In this study,the potential Kadomtsev-Petviashvili(pKP)equation,which describes the oblique interaction of surface waves in shallow waters,is solved by the new extended direct algebraic method.The results of the study...In this study,the potential Kadomtsev-Petviashvili(pKP)equation,which describes the oblique interaction of surface waves in shallow waters,is solved by the new extended direct algebraic method.The results of the study show that by applying the new direct algebraic method to the pKP equation,the behavior of the obliquely interacting surface waves in two dimensions can be analyzed.This article fairly clarifies the behaviors of surface waves in shallow waters.In the literature,several mathematical models have been developed in attempt to study these behaviors,with nonlinear mathematics being one of the most important steps;however,the investigations are still at a level that can be called‘baby steps’.Therefore,every study to be carried out in this context is of great importance.Thus,this study will serve as a reference to guide scientists working in this field.展开更多
In this work,di erent kinds of traveling wave solutions and uncategorized soliton wave solutions are obtained in a three dimensional(3-D)nonlinear evolution equations(NEEs)through the implementation of the modi ed ext...In this work,di erent kinds of traveling wave solutions and uncategorized soliton wave solutions are obtained in a three dimensional(3-D)nonlinear evolution equations(NEEs)through the implementation of the modi ed extended direct algebraic method.Bright-singular and dark-singular combo solitons,Jacobi's elliptic functions,Weierstrass elliptic functions,constant wave solutions and so on are attained beside their existing conditions.Physical interpretation of the solutions to the 3-D modi ed KdV-Zakharov-Kuznetsov equation are also given.展开更多
This paper studies chirped optical solitons in nonlinear optical fibers.However,we obtain diverse soliton solutions and new chirped bright and dark solitons,trigonometric function solutions and rational solutions by a...This paper studies chirped optical solitons in nonlinear optical fibers.However,we obtain diverse soliton solutions and new chirped bright and dark solitons,trigonometric function solutions and rational solutions by adopting two formal integration methods.The obtained results take into account the different conditions set on the parameters of the nonlinear ordinary differential equation of the new extended direct algebraic equation method.These results are more general compared to Hadi et al(2018 Optik 172545–53)and Yakada et al(2019 Optik197163108).展开更多
文摘In this study,the potential Kadomtsev-Petviashvili(pKP)equation,which describes the oblique interaction of surface waves in shallow waters,is solved by the new extended direct algebraic method.The results of the study show that by applying the new direct algebraic method to the pKP equation,the behavior of the obliquely interacting surface waves in two dimensions can be analyzed.This article fairly clarifies the behaviors of surface waves in shallow waters.In the literature,several mathematical models have been developed in attempt to study these behaviors,with nonlinear mathematics being one of the most important steps;however,the investigations are still at a level that can be called‘baby steps’.Therefore,every study to be carried out in this context is of great importance.Thus,this study will serve as a reference to guide scientists working in this field.
文摘In this work,di erent kinds of traveling wave solutions and uncategorized soliton wave solutions are obtained in a three dimensional(3-D)nonlinear evolution equations(NEEs)through the implementation of the modi ed extended direct algebraic method.Bright-singular and dark-singular combo solitons,Jacobi's elliptic functions,Weierstrass elliptic functions,constant wave solutions and so on are attained beside their existing conditions.Physical interpretation of the solutions to the 3-D modi ed KdV-Zakharov-Kuznetsov equation are also given.
文摘This paper studies chirped optical solitons in nonlinear optical fibers.However,we obtain diverse soliton solutions and new chirped bright and dark solitons,trigonometric function solutions and rational solutions by adopting two formal integration methods.The obtained results take into account the different conditions set on the parameters of the nonlinear ordinary differential equation of the new extended direct algebraic equation method.These results are more general compared to Hadi et al(2018 Optik 172545–53)and Yakada et al(2019 Optik197163108).