performance of ADRC.To address this limitation,an enhanced car-following algorithm utilising ADRC is proposed,which integrates the improved ESO with a feedback controller.In comparison to the conventional ESO,the enhanced version effectively utilises multi-order estimation and tracking errors.Specifically,it enhances convergence rates by incorporating feedback from higher-order estimation errors and ensures the estimated value converges to the reference value by utilising tracking error feedback.The improved ESO significantly enhances the disturbance rejection performance of ADRC.Finally,the effectiveness of the proposed algorithm is validated through the Lyapunov approach and experiments.展开更多
In this paper, an enhanced adaptive nonlinear extended state observer (EANESO) for single-input single-output pure feedback systems in the presence of external time-varying disturbances is proposed. In this paper, a n...In this paper, an enhanced adaptive nonlinear extended state observer (EANESO) for single-input single-output pure feedback systems in the presence of external time-varying disturbances is proposed. In this paper, a nonlinear system with matched and mismatched disturbances is considered. The conventional extended state observer (ESO) can only be applied to systems that are in the form of integral chains. Moreover, this method has limitations in the face of mismatched disturbances. In the presence of time-varying disturbances, the traditional ESOs cannot estimate the disturbances accurately. To overcome this limitation, an EANESO is proposed in this paper. The main idea is to design the nonlinear ESO (NESO) to estimate the states of the system and multiple disturbances simultaneously. The observer gains are considered time-varying and adjusted with adaptation laws to improve the estimation accuracy and overcome the peaking phenomenon. Next, the proposed controller is designed based on output feedback to eliminate the effects of multiple disturbances and stabilize the closed-loop system. Subsequently, the stability analysis of the closed-loop system and convergence of the observer error are discussed. Finally, the proposed method is applied to the inverted pendulum system. The simulated results show good performance of the proposed method as compared with a recently published scheme in the related literature.展开更多
In this paper,a bandwidth-adjustable extended state observer(ABESO)is proposed for the systems with measurement noise.It is known that increasing the bandwidth of the observer improves the tracking speed but tolerates...In this paper,a bandwidth-adjustable extended state observer(ABESO)is proposed for the systems with measurement noise.It is known that increasing the bandwidth of the observer improves the tracking speed but tolerates noise,which conflicts with observation accuracy.Therefore,we introduce a bandwidth scaling factor such that ABESO is formulated to a 2-degree-of-freedom system.The observer gain is determined and the bandwidth scaling factor adjusts the bandwidth according to the tracking error.When the tracking error decreases,the bandwidth decreases to suppress the noise,otherwise the bandwidth does not change.It is proven that the error dynamics are bounded and converge in finite time.The relationship between the upper bound of the estimation error and the scaling factor is given.When the scaling factor is less than 1,the ABESO has higher estimation accuracy than the linear extended state observer(LESO).Simulations of an uncertain nonlinear system with compound disturbances show that the proposed ABESO can successfully estimate the total disturbance in noisy environments.The mean error of total disturbance of ABESO is 15.28% lower than that of LESO.展开更多
With the growing adoption of artificial intelligence algorithms and neural networks,online learning and adaptive methods for updating the bandwidth have become increasingly prevalent.However,the conditions required to...With the growing adoption of artificial intelligence algorithms and neural networks,online learning and adaptive methods for updating the bandwidth have become increasingly prevalent.However,the conditions required to ensure closed-loop stability when employing a time-varying bandwidth,as well as the supporting mathematical foundations,remain insufficiently studied.This paper investigates the stability condition for active disturbance rejection control(ADRC)with a time-varying bandwidth extended state observer(ESO).A new stability condition is derived,which means that the upper bound of rate of change for ESO bandwidth should be restricted.Moreover,under the proposed condition,the closed-loop stability of ADRC with a time-varying bandwidth observer is rigorously proved for nonlinear uncertainties.In simulations,the necessity of the proposed condition is illustrated,demonstrating that the rate of change of ESO bandwidth is crucial for closed-loop stability.展开更多
The analysis and design of the extended state observer (ESO) involves a continuous non-smooth structure, thus the study of the ESO dynamic requires mathematical tools of the nonlinear systems analysis. This paper es...The analysis and design of the extended state observer (ESO) involves a continuous non-smooth structure, thus the study of the ESO dynamic requires mathematical tools of the nonlinear systems analysis. This paper establishes the sufficient conditions for absolute stability of the ESO. Based on this study, a methodology to estimate several nonlinear functions in dy- namics systems is proposed.展开更多
The aim of this work is to develop a robust control strategy able to drive the attitude of a spacecraft to a reference value,despite the presence of unknown but bounded uncertainties in the system parameters and exter...The aim of this work is to develop a robust control strategy able to drive the attitude of a spacecraft to a reference value,despite the presence of unknown but bounded uncertainties in the system parameters and external disturbances.Thanks to the use of an extended observer design,the proposed control law is robust against all the uncertainties that affect the high-frequency gain matrix,which is shown to capture a broad spectrum of modelling issues,some of which are often neglected by traditional approaches.The proposed controller then provides robustness against parametric uncertainties,as moment of inertia estimation,payload deformations,actuator faults and external disturbances,while maintaining its asymptotic properties.展开更多
This paper investigates a time-varying anti-disturbance formation problem for a group of quadrotor aircrafts with time-varying uncertainties and a directed interaction topology.A novel Finite-Time Convergent Extended ...This paper investigates a time-varying anti-disturbance formation problem for a group of quadrotor aircrafts with time-varying uncertainties and a directed interaction topology.A novel Finite-Time Convergent Extended State Observer(FTCESO)based fully-distributed formation control scheme is proposed to enhance the disturbance rejection and the formation tracking performances for networked quadrotors.By adopting the hierarchical control strategy,the multiquadrotor system is separated into two subsystems:the outer-loop cooperative subsystem and the inner-loop attitude subsystem.In the outer-loop subsystem,with the estimation of disturbing forces and uncertain dynamics from FTCESOs,an adaptive consensus theory based cooperative controller is exploited to ensure the multiple quadrotors form and maintain a time-varying pattern relying only on the positions of the neighboring aircrafts.In the inner-loop subsystem,the desired attitude generated by the cooperative control law is stably tracked under a FTCESO-based attitude controller in a finite time.Based on a detailed algorithm to specify the cooperative control protocol,the feasibility condition to achieve the time-varying anti-disturbance formation tracking is derived and the rigorous analysis of the whole closed-loop multi-quadrotor system is given.Some numerical examples are conducted to intuitively demonstrate the effectiveness and the improvements of the proposed control framework.展开更多
For improving the performance of differential geometric guidance command(DGGC), a new formation of this guidance law is proposed, which can guarantee the finite time convergence(FTC) of the line of sight(LOS) rate to ...For improving the performance of differential geometric guidance command(DGGC), a new formation of this guidance law is proposed, which can guarantee the finite time convergence(FTC) of the line of sight(LOS) rate to zero or its neighborhood against maneuvering targets in three-dimensional(3D) space. The extended state observer(ESO) is employed to estimate the target acceleration, which makes the new DGGC more applicable to practical interception scenarios. Finally, the effectiveness of this newly proposed guidance command is demonstrated by the numerical simulation results.展开更多
The extended state observer (ESO) is the most important part of an emerging control technology known as active disturbance rejection control to this day, aiming at estimating "total disturbance" from observable me...The extended state observer (ESO) is the most important part of an emerging control technology known as active disturbance rejection control to this day, aiming at estimating "total disturbance" from observable measured output. In this paper, we construct a nonlinear ESO for a class of uncertain lower triangular nonlinear systems with stochastic disturbance and show its convergence, where the total disturbance includes internal uncertain nonlinear part and external stochastic disturbance. The numerical experiments are carried out to illustrate effectiveness of the proposed approach.展开更多
A novel double extended state observer(DESO)based on model predictive torque control(MPTC)strategy is developed for three-phase permanent magnet synchronous motor(PMSM)drive system without current sensor.In general,to...A novel double extended state observer(DESO)based on model predictive torque control(MPTC)strategy is developed for three-phase permanent magnet synchronous motor(PMSM)drive system without current sensor.In general,to achieve high-precision control,two-phase current sensors are necessary for successful implementation of MPTC.For this purpose,two ESOs are used to estimate q-axis current and stator resistance respectively,and then based on this,d-axis current is estimated.Moreover,to reduce torque and flux ripple and to improve the performance of the torque and speed,MPTC strategy is designed.The simulation results validate the feasibility and effectiveness of the proposed scheme.展开更多
The high-precision requirements will always be constrained due to the complicated operating conditions of the ground-based telescope. Owing to various internal and external disturbances, it is necessary to study a con...The high-precision requirements will always be constrained due to the complicated operating conditions of the ground-based telescope. Owing to various internal and external disturbances, it is necessary to study a control method, which should have a good ability on disturbance rejection and a good adaptability on system parameter variation. The traditional proportional-integral(PI) controller has the advantage of simple and easy adjustment, but it cannot deal with the disturbances well in different situations. This paper proposes a simplified active disturbance rejection control law, whose debugging is as simple as the PI controller, and with better disturbance rejection ability and parameter adaptability. It adopts a simplified second-order extended state observer(ESO) with an adjustable parameter to accommodate the significant variation of the inertia during the different design stages of the telescope. The gain parameter of the ESO can be adjusted online with a recursive least square estimating method once the system parameter has changed significantly. Thus, the ESO can estimate the total disturbances timely and the controller will compensate them accordingly. With the adjustable parameter of the ESO, the controller can always achieve better performance in different applications of the telescope. The simulation and experimental verification of the control law was conducted on a 1.2-meter ground based telescope. The results verify the necessity of adjusting the parameter of the ESO, and demonstrate better disturbance rejection ability in a large range of speed variations during the design stages of the telescope.展开更多
A tilt-rotor aircraft has three flight modes: helicopter mode, airplane mode and conversion mode. Unlike the traditional aircraft, the tilt-rotor aircraft, which combines the characteristics of helicopters and fixed-w...A tilt-rotor aircraft has three flight modes: helicopter mode, airplane mode and conversion mode. Unlike the traditional aircraft, the tilt-rotor aircraft, which combines the characteristics of helicopters and fixed-wing aircraft, is a complex multi-body system with the violent variation of the aerodynamic parameters. For these characteristics, a new smooth switching control scheme is provided for the tilt-rotor aircraft. First, the reference commands for airspeed and nacelle angles are calculated by analyzing the conversion corridor and the conversion path. Subsequently, based on the finite-time switching theorem, an average dwell time condition is designed to guarantee the stability in the switching process. Besides, considering the state vibrations and bumps may appear in switching points, the fuzzy weighted logic is employed to improve the system transient performance. For disturbance rejection, three extended state observers are designed separately to estimate the disturbances in the switched systems. Compared with the traditional auto disturbance rejection control and proportion integration differentiation control, this method overcomes the conservatism of wasting the whole model information. The control performances of robustness and smoothness are verified with simulation, which shows that the new smooth switching control scheme is more targeted and superior than the traditional design method.展开更多
A robust torsional vibration suppression strategy is proposed for the main drive system of the rolling mill subject to uncertainties,disturbances and input saturation.With given model information incorporated into obs...A robust torsional vibration suppression strategy is proposed for the main drive system of the rolling mill subject to uncertainties,disturbances and input saturation.With given model information incorporated into observer design,an extended state observer that relies only on roller speed measurements is developed to estimate the system states and lumped uncertainties of the rolling mill main drive system.To handle the motor torque saturation,an auxiliary signal system with the same order as the plant is constructed.The error between the control input and plant input is taken as the input of the constructed auxiliary system,and a number of signals are generated to compensate for the effect of the motor torque saturation.Furthermore,a robust output feedback controller is introduced to obtain better transient and steady-state performance of the rolling mill main drive system and the stability of the closed-loop system is strictly proved via Lyapunov theory.Finally,comparative simulations are performed to verify the effectiveness and superiority of the proposed control strategy.展开更多
Precise position tracking control of the single-rod pneumatic actuator is considered and a nonlinear cascade controller is developed.The proposed controller comprises an extended disturbance observer(EDOB)and a nonlin...Precise position tracking control of the single-rod pneumatic actuator is considered and a nonlinear cascade controller is developed.The proposed controller comprises an extended disturbance observer(EDOB)and a nonlinear robust control law synthesized by the backstepping method.The EDOB is designed to estimate not only the influence of disturbances but also the parameter uncertainties.With the use of parameter and disturbance estimates,the nonlinear cascade controller,which consists of an outer position tracking loop and an inner load pressure loop,is further designed to attenuate the effects of parameter and disturbance estimation errors.The stability of the closed-loop system is proven by means of Lyapunov theory.Extensive comparative experimental results obtained verify the effectiveness of the proposed nonlinear cascade controller and its performance robustness to parameter and external disturbance variations in practical implementation.展开更多
This paper focuses on control design and synthesize for a class of magnetic levitation systems,which have a decentralized control for each suspension point.Due to the existence of mechanical coupling among four suspen...This paper focuses on control design and synthesize for a class of magnetic levitation systems,which have a decentralized control for each suspension point.Due to the existence of mechanical coupling among four suspension points,large modeling uncertainties,unpredictable disturbances during the operation,and measurement noises,becomes challenging.To estimate and compensate for the effects of lumped uncertainties,this study employs the extended state observer(ESO)in conjunction with active disturbance rejection control(ADRC).Specifically,a novel ESO is proposed that utilizes output signals and their derivatives to estimate the lumped uncertainties more accurately,which simplifies the convergence proof conditions and has well engineering performance.This article is written in honor of B.M.Chen on the occasion of his 60th birthday.Specifically,this paper is inspired by his pioneering work on composite nonlinear feedback,which combines linear feedback and nonlinear compensator to enhance system performance Chen et al.(IEEE Trans Autom Control,40:427-439,2003).展开更多
In this paper, we present a sampled-data nonlinear extended state observer (NLESO) design method for a class of nonlinear systems with uncertainties and discrete time output measurement. To accommodate the inter-sam...In this paper, we present a sampled-data nonlinear extended state observer (NLESO) design method for a class of nonlinear systems with uncertainties and discrete time output measurement. To accommodate the inter-sample dynamics, an inter-sample output predictor is employed in the structure of the NLESO to estimate the system output in the sampling intervals, where the prediction is used in the proposed observer instead of the system output. The exponential convergence of the sampled-data NLESO is also discussed and a sufficient condition is given by the Lyapunov method. A numerical example is provided to illustrate the performance of the proposed observer.展开更多
For the problem of sensor faults and actuator faults in aircraft attitude control,this paper proposes a fault tolerant control(FTC)scheme based on extended state observer(ESO)and nonlinear dynamic inversion(NDI).First...For the problem of sensor faults and actuator faults in aircraft attitude control,this paper proposes a fault tolerant control(FTC)scheme based on extended state observer(ESO)and nonlinear dynamic inversion(NDI).First,two ESOs are designed to estimate sensor faults and actuator faults respectively.Second,the angular rate signal is reconstructed according to the estimation of sensor faults.Third,in angular rate loop,NDI is designed based on reconstruction of angular rate signals and estimation of actuator faults.The FTC scheme proposed in this paper is testified through numerical simulations.The results show that it is feasible and has good fault tolerant ability.展开更多
基金Supported by the Major Science and Technology Projects in Jilin Province and Changchun City(20220301010GX).
文摘When the proton exchange membrane fuel cell(PEMFC)system is running,there will be a condition that does not require power output for a short time.In order to achieve zero power output under low power consumption,it is necessary to consider the diversity of control targets and the complexity of dynamic models,which brings the challenge of high-precision tracking control of the stack output power and cathode intake flow.For system idle speed control,a modelbased nonlinear control framework is constructed in this paper.Firstly,the nonlinear dynamic model of output power and cathode intake flow is derived.Secondly,a control scheme combining nonlinear extended Kalman filter observer and state feedback controller is designed.Finally,the control scheme is verified on the PEMFC experimental platform and compared with the proportion-integration-differentiation(PID)controller.The experimental results show that the control strategy proposed in this paper can realize the idle speed control of the fuel cell system and achieve the purpose of zero power output.Compared with PID controller,it has faster response speed and better system dynamics.
文摘For air-to-air missiles, the terminal guidance’s preci-sion is directly contingent upon the tracking capabilities of the roll-pitch seeker. This paper presents a combined non-singular fast terminal sliding mode control method, aimed at resolving the frame control problem of roll-pitch seeker tracking high maneu-vering target. The sliding mode surface is structured around the principle of segmentation, which enables the control system’s rapid attainment of the zero point and ensure global fast conver-gence. The system’s state is more swiftly converged to the slid-ing mode surface through an improved adaptive fast dual power reaching law. Utilizing an extended state observer, the overall disturbance is both identified and compensated. The validation of the system’s stability and its convergence within a finite-time is grounded in Lyapunov’s stability criteria. The performance of the introduced control method is confirmed through roll-pitch seeker tracking control simulation. Data analysis reveals that newly proposed control technique significantly outperforms existing sliding mode control methods by rapidly converging the frame to the target angle, reduce the tracking error of the detec-tor for the target, and bolster tracking precision of the roll-pitch seeker huring disturbed conditions.
文摘This study investigates the stabilization challenge at the boundaries of a type II thermoelastic network with n-star configuration and terminal masses,which experiences non-uniform bounded external disturbances at its control boundary.This research employs an advanced active disturbance rejection control framework,incorporating an innovative observer with adaptive gain characteristics for precise disturbance estimation,coupled with a robust feedback control mechanism for disturbance compensation.The theoretical analysis establishes rigorous convergence proofs for the proposed time-dependent extended state observer.Furthermore,this investigation utilizes semigroup theory to validate the closed-loop system’s well-posed.Through comprehensive Lyapunov-based analysis,this study confirms the system’s capability to achieve exponential convergence of tracking errors while effectively mitigating disturbance effects.Extensive numerical experiments corroborate the theoretical findings,demonstrating the control scheme’s practical efficacy.
基金State Key Laboratory of Intelligent Green Vehicle and Mobility,Grant/Award Number:KFY2417Science and Technology Innovation 2030-“New Generation Artificial Intelligence”Major Project,Grant/Award Number:2022ZD0116305+7 种基金State Key Laboratory of Intelligent Vehicle Safety Technology,Grant/Award Number:IVSTSKL-202402Anhui Province Natural Science Funds for Distinguished Young Scholar,Grant/Award Number:2308085J02National Natural Science Foundation of China,Grant/Award Numbers:U2013601,U20A20225Wuhu Major Scientific and Technological Achievements Engineering Project,Grant/Award Number:2021zc04CAAI-Huawei Mind Spore Open Fund,Grant/Award Number:CAAIXSJLJJ-2022-011ANatural Science Foundation of Hefei,China,Grant/Award Number:202321State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body,Grant/Award Number:32215010Wuhu Municipal Science and Technology Program,Grant/Award Number:2021hg17。
文摘Active Disturbance Rejection Control(ADRC)possesses robust disturbance rejection capabilities,making it well-suited for longitudinal velocity control.However,the conventional Extended State Observer(ESO)in ADRC fails to fully exploit feedback from first-order and higher-order estimation errors and tracking error simultaneously,thereby diminishing the control performance of ADRC.To address this limitation,an enhanced car-following algorithm utilising ADRC is proposed,which integrates the improved ESO with a feedback controller.In comparison to the conventional ESO,the enhanced version effectively utilises multi-order estimation and tracking errors.Specifically,it enhances convergence rates by incorporating feedback from higher-order estimation errors and ensures the estimated value converges to the reference value by utilising tracking error feedback.The improved ESO significantly enhances the disturbance rejection performance of ADRC.Finally,the effectiveness of the proposed algorithm is validated through the Lyapunov approach and experiments.
文摘In this paper, an enhanced adaptive nonlinear extended state observer (EANESO) for single-input single-output pure feedback systems in the presence of external time-varying disturbances is proposed. In this paper, a nonlinear system with matched and mismatched disturbances is considered. The conventional extended state observer (ESO) can only be applied to systems that are in the form of integral chains. Moreover, this method has limitations in the face of mismatched disturbances. In the presence of time-varying disturbances, the traditional ESOs cannot estimate the disturbances accurately. To overcome this limitation, an EANESO is proposed in this paper. The main idea is to design the nonlinear ESO (NESO) to estimate the states of the system and multiple disturbances simultaneously. The observer gains are considered time-varying and adjusted with adaptation laws to improve the estimation accuracy and overcome the peaking phenomenon. Next, the proposed controller is designed based on output feedback to eliminate the effects of multiple disturbances and stabilize the closed-loop system. Subsequently, the stability analysis of the closed-loop system and convergence of the observer error are discussed. Finally, the proposed method is applied to the inverted pendulum system. The simulated results show good performance of the proposed method as compared with a recently published scheme in the related literature.
基金supported by the National Natural Science Foundation of China(61873126)。
文摘In this paper,a bandwidth-adjustable extended state observer(ABESO)is proposed for the systems with measurement noise.It is known that increasing the bandwidth of the observer improves the tracking speed but tolerates noise,which conflicts with observation accuracy.Therefore,we introduce a bandwidth scaling factor such that ABESO is formulated to a 2-degree-of-freedom system.The observer gain is determined and the bandwidth scaling factor adjusts the bandwidth according to the tracking error.When the tracking error decreases,the bandwidth decreases to suppress the noise,otherwise the bandwidth does not change.It is proven that the error dynamics are bounded and converge in finite time.The relationship between the upper bound of the estimation error and the scaling factor is given.When the scaling factor is less than 1,the ABESO has higher estimation accuracy than the linear extended state observer(LESO).Simulations of an uncertain nonlinear system with compound disturbances show that the proposed ABESO can successfully estimate the total disturbance in noisy environments.The mean error of total disturbance of ABESO is 15.28% lower than that of LESO.
基金supported partially by the National Natural Science Foundation(No.62473344)the T-Flight Laboratory in ShanXi Provincial(No.GSFC2024NBKY05)+1 种基金the Natural Science Basic Research Program of Shaanxi(No.2025JC-YBQN-035)the National Natural Science Foundation of China(Grant No.92471204).
文摘With the growing adoption of artificial intelligence algorithms and neural networks,online learning and adaptive methods for updating the bandwidth have become increasingly prevalent.However,the conditions required to ensure closed-loop stability when employing a time-varying bandwidth,as well as the supporting mathematical foundations,remain insufficiently studied.This paper investigates the stability condition for active disturbance rejection control(ADRC)with a time-varying bandwidth extended state observer(ESO).A new stability condition is derived,which means that the upper bound of rate of change for ESO bandwidth should be restricted.Moreover,under the proposed condition,the closed-loop stability of ADRC with a time-varying bandwidth observer is rigorously proved for nonlinear uncertainties.In simulations,the necessity of the proposed condition is illustrated,demonstrating that the rate of change of ESO bandwidth is crucial for closed-loop stability.
基金supported by Programa de Jovenes Investigadores e Innovadores COLCIENCIAS (DFIA-0494)Universidad Nacional de Colombia Manizales (12475),Vicerrectoría de Investigación,DIMA.
文摘The analysis and design of the extended state observer (ESO) involves a continuous non-smooth structure, thus the study of the ESO dynamic requires mathematical tools of the nonlinear systems analysis. This paper establishes the sufficient conditions for absolute stability of the ESO. Based on this study, a methodology to estimate several nonlinear functions in dy- namics systems is proposed.
文摘The aim of this work is to develop a robust control strategy able to drive the attitude of a spacecraft to a reference value,despite the presence of unknown but bounded uncertainties in the system parameters and external disturbances.Thanks to the use of an extended observer design,the proposed control law is robust against all the uncertainties that affect the high-frequency gain matrix,which is shown to capture a broad spectrum of modelling issues,some of which are often neglected by traditional approaches.The proposed controller then provides robustness against parametric uncertainties,as moment of inertia estimation,payload deformations,actuator faults and external disturbances,while maintaining its asymptotic properties.
文摘This paper investigates a time-varying anti-disturbance formation problem for a group of quadrotor aircrafts with time-varying uncertainties and a directed interaction topology.A novel Finite-Time Convergent Extended State Observer(FTCESO)based fully-distributed formation control scheme is proposed to enhance the disturbance rejection and the formation tracking performances for networked quadrotors.By adopting the hierarchical control strategy,the multiquadrotor system is separated into two subsystems:the outer-loop cooperative subsystem and the inner-loop attitude subsystem.In the outer-loop subsystem,with the estimation of disturbing forces and uncertain dynamics from FTCESOs,an adaptive consensus theory based cooperative controller is exploited to ensure the multiple quadrotors form and maintain a time-varying pattern relying only on the positions of the neighboring aircrafts.In the inner-loop subsystem,the desired attitude generated by the cooperative control law is stably tracked under a FTCESO-based attitude controller in a finite time.Based on a detailed algorithm to specify the cooperative control protocol,the feasibility condition to achieve the time-varying anti-disturbance formation tracking is derived and the rigorous analysis of the whole closed-loop multi-quadrotor system is given.Some numerical examples are conducted to intuitively demonstrate the effectiveness and the improvements of the proposed control framework.
文摘For improving the performance of differential geometric guidance command(DGGC), a new formation of this guidance law is proposed, which can guarantee the finite time convergence(FTC) of the line of sight(LOS) rate to zero or its neighborhood against maneuvering targets in three-dimensional(3D) space. The extended state observer(ESO) is employed to estimate the target acceleration, which makes the new DGGC more applicable to practical interception scenarios. Finally, the effectiveness of this newly proposed guidance command is demonstrated by the numerical simulation results.
基金This work was supported by the National Natural Science Foundation of China (No. 61273129).
文摘The extended state observer (ESO) is the most important part of an emerging control technology known as active disturbance rejection control to this day, aiming at estimating "total disturbance" from observable measured output. In this paper, we construct a nonlinear ESO for a class of uncertain lower triangular nonlinear systems with stochastic disturbance and show its convergence, where the total disturbance includes internal uncertain nonlinear part and external stochastic disturbance. The numerical experiments are carried out to illustrate effectiveness of the proposed approach.
基金National Natural Science Foundation of China(No.61463025)Opening Foundation of Key Laboratory of Opto-technology and Intelligent Control(Lanzhou Jiaotong University),Ministry of Education(No.KFKT2018-8)
文摘A novel double extended state observer(DESO)based on model predictive torque control(MPTC)strategy is developed for three-phase permanent magnet synchronous motor(PMSM)drive system without current sensor.In general,to achieve high-precision control,two-phase current sensors are necessary for successful implementation of MPTC.For this purpose,two ESOs are used to estimate q-axis current and stator resistance respectively,and then based on this,d-axis current is estimated.Moreover,to reduce torque and flux ripple and to improve the performance of the torque and speed,MPTC strategy is designed.The simulation results validate the feasibility and effectiveness of the proposed scheme.
基金supported in part by the National Natural Science Foundation of China (Grant Nos. 12122304 and 11973041)in part by the Youth Innovation Promotion Association CAS (No. 2019218)。
文摘The high-precision requirements will always be constrained due to the complicated operating conditions of the ground-based telescope. Owing to various internal and external disturbances, it is necessary to study a control method, which should have a good ability on disturbance rejection and a good adaptability on system parameter variation. The traditional proportional-integral(PI) controller has the advantage of simple and easy adjustment, but it cannot deal with the disturbances well in different situations. This paper proposes a simplified active disturbance rejection control law, whose debugging is as simple as the PI controller, and with better disturbance rejection ability and parameter adaptability. It adopts a simplified second-order extended state observer(ESO) with an adjustable parameter to accommodate the significant variation of the inertia during the different design stages of the telescope. The gain parameter of the ESO can be adjusted online with a recursive least square estimating method once the system parameter has changed significantly. Thus, the ESO can estimate the total disturbances timely and the controller will compensate them accordingly. With the adjustable parameter of the ESO, the controller can always achieve better performance in different applications of the telescope. The simulation and experimental verification of the control law was conducted on a 1.2-meter ground based telescope. The results verify the necessity of adjusting the parameter of the ESO, and demonstrate better disturbance rejection ability in a large range of speed variations during the design stages of the telescope.
基金supported by the Aeronautical Science Foundation of China(20175752045)。
文摘A tilt-rotor aircraft has three flight modes: helicopter mode, airplane mode and conversion mode. Unlike the traditional aircraft, the tilt-rotor aircraft, which combines the characteristics of helicopters and fixed-wing aircraft, is a complex multi-body system with the violent variation of the aerodynamic parameters. For these characteristics, a new smooth switching control scheme is provided for the tilt-rotor aircraft. First, the reference commands for airspeed and nacelle angles are calculated by analyzing the conversion corridor and the conversion path. Subsequently, based on the finite-time switching theorem, an average dwell time condition is designed to guarantee the stability in the switching process. Besides, considering the state vibrations and bumps may appear in switching points, the fuzzy weighted logic is employed to improve the system transient performance. For disturbance rejection, three extended state observers are designed separately to estimate the disturbances in the switched systems. Compared with the traditional auto disturbance rejection control and proportion integration differentiation control, this method overcomes the conservatism of wasting the whole model information. The control performances of robustness and smoothness are verified with simulation, which shows that the new smooth switching control scheme is more targeted and superior than the traditional design method.
基金supported by the National Natural Science Foundation of China(Grant Nos.U20A20187 and 61933009)the Top talents of Hebei provincial Education Department(Grant No.BJ2019047).
文摘A robust torsional vibration suppression strategy is proposed for the main drive system of the rolling mill subject to uncertainties,disturbances and input saturation.With given model information incorporated into observer design,an extended state observer that relies only on roller speed measurements is developed to estimate the system states and lumped uncertainties of the rolling mill main drive system.To handle the motor torque saturation,an auxiliary signal system with the same order as the plant is constructed.The error between the control input and plant input is taken as the input of the constructed auxiliary system,and a number of signals are generated to compensate for the effect of the motor torque saturation.Furthermore,a robust output feedback controller is introduced to obtain better transient and steady-state performance of the rolling mill main drive system and the stability of the closed-loop system is strictly proved via Lyapunov theory.Finally,comparative simulations are performed to verify the effectiveness and superiority of the proposed control strategy.
基金Project(51505474)supported by the National Natural Science Foundation of ChinaProject(2015XKMS020)supported by the Fundamental Research Funds for the Central Universities,China+1 种基金Project(2016T90520)supported by the China Postdoctoral Science FoundationProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Precise position tracking control of the single-rod pneumatic actuator is considered and a nonlinear cascade controller is developed.The proposed controller comprises an extended disturbance observer(EDOB)and a nonlinear robust control law synthesized by the backstepping method.The EDOB is designed to estimate not only the influence of disturbances but also the parameter uncertainties.With the use of parameter and disturbance estimates,the nonlinear cascade controller,which consists of an outer position tracking loop and an inner load pressure loop,is further designed to attenuate the effects of parameter and disturbance estimation errors.The stability of the closed-loop system is proven by means of Lyapunov theory.Extensive comparative experimental results obtained verify the effectiveness of the proposed nonlinear cascade controller and its performance robustness to parameter and external disturbance variations in practical implementation.
基金This work was supported by the Key Project of the National Natural Science Foundation of China(No.52241103).
文摘This paper focuses on control design and synthesize for a class of magnetic levitation systems,which have a decentralized control for each suspension point.Due to the existence of mechanical coupling among four suspension points,large modeling uncertainties,unpredictable disturbances during the operation,and measurement noises,becomes challenging.To estimate and compensate for the effects of lumped uncertainties,this study employs the extended state observer(ESO)in conjunction with active disturbance rejection control(ADRC).Specifically,a novel ESO is proposed that utilizes output signals and their derivatives to estimate the lumped uncertainties more accurately,which simplifies the convergence proof conditions and has well engineering performance.This article is written in honor of B.M.Chen on the occasion of his 60th birthday.Specifically,this paper is inspired by his pioneering work on composite nonlinear feedback,which combines linear feedback and nonlinear compensator to enhance system performance Chen et al.(IEEE Trans Autom Control,40:427-439,2003).
基金This work was supported by the National Natural Science Foundation of China (Nos. 61327003, 61004004), the China Fundamental Research Funds for the Central Universities (Nos. 10062013YWF13-ZY-68, 10062014YWF-14-ZDHXY-018) and the Tsinghua University Initiative Scientific Research Program (No. 2010Z02270)
文摘In this paper, we present a sampled-data nonlinear extended state observer (NLESO) design method for a class of nonlinear systems with uncertainties and discrete time output measurement. To accommodate the inter-sample dynamics, an inter-sample output predictor is employed in the structure of the NLESO to estimate the system output in the sampling intervals, where the prediction is used in the proposed observer instead of the system output. The exponential convergence of the sampled-data NLESO is also discussed and a sufficient condition is given by the Lyapunov method. A numerical example is provided to illustrate the performance of the proposed observer.
基金supported by the Chinese Aviation Science Fund(20160757001)the National Natural Science Foundation of China(10577012)。
文摘For the problem of sensor faults and actuator faults in aircraft attitude control,this paper proposes a fault tolerant control(FTC)scheme based on extended state observer(ESO)and nonlinear dynamic inversion(NDI).First,two ESOs are designed to estimate sensor faults and actuator faults respectively.Second,the angular rate signal is reconstructed according to the estimation of sensor faults.Third,in angular rate loop,NDI is designed based on reconstruction of angular rate signals and estimation of actuator faults.The FTC scheme proposed in this paper is testified through numerical simulations.The results show that it is feasible and has good fault tolerant ability.