期刊文献+
共找到805篇文章
< 1 2 41 >
每页显示 20 50 100
Rail displacement measurement in shaking table tests via a method integrating KLT feature tracker and extended Kalman filter
1
作者 WANG Huan CHEN Ruoxi +2 位作者 YE Shanshan CHEN Zeqi ZHAO Fei 《Journal of Southeast University(English Edition)》 2025年第2期207-214,共8页
Shaking table tests are widely used to evaluate seismic effects on railway structures,but accurately measuring rail displacement remains a significant challenge owing to the nonlinear characteristics of large displace... Shaking table tests are widely used to evaluate seismic effects on railway structures,but accurately measuring rail displacement remains a significant challenge owing to the nonlinear characteristics of large displacements,ambient noise interference,and limitations in displacement meter installation.In this paper,a novel method that integrates the Kanade-Lucas-Tomasi(KLT)feature tracker with an extended Kalman filter(EKF)is presented for measuring rail displacement during shaking table tests.The method employs KLT feature tracker and a random sample consensus algorithm to extract and track key feature points,while EKF optimally estimates dynamic states by accounting for system noise and observation errors.Shaking table test results demonstrate that the proposed method achieves an acceleration root mean square error of 0.300 m/s^(2)and a correlation with accelerometer data exceeding 99.7%,significantly outper-forming the original KLT approach.This innovative method provides a more efficient and reliable solution for measuring rail displacement under large nonlinear vibrations. 展开更多
关键词 shaking table test rail displacement computer vision Kanade-Lucas-Tomasi(KLT)feature tracker extended kalman filter(ekf)
在线阅读 下载PDF
Attitude estimation method based on extended Kalman filter algorithm with 22 dimensional state vector for low-cost agricultural UAV 被引量:1
2
作者 Wu Helong Pei Xinbiao +2 位作者 Li Jihui Gao Huibin Bai Yue 《High Technology Letters》 EI CAS 2020年第2期125-135,共11页
To overcome the shortcomings of traditional artificial spraying pesticides and make more efficient prevention of diseases and pests,a coaxial sixteen-rotor unmanned aerial vehicle(UAV)with pesticide spraying system is... To overcome the shortcomings of traditional artificial spraying pesticides and make more efficient prevention of diseases and pests,a coaxial sixteen-rotor unmanned aerial vehicle(UAV)with pesticide spraying system is designed.The coaxial sixteen-rotor UAV’s basic structure and attitude estimation method are explained.The whole system weights 25 kg,cruising speed can reach 15 m/s,and the flight time is more than 20 min.When the UAV takes large load,the traditional extended Kalman filter(EKF)attitude estimation method can not meet the work requirements under the condition of strong vibration,the attitude measure accuracy is poor and the attitude angle divergence is easily caused.Hence an attitude estimation method based on EKF algorithm with 22 dimensional state vector is proposed which can solve these problems.The UAV system consists of STM32F429 as controller,integrating following measure sensors:accelerometer and gyroscope MPU6000,magnetometer LSM303D,GPS NEO-M8N and barometer.The attitude unit quaternion,velocity,position,earth magnetic field,biases error of gyroscope,accelerometer and magnetometer are introduced as the inertial navigation systems(INS)state vector,while magnetometer,global positioning system(GPS)and barometer are introduced as observation vector,thus making the estimate of the navigation information more accurate.The control strategy of coaxial sixteen-rotor UAV is based on the control method of combining active disturbance rejection control(ADRC)and proportion integral derivative(PID)control.Actual flight data are used to verify the algorithm,and the static experiment shows that the precision of roll angle and pitch angle of the algorithm are±0.1°,the precision of yaw angle is±0.2°.The attitude angle output of MTi sensor is used as reference.The dynamic experiment shows that the accuracy of attitude estimated by EKF algorithm is quite similar to that of MTi’s output,moreover,the algorithm has good real-time performance which meets the need of high maneuverability of agricultural UAV. 展开更多
关键词 coaxial sixteen-rotor unmanned AERIAL vehicle(UAV) extended kalman filter(ekf) QUATERNION LOW-COST
在线阅读 下载PDF
WSN Mobile Target Tracking Based on Improved Snake-Extended Kalman Filtering Algorithm 被引量:1
3
作者 Duo Peng Kun Xie Mingshuo Liu 《Journal of Beijing Institute of Technology》 EI CAS 2024年第1期28-40,共13页
A wireless sensor network mobile target tracking algorithm(ISO-EKF)based on improved snake optimization algorithm(ISO)is proposed to address the difficulty of estimating initial values when using extended Kalman filte... A wireless sensor network mobile target tracking algorithm(ISO-EKF)based on improved snake optimization algorithm(ISO)is proposed to address the difficulty of estimating initial values when using extended Kalman filtering to solve the state of nonlinear mobile target tracking.First,the steps of extended Kalman filtering(EKF)are introduced.Second,the ISO is used to adjust the parameters of the EKF in real time to adapt to the current motion state of the mobile target.Finally,the effectiveness of the algorithm is demonstrated through filtering and tracking using the constant velocity circular motion model(CM).Under the specified conditions,the position and velocity mean square error curves are compared among the snake optimizer(SO)-EKF algorithm,EKF algorithm,and the proposed algorithm.The comparison shows that the proposed algorithm reduces the root mean square error of position by 52%and 41%compared to the SOEKF algorithm and EKF algorithm,respectively. 展开更多
关键词 wireless sensor network(WSN)target tracking snake optimization algorithm extended kalman filter maneuvering target
在线阅读 下载PDF
Maneuvering Target Tracking Algorithm Based on Muti-paramter Sequential Extended Kalman Filter 被引量:2
4
作者 JIA Shuyi SUN Weiwei WANG Guohong 《Journal of Donghua University(English Edition)》 EI CAS 2018年第3期207-214,共8页
Based on the information theory,the performance of maneuvering target tracking can be improved by increasing the input information( observation vector).In this paper,the estimations of radial acceleration and radial v... Based on the information theory,the performance of maneuvering target tracking can be improved by increasing the input information( observation vector).In this paper,the estimations of radial acceleration and radial velocity obtained in the signal processing are introduced into the measurement vector by coordinate transformation.In order to solve the problem of high nonlinearity of the radial acceleration,radial velocity and the state vector,a new algorithm of multi-parameter sequential extended Kalman filter( MSEKF) is proposed.The tracking performance of this algorithm is tested and compared with the other tracking algorithms.It is shown that the proposed algorithm outperforms these algorithms in strong and weak maneuvering environments. 展开更多
关键词 information theory maneuvering target extended kalman filterekf radial acceleration radial velocity
在线阅读 下载PDF
Multi-GNSS Fusion Real-Time Kinematic Algorithm Based on Extended Kalman Filter Correction Model for Medium-Long Baselines
5
作者 XIA Yang REN Guanghui +1 位作者 WAN Yuan MAO Xuchu 《Journal of Shanghai Jiaotong university(Science)》 2024年第6期1191-1201,共11页
In the case of a medium-long baseline, for real-time kinematic (RTK) positioning, the fixed rate of integer ambiguity is low due to the distance between the base station and the observation station. Moreover, the atmo... In the case of a medium-long baseline, for real-time kinematic (RTK) positioning, the fixed rate of integer ambiguity is low due to the distance between the base station and the observation station. Moreover, the atmospheric delay after differential processing cannot be ignored. For correcting the residual atmospheric errors, we proposed a GPS/BDS/Galileo/GLONASS four-system fusion RTK positioning algorithm, which is based on the extended Kalman filter (EKF) algorithm. After realizing the spatio-temporal unification of multiple global navigation satellite systems (GNSSs), we introduced a parameter estimation of atmospheric errors based on the EKF model, using the least-squares integer ambiguity decorrelation adjustment (LAMBDA) to calculate the integer ambiguity. After conducting experiments for different baselines, the proposed RTK positioning algorithm can achieve centimeter-level positioning accuracy in the case of medium-long baselines. In addition, the time required to solve the fixed solution is shorter than that of the traditional RTK positioning algorithm. 展开更多
关键词 real-time kinematic(RTK) extended kalman filter(ekf) BASELINE AMBIGUITY ionospheric delay tropospheric delay
原文传递
Unscented extended Kalman filter for target tracking 被引量:21
6
作者 Changyun Liu Penglang Shui Song Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第2期188-192,共5页
A new method of unscented extended Kalman filter (UEKF) for nonlinear system is presented. This new method is a combination of the unscented transformation and the extended Kalman filter (EKF). The extended Kalman... A new method of unscented extended Kalman filter (UEKF) for nonlinear system is presented. This new method is a combination of the unscented transformation and the extended Kalman filter (EKF). The extended Kalman filter is similar to that in a conventional EKF. However, in every running step of the EKF the unscented transformation is running, the deterministic sample is caught by unscented transformation, then posterior mean of non- lineadty is caught by propagating, but the posterior covariance of nonlinearity is caught by linearizing. The accuracy of new method is a little better than that of the unscented Kalman filter (UKF), however, the computational time of the UEKF is much less than that of the UKF. 展开更多
关键词 unscented transformation (UT) extended kalman filter ekf unscented extended kalman filter (Uekf unscentedkalman filter (UKF) nonliearity.
在线阅读 下载PDF
Extended Kalman filtering-based channel estimation for space-time coded MIMO-OFDM systems 被引量:5
7
作者 梁永明 罗汉文 黄建国 《Journal of Shanghai University(English Edition)》 CAS 2007年第5期469-473,共5页
A space-time coded multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) system is considered as a solution to the future wideband wireless communication system. This paper proposes a... A space-time coded multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) system is considered as a solution to the future wideband wireless communication system. This paper proposes an extended Kalman filtering-based (EKF-based) channel estimation method for space-time coded MIMO-OFDM systems. The proposed method can exploit pilot symbols and an extended Kalman filter to estimate channel without any prior knowledge of channel statistics. In comparison with the least square (LS) and the least mean square (LMS) methods, the EKF-based approach has a better performance in theory. Computer simulations demonstrate the proposed method outperforms the LS and LMS methods. Therefore it can offer draznatic system performance improvement at a modest cost of computational complexity. 展开更多
关键词 multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) channel estimation extended kalman filtering ekf least mean square (LMS).
在线阅读 下载PDF
基于BPNN-EKF-GD-RF算法的锂离子电池组荷电状态估计方法
8
作者 来鑫 翁嘉辉 +4 位作者 杨一鹏 孙宇飞 周龙 郑岳久 韩雪冰 《机械工程学报》 北大核心 2025年第12期251-265,共15页
锂离子电池模组的荷电状态估计(State-of-charge, SOC)是影响电池性能的一个重要内部状态,是电池组进行其它状态估计的基础。然而它的估计准确性易受温度等外部因素影响,且电池间的不一致性也为电池组中各单体电池的SOC估计带来了困难... 锂离子电池模组的荷电状态估计(State-of-charge, SOC)是影响电池性能的一个重要内部状态,是电池组进行其它状态估计的基础。然而它的估计准确性易受温度等外部因素影响,且电池间的不一致性也为电池组中各单体电池的SOC估计带来了困难。提出一种将BP神经网络(Back propagation neural network, BPNN)与扩展卡尔曼滤波(Extended Kalman filter, EKF)算法相结合的电池组SOC估计方法。该方法首先基于先验SOC利用BPNN估计不同温度下“领导者”电池的端电压,将其与实测端电压对比后采用EKF算法完成SOC后验估计,同时基于电压差采用梯度下降(Gradient descent, GD)算法更新BPNN的输出层权重使算法更快收敛。在此基础上,设计修正策略利用随机森林(Random forest, RF)算法对“跟随者”电池的SOC进行调整估计。试验结果表明,所提的BPNN-EKF-GD-RF算法能实现电池组在不同温度下SOC的准确估计,常温下SOC估计误差保持在2.5%以内,在温度变化下电池组中单体电池SOC估计最大误差不超过3.2%,为复杂环境下锂离子电池组的SOC估计提供了一种高精度低复杂度方案。 展开更多
关键词 SOC估计 BP神经网络 扩展卡尔曼滤波 梯度下降算法 随机森林 锂离子电池组
原文传递
应用于发电机动态状态估计的鲁棒EKF算法
9
作者 靳越 李桢森 +1 位作者 李岩 孙娜 《机械设计与制造》 北大核心 2025年第10期183-187,193,共6页
鉴于现有的滤波算法在处理非线性同步发电机系统的动态状态估计问题时难有满意的滤波效果,这里提出了一种鲁棒扩展卡尔曼滤波(EKF)算法。该算法保留了非线性模型泰勒级数展开式的高阶项,并将其等效为满足范数有界的不确定线性矩阵形式... 鉴于现有的滤波算法在处理非线性同步发电机系统的动态状态估计问题时难有满意的滤波效果,这里提出了一种鲁棒扩展卡尔曼滤波(EKF)算法。该算法保留了非线性模型泰勒级数展开式的高阶项,并将其等效为满足范数有界的不确定线性矩阵形式。基于传统的EKF估计器框架,并使用一系列引理,逐步推导了误差协方差的上界,同时优化设计了合适的滤波器增益使得这样的上界最小以保证最优的滤波性能。提出的鲁棒EKF是一种递推算法,因此可在线应用,计算简便。最后,同步发电机的二阶和三阶模型作为例子以测试提出的估计方法,仿真结果表明,提出的鲁棒EKF算法的估计精度要优于传统的EKF。 展开更多
关键词 同步发电机 非线性系统 动态状态估计 扩展卡尔曼滤波 鲁棒算法
在线阅读 下载PDF
基于自适应参数重置EKF的时变次同步振荡辨识方法
10
作者 吴熙 李青峰 +3 位作者 陈曦 周金宇 李强 任必兴 《中国电机工程学报》 北大核心 2025年第10期3788-3800,I0016,共14页
随着新能源发电设备在电力系统中的比例逐渐升高,次同步振荡(sub-synchronous oscillation,SSO)问题日益凸显。准确追踪和辨识SSO信号是对其溯源和抑制的前提,对电力系统稳定运行具有重要意义。而在很多SSO事故中,振荡频率和振荡幅值随... 随着新能源发电设备在电力系统中的比例逐渐升高,次同步振荡(sub-synchronous oscillation,SSO)问题日益凸显。准确追踪和辨识SSO信号是对其溯源和抑制的前提,对电力系统稳定运行具有重要意义。而在很多SSO事故中,振荡频率和振荡幅值随时间变化,使现有方法难以准确辨识SSO模态参数。为此,提出一种基于自适应重置拓展卡尔曼滤波(extended Kalman filter,EKF)的SSO检测方法。首先,构造四状态SSO信号模型,使EKF算法能够检测信号幅值、频率和衰减系数,并设计检测多模态SSO信号的算法。其次,提出一种基于残差判据的EKF参数自适应重置方法,通过自适应地重置误差协方差矩阵以实现时变SSO信号的准确辨识。最终,对所提算法进行仿真验证和硬件测试,结果表明,所提方法能够准确辨识时变SSO模态参数,并且算法实时性强,具有较高的工程实用价值。 展开更多
关键词 次同步振荡 检测技术 拓展卡尔曼滤波 时变 多模态 自适应重置
原文传递
基于EKF的永磁同步电机无传感器矢量控制方法
11
作者 尹一帆 闫丽云 《火力与指挥控制》 北大核心 2025年第6期194-199,共6页
针对永磁同步电机位置检测精度低导致电机控制精度低的问题,提出了基于扩展卡尔曼滤波的电机位置信息实时计算方法,避免了采用常规的位置传感器进行位置信息测量所带来的缺点,额外使用三相绕组的6个线反电势的过零点和6个相反电势过零点... 针对永磁同步电机位置检测精度低导致电机控制精度低的问题,提出了基于扩展卡尔曼滤波的电机位置信息实时计算方法,避免了采用常规的位置传感器进行位置信息测量所带来的缺点,额外使用三相绕组的6个线反电势的过零点和6个相反电势过零点,对电机位置信息计算值进行标校,在无需电机额外提供中线的条件下,提高了电机位置计算的精确性和可靠性,实验结果表明,给出的计算方法可以准确估算电机位置信息并实现电机矢量控制。 展开更多
关键词 永磁同步电机 无传感器 矢量控制 扩展卡尔曼滤波
在线阅读 下载PDF
基于EKF参数辨识的矩阵变换器间接模型预测控制
12
作者 张建伟 杨再欣 +1 位作者 王云辉 刘广忱 《电气传动》 2025年第1期18-24,共7页
为解决矩阵变换器的直接模型预测控制算法计算量大的问题,基于矩阵变换器的等效间接调制策略,将矩阵变换器的预测控制等效为虚拟整流环节和虚拟逆变环节的预测控制。与传统的直接模型预测控制方法相比,间接模型预测控制的算法计算量明... 为解决矩阵变换器的直接模型预测控制算法计算量大的问题,基于矩阵变换器的等效间接调制策略,将矩阵变换器的预测控制等效为虚拟整流环节和虚拟逆变环节的预测控制。与传统的直接模型预测控制方法相比,间接模型预测控制的算法计算量明显降低,减少了算法的执行时间。针对预测控制对模型参数依赖度较高的问题,采用扩展卡尔曼滤波器对系统模型参数进行在线辨识,进而提高模型预测控制的鲁棒性和抗干扰能力。实验结果表明,所提出的基于扩展卡尔曼滤波器参数辨识算法的间接模型预测控制对负载电流和网侧单位功率因数具有良好的控制效果,并且对模型参数的依赖度降低。 展开更多
关键词 矩阵变换器 模型预测控制 计算量 扩展卡尔曼滤波器 参数辨识
在线阅读 下载PDF
Airship aerodynamic model estimation using unscented Kalman filter 被引量:12
13
作者 WASIM Muhammad ALI Ahsan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第6期1318-1329,共12页
An airship model is made-up of aerostatic,aerodynamic,dynamic,and propulsive forces and torques.Besides others,the computation of aerodynamic forces and torques is difficult.Usually,wind tunnel experimentation and pot... An airship model is made-up of aerostatic,aerodynamic,dynamic,and propulsive forces and torques.Besides others,the computation of aerodynamic forces and torques is difficult.Usually,wind tunnel experimentation and potential flow theory are used for their calculations.However,the limitations of these methods pose difficulties in their accurate calculation.In this work,an online estimation scheme based on unscented Kalman filter(UKF)is proposed for their calculation.The proposed method introduces six auxiliary states for the complete aerodynamic model.UKF uses an extended model and provides an estimate of a complete state vector along with auxiliary states.The proposed method uses the minimum auxiliary state variables for the approximation of the complete aerodynamic model that makes it computationally less intensive.UKF estimation performance is evaluated by developing a nonlinear simulation environment for University of Engineering and Technology,Taxila(UETT)airship.Estimator performance is validated by performing the error analysis based on estimation error and 2-σ uncertainty bound.For the same problem,the extended Kalman filter(EKF)is also implemented and its results are compared with UKF.The simulation results show that UKF successfully estimates the forces and torques due to the aerodynamic model with small estimation error and the comparative analysis with EKF shows that UKF improves the estimation results and also it is more suitable for the under-consideration problem. 展开更多
关键词 AIRSHIP unscented kalman filter(UKF) extend kalman filter(ekf) state estimation aerodynamic model estimation
在线阅读 下载PDF
NONLINEAR FILTER METHOD OF GPS DYNAMIC POSITIONING BASED ON BANCROFT ALGORITHM 被引量:3
14
作者 ZHANG Qin TAO Ben-zao +1 位作者 ZHAO Chao-ying WANG Li 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2005年第2期170-176,共7页
Because of the ignored items after linearization,the extended Kalman filter(EKF)becomes a form of suboptimal gradient descent algorithm.The emanative tendency exists in GPS solution when the filter equations are ill-p... Because of the ignored items after linearization,the extended Kalman filter(EKF)becomes a form of suboptimal gradient descent algorithm.The emanative tendency exists in GPS solution when the filter equations are ill-posed.The deviation in the estimation cannot be avoided.Furthermore,the true solution may be lost in pseudorange positioning because the linearized pseudorange equations are partial solutions.To solve the above problems in GPS dynamic positioning by using EKF,a closed-form Kalman filter method called the two-stage algorithm is presented for the nonlinear algebraic solution of GPS dynamic positioning based on the global nonlinear least squares closed algorithm--Bancroft numerical algorithm of American.The method separates the spatial parts from temporal parts during processing the GPS filter problems,and solves the nonlinear GPS dynamic positioning,thus getting stable and reliable dynamic positioning solutions. 展开更多
关键词 GPS dynamic positioning Bancroft algorithm extended kalman filter algorithm
在线阅读 下载PDF
An attitude calculation algorithm based on WNN-EKF 被引量:2
15
作者 CHEN Guangwu FAN Ziyan +2 位作者 WEI Zongshou LI Wenyuan ZHANG Linjing 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第2期138-146,共9页
In the strapdown inertial navigation system,the attitude information is obtained through an inertial measurement unit(IMU)device,which mainly includes a triaxial gyroscope,a triaxial accelerometer and a triaxial magne... In the strapdown inertial navigation system,the attitude information is obtained through an inertial measurement unit(IMU)device,which mainly includes a triaxial gyroscope,a triaxial accelerometer and a triaxial magnetometer.However,IMU sensors have system noise and drift errors,and these errors can accumulate over time,which makes it difficult to control the attitude accuracy.In order to solve the problems of gyro drift over time and random errors generated by the surrounding environment,this paper presents an attitude calculation algorithm based on wavelet neural network-extended Kalman filter(WNN-EKF).The wavelet neural network(WNN)is used to optimize the model and compensate the extended Kalman filter’s own model error.Through the semi-physical simulation experiment,the results show that the algorithm improves the accuracy of attitude calculation and enhances the self-adaptability to the environment. 展开更多
关键词 inertial measurement unit(IMU) QUATERNION attitude calculation wavelet neural network(WNN) extended kalman filter(ekf)
在线阅读 下载PDF
Adaptive nonlinear Kalman filters based on credibility theory with noise correlation 被引量:1
16
作者 Quanbo GE Zihao SONG +1 位作者 Bingtao ZHU Bingjun ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第6期232-243,共12页
To solve the divergence problem and overcome the difficulty in guaranteeing filtering accuracy during estimation of the process noise covariance or the measurement noise covariance with traditional new information-bas... To solve the divergence problem and overcome the difficulty in guaranteeing filtering accuracy during estimation of the process noise covariance or the measurement noise covariance with traditional new information-based nonlinear filtering methods,we design a new method for estimating noise statistical characteristics of nonlinear systems based on the credibility Kalman Filter(KF)theory considering noise correlation.This method first extends credibility to the Unscented Kalman Filter(UKF)and Extended Kalman Filter(EKF)based on the credibility theory.Further,an optimization model for nonlinear credibility under noise related conditions is established considering noise correlation.A combination of filtering smoothing and credibility iteration formula is used to improve the real-time performance of the nonlinear adaptive credibility KF algorithm,further expanding its application scenarios,and the derivation process of the formula theory is provided.Finally,the performance of the nonlinear credibility filtering algorithm is simulated and analyzed from multiple perspectives,and a comparative analysis conducted on specific experimental data.The simulation and experimental results show that the proposed credibility EKF and credibility UKF algorithms can estimate the noise covariance more accurately and effectively with lower average estimation time than traditional methods,indicating that the proposed algorithm has stable estimation performance and good real-time performance. 展开更多
关键词 kalman filter extended kalman filter(ekf) Unscented kalman filter(UKF) CREDIBILITY Noise correlation
原文传递
A GPS/BDS dual-mode positioning algorithm for a train based on CIPSO_EKF 被引量:3
17
作者 LUO Miao DANG Jianwu 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第1期12-20,共9页
When using global positioning system/BeiDou navigation satellite(GPS/BDS)dual-mode navigation system to locate a train,Kalman filter that is used to calculate train position has to be adjusted according to the feature... When using global positioning system/BeiDou navigation satellite(GPS/BDS)dual-mode navigation system to locate a train,Kalman filter that is used to calculate train position has to be adjusted according to the features of the dual-mode observation.Due to multipath effect,positioning accuracy of present Kalman filter algorithm is really low.To solve this problem,a chaotic immune-vaccine particle swarm optimization_extended Kalman filter(CIPSO_EKF)algorithm is proposed to improve the output accuracy of the Kalman filter.By chaotic mapping and immunization,the particle swarm algorithm is first optimized,and then the optimized particle swarm algorithm is used to optimize the observation error covariance matrix.The optimal parameters are provided to the EKF,which can effectively reduce the impact of the observation value oscillation caused by multipath effect on positioning accuracy.At the same time,the train positioning results of EKF and CIPSO_EKF algorithms are compared.The eastward position errors and velocity errors show that CIPSO_EKF algorithm has faster convergence speed and higher real-time performance,which can effectively suppress interference and improve positioning accuracy. 展开更多
关键词 global positioning system/BeiDou navigation satellite(GPS/BDS)dual-mode positioning chaotic immune-vaccine particle swarm optimization(CIPSO) extended kalman filter(ekf) positioning accuracy
在线阅读 下载PDF
Kalman Filters versus Neural Networks in Battery State-of-Charge Estimation: A Comparative Study 被引量:1
18
作者 Ala A. Hussein 《International Journal of Modern Nonlinear Theory and Application》 2014年第5期199-209,共11页
Battery management systems (BMS) must estimate the state-of-charge (SOC) of the battery accurately to prolong its lifetime and ensure a reliable operation. Since batteries have a wide range of applications, the SOC es... Battery management systems (BMS) must estimate the state-of-charge (SOC) of the battery accurately to prolong its lifetime and ensure a reliable operation. Since batteries have a wide range of applications, the SOC estimation requirements and methods vary from an application to another. This paper compares two SOC estimation methods, namely extended Kalman filters (EKF) and artificial neural networks (ANN). EKF is a nonlinear optimal estimator that is used to estimate the inner state of a nonlinear dynamic system using a state-space model. On the other hand, ANN is a mathematical model that consists of interconnected artificial neurons inspired by biological neural networks and is used to predict the output of a dynamic system based on some historical data of that system. A pulse-discharge test was performed on a commercial lithium-ion (Li-ion) battery cell in order to collect data to evaluate those methods. Results are presented and compared. 展开更多
关键词 Artificial Neural Network (ANN) BATTERY extended kalman filter (ekf) STATE-OF-CHARGE (SOC)
暂未订购
基于EKF-HInformer模型估计汽车动力电池的SOC&SOH 被引量:2
19
作者 彭自然 杨肖阳 肖伸平 《电子测量与仪器学报》 北大核心 2025年第3期21-33,共13页
针对传统模型荷电状态(SOC)和健康状态(SOH)估计精度低、鲁棒性差的问题,提出一种基于扩展卡尔曼滤波(EKF)和深度学习模型Informer改进优化的估计模型EKF-HInformer,实现电动汽车动力电池SOC与SOH的实时精准估计。首先,运用EKF算法归一... 针对传统模型荷电状态(SOC)和健康状态(SOH)估计精度低、鲁棒性差的问题,提出一种基于扩展卡尔曼滤波(EKF)和深度学习模型Informer改进优化的估计模型EKF-HInformer,实现电动汽车动力电池SOC与SOH的实时精准估计。首先,运用EKF算法归一化整理电池实时数据,并通过调整自适应增益因子减少噪声波动,提高EKF数据滤波处理的性能。然后,运用Informer网络模型对归一化后的电池数据进行智能估计。为减少Informer模型离群点或异常值所导致的注意力权重偏差问题,采用Hampel算法对Informer进行优化,提高多头概率稀疏自注意力机制特征学习的能力。最后,把滤波整理后的数据输入到HInformer网络中估算实时的SOC和SOH。采用牛津大学与马里兰大学的电池数据集进行实验验证,结果显示SOC与SOH估计精度均超99.5%,均方根误差(RMSE)小于1%,最大绝对误差(MAXE)小于0.5%。相比传统Informer、Transformer和长短期记忆(LSTM)模型,该模型估计SOC和SOH的速度更快、准确度更高,展现出优越的鲁棒性和泛化能力。 展开更多
关键词 动力电池 荷电状态 健康状态 自适应增益因子 扩展卡尔曼滤波 Hampel优化算法 INFORMER
原文传递
Parameter Estimation of RBF-AR Model Based on the EM-EKF Algorithm 被引量:6
20
作者 Yanhui Xi Hui Peng Hong Mo 《自动化学报》 EI CSCD 北大核心 2017年第9期1636-1643,共8页
在线阅读 下载PDF
上一页 1 2 41 下一页 到第
使用帮助 返回顶部