It has been reported that the muscle-specific isoform (type M, PGAM2) of phosphoglycerate mutase (PGAM) is a housekeeping enzyme; it catalyzes the conversion of 3-phosphoglycerate into 2-phosphoglycerate in the gl...It has been reported that the muscle-specific isoform (type M, PGAM2) of phosphoglycerate mutase (PGAM) is a housekeeping enzyme; it catalyzes the conversion of 3-phosphoglycerate into 2-phosphoglycerate in the glycolysis process to release energy. It is encoded by the Pgam2 gene. In this study, the cDNA of the porcine Pgam2 was cloned. This gene contains an open reading frame of 765 bp encoding a protein of 253 residues, and the predicted protein sequences share high similarity with other mammalians, 96% identity with humans, and 94% identity with mouse and rats. Pgam2 was mapped to SSC18q13-q21 by the RH panel. In this region, there are several QTLs, such as fat ratio, lean percentage, and diameter of muslce fiber, which affect meat production and quality. The reverse transcriptase-polymerase chain reaction revealed that the porcine Pgam2 gene was mainly expressed in the muscle tissue (skeletal muscle and cardiac muscle), and was expressed highly at skeletal muscle development stages (embryonic periods: 33, 65, and 90 days post-conception (dpo); postnatal pigs: 4 days and adult). This indicates that the Pgam2 gene plays an important role in muscle growth and development. In addition, it was demonstrated that PGAM2 locates both in cytoplasm and nuclei, and takes part in the glycometabolism process of cytoplasm and nuclei.展开更多
Auxin plays important roles in various aspects of plant growth and development (Zhao, 2010). In Arabidopsis, a number of YUCCA (YUC) genes, which are involved in auxin biosyn- thesis, have been identified (Zhao e...Auxin plays important roles in various aspects of plant growth and development (Zhao, 2010). In Arabidopsis, a number of YUCCA (YUC) genes, which are involved in auxin biosyn- thesis, have been identified (Zhao et al., 2001; Woodward et al., 2005; Cheng et al., 2006, 2007; Kim et al., 2007; Chen et al., 2014). YUC genes encode flavin monooxygenases (FMOs) that convert indole-3-pyruvate (IPA) to indole-3-acetic acid (IAA) (Zhao, 2012). The Arabidopsis YUC family is comprised of 11 members (Zhao et al., 2001;展开更多
The cytokines of acute leukemia (AL) patients have certain expression patterns, forming a complex network involved in diagnosis, progression, and prognosis. We collected the serum of different AL patients before and...The cytokines of acute leukemia (AL) patients have certain expression patterns, forming a complex network involved in diagnosis, progression, and prognosis. We collected the serum of different AL patients before and after complete remission (CR) for detection of cytokines by using an antibody chip. The expression patterns of cytokines were determined by using bioinformatics computational analysis. The results showed that there were significant differences in the cytokine expression patterns between AL patients and normal controls, as well as between acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). In confirmatory test, ELISA revealed the expression of uPAR in AL. Moreover, the bioinformatic analysis showed that the differentially expressed cytokines among the AL groups were involved in different biological behaviors and were closely related with the development of the disease. It was concluded that the cytokine expression pattern of AL patients is significantly different from that of healthy volunteers. Also, differences of cytokine expression patterns exist between AML and ALL, and between before and after CR in the same subtype of AL, which holds important clinical significance for revealing disease progression.展开更多
The NAC transcription factor family is plant-specific with various biological functions.However,there are few studies on the NAC gene involving coniferous species.Bioinformatics research and expression analysis of NAC...The NAC transcription factor family is plant-specific with various biological functions.However,there are few studies on the NAC gene involving coniferous species.Bioinformatics research and expression analysis of NAC genes in Larix olgensis can be used to analyse the function of the NAC gene in the future.Screening of excellent genetic materials and molecular breeding have been utilized to cultivate high-quality,stress-resistant larches.According to the transcriptome data for L.olgensis,the genes Uni-gene81490 and Unigene70699 with complete ORFs(open reading frames)were obtained by conserved domain analy-sis and named LoNAC1 and LoNAC2,respectively.The cDNAs of LoNAC1 and LoNAC2 were 1971 bp and 1095 bp in length,encoding 656 and 364 amino acids,respectively.The molecular weights of the proteins encoded by the two genes were predicted to be 72.61 kDa and 41.13 kDa,and subcellular localization analysis indicated that the proteins were concentrated in the nucleus.The results of real-time quantitative PCR analysis showed that at different growth stages and in different tissues of L.olgensis,the relative expression levels of the two NAC genes were highest in the stem,and the expression differences were more obvious in non-lignified tissues.After drought,salt and alkali stress and hormone treatment,expression was induced to different degrees.The expression levels of LoNAC1 and LoNAC2 in semi-lignified L.olgensis were higher than in the other two periods(non-lignified and lignified),and expression levels significantly increased under drought and salt stress.Relative expression levels changed under hormone treatment.It is speculated that these two genes may not only be related to drought and salt stress and secondary growth but may also be induced by hormones such as abscisic acid.Overall,LoNAC1 and LoNAC2 are genetic materials that can be used for molecular breeding of larch.展开更多
We describe the temporal and spatial expression pattern of Sox 1 gene during Xenopus laevis early development and compare the expression patterns of Sox 1-3 in the developing eye and brain. Alignment of Sox 1-3 amino ...We describe the temporal and spatial expression pattern of Sox 1 gene during Xenopus laevis early development and compare the expression patterns of Sox 1-3 in the developing eye and brain. Alignment of Sox 1-3 amino acid sequences shows a high conservation within the HMG-box DNA binding domains. RT-PCR analysis indicates that Sox 1 is expressed throughout development from the unfertilized egg to at least the tadpole stage, although at different expression levels. The transcripts of XSox 1 are detected in the animal pole at cleavage and blastrula stages and mainly in the central nervous system (CNS) and the developing eye at neurula stages. The study of the developmental expression of XSox 1 will aid in the elucidation of the function of SoxB 1 subgroup genes in vertebrate neurogenesis.展开更多
Astrocytes are the most abundant cell type in the central nervous system(CNS).They provide trophic support for neurons,modulate synaptic transmission and plasticity,and contribute to neuronal dysfunction.Many transgen...Astrocytes are the most abundant cell type in the central nervous system(CNS).They provide trophic support for neurons,modulate synaptic transmission and plasticity,and contribute to neuronal dysfunction.Many transgenic mouse lines have been generated to obtain astrocyte-specific expression of inducible Cre recombinase for functional studies;however,the expression patterns of inducible Cre recombinase in these lines have not been systematically characterized.We generated a new astrocyte-specific Aldh1 l1-CreER^(T2)knock-in mouse line and compared the expression pattern of Cre recombinase between this and five widely-used transgenic lines(hGfap-CreER^(T2)from The Jackson Laboratory and The Mutant Mouse Resource and Research Center,Glast-CreER^(T2),Cx30-CreER^(T2),and Fgfr3-iCreER^(T2))by crossing with Ai14 mice,which express tdTomato fluorescence following Cre-mediated recombination.In adult Aldh1 l1-CreER^(T2):Ai 14 transgenic mice,tdTomato was detected throughout the CNS,and five novel morphologicallydefined types of astrocyte were described.Among the six evaluated lines,the specificity of Cre-mediated recombination was highest when driven by Aldh1 l1 and lowest when driven by hGfap;in the latter mice,co-staining between tdTomato and NeuN was observed in the hippocampus and cortex.Notably,evident leakage was noted in Fgfr3-iCreER^(T2)mice,and the expression level of tdTomato was low in the thalamus when Cre recombinase expression was driven by Glast and in the capsular part of the central amygdaloid nucleus when driven by Cx30.Furthermore,tdTomato was clearly expressed in peripheral organs in four of the lines.Our results emphasize that the astrocyte-specific CreER^(T2)transgenic lines used in functional studies should be carefully selected.展开更多
The jasmonate ZIM domain(JAZ)protein belongs to the TIFY((TIF[F/Y]XG)domain protein)family,which is composed of several plant-specific proteins that play important roles in plant growth,development,and defense respons...The jasmonate ZIM domain(JAZ)protein belongs to the TIFY((TIF[F/Y]XG)domain protein)family,which is composed of several plant-specific proteins that play important roles in plant growth,development,and defense responses.However,the mechanism of the sorghum JAZ family in response to abiotic stress remains unclear.In the present study,a total of 17 JAZ genes were identified in sorghum using a Hidden Markov Model search.In addition,real-time quantification polymerase chain reaction(RT-qPCR)was used to analyze the gene expression patterns under abiotic stress.Based on phylogenetic tree analysis,the sorghum JAZ proteins were mainly divided into nine subfamilies.A promoter analysis revealed that the SbJAZ family contains diverse types of promoter cis-acting elements,indicating that JAZ proteins function in multiple pathways upon stress stimulation in plants.According to RT-qPCR,SbJAZ gene expression is tissuespecific.Additionally,under cold,hot,polyethylene glycol,jasmonic acid,abscisic acid,and gibberellin treatments,the expression patterns of SbJAZ genes were distinctly different,indicating that the expression of SbJAZ genes may be coordinated with different stresses.Furthermore,the overexpression of SbJAZ1 in Escherichia coli was found to promote the growth of recombinant cells under abiotic stresses,such as PEG 6000,NaCl,and 40℃ treatments.Altogether,our findings help us to better understand the potential molecular mechanisms of the SbJAZ family in sorghum in response to abiotic stresses.展开更多
The transcription factors, including OCT4, NANOG, and SOX2, played crucial roles in the maintenance of self-renewal and pluripotency in embryonic stem cells (ESCs). They expressed in preimplantation mammalian develo...The transcription factors, including OCT4, NANOG, and SOX2, played crucial roles in the maintenance of self-renewal and pluripotency in embryonic stem cells (ESCs). They expressed in preimplantation mammalian development with spa- tio-temporal pattern and took part in regulation of development. However, their expression and roles in goat had not been reported. In the present study, the expression of OCT4, NANOG, and SOX2 in goat preimplantation embryos both in vivo and in vitro were detected by real-time RCR and immunofluorescence. For in vivo fertilized embryos, the transcripts of OCT4, NANOG, and SOX2 could be detected from oocytes to blastocyst stage, their expression in morula and blastocyst stages was much higher than other stage. OCT4 protein was detected from oocyte to blastocyst, but the fluorescence was more located-intensive with nuclei from 8-cell stage, its expression present in both inner cell mass (ICM) and trophoblast cells (TE) at blastocyse stage. NANOG protein was similar to OCT4, the signaling of fluorescence completely focused on cell nuclei, while the SOX2 firstly showed nuclei location in morula. Comparing to in vivo fertilized embryo, the mRNA of these three transcription factors could be detected at 8-cell stage in parthenogenetic embryos (in vitro). Thereafter, the expressional level rose gradually along with embryo development. The locations of OCT4 and NANOG proteins were similar to in vivo fertilized embryos, and they located in cell nuclei from morula to blastocyst stage, while SOX2 protein firstly could be detected in cell nuclei at 8-cell stage. These differences suggested that OCT4, NANOG, and SOX2 played different function in regulating development of goat preimplantation embryos. These results may provide a novel insight to goat embryo development and be useful for goat ESCs isolation.展开更多
Considering some advantages of Rana nigromaculata as an experimental species, we propose that this species, like Xenopus laevis, could be used to assay thyroid hormone(TH) signaling disrupting actions. To validate t...Considering some advantages of Rana nigromaculata as an experimental species, we propose that this species, like Xenopus laevis, could be used to assay thyroid hormone(TH) signaling disrupting actions. To validate the utilizability of R. nigromaculata, we investigated the responsiveness of R. nigromaculata to a TH receptor(TR) agonist(T3) and antagonist(amiodarone) by analyzing expression, based on characterizing TR cDNA and developmental expression patterns. With high levels of identity with the corresponding genes in X. laevis, both TRα and TRβ in R. nigromaculata exhibited roughly similar developmental expression patterns to those of X. laevis, in spite of some species-specific differences. Both TRα and TRβ expression had greater changes in the liver and intestine than in the tail and brain during metamorphosis. T3 exposure for 2 days induced more dramatic increases of TRβ expression in stage 27 than in stage34 tadpoles but not in stage 42 tadpoles, showing that the responsiveness of R. nigromaculata to TH decreased with development and disappeared at the onset of metamorphic climax.Corresponding to greater changes of TRβ expression in the liver and intestine than in the tail and brain during metamorphosis, the liver and intestine had higher responsiveness to exogenous T3 than the tail and brain. Amiodarone inhibited T3-induced TRβ expression. Our results show that R. nigromaculata can be used as a model species for assaying TH signaling disrupting actions by analyzing TRβ expression, and intestine tissues at stage 27 are ideal test materials due to high responsiveness and easy accessibility.展开更多
Lysin motif(LysM)-containing proteins(LYPs)are important pattern recognition receptors in plants.However,the evolutionary history and characteristics of LYP genes remain largely unclear in wheat.In this study,62 LYPs ...Lysin motif(LysM)-containing proteins(LYPs)are important pattern recognition receptors in plants.However,the evolutionary history and characteristics of LYP genes remain largely unclear in wheat.In this study,62 LYPs were identified at genome wide in wheat.Based on phylogenetic and domain analysis,wheat LYPs were classified into 6 subgroups(group LysMe,LysMn,LYP,LYK,LysMFbox).Syntenic analysis showed the evolution of LYP genes in wheat.RNA-seq data showed that 22 genes were not expressed at any tissue or stress stimulation period.Some LYP and LYK genes were tissue-or stage-specific.The majority of TaLYK5s,TaLYK6s,TaLYP2s and TaLysMns genes were induced under chitin,flg22 and fungal treatment.qRT-PCR analysis showed that 4 genes were upregulated during Puccinia triticina infection with a peak at 18 h post inoculation.Our findings suggested that wheat LYPs may have specific roles in response to fungal infection and provided insights into the function and characteristics of wheat LYP genes.展开更多
Objective:This study describes the expression profiles and roles of cardiac pigment epithelium-derived factor(PEDF)during cardiac development.Methods:Gene datasets from the Gene Expression Omnibus(GEO)database were us...Objective:This study describes the expression profiles and roles of cardiac pigment epithelium-derived factor(PEDF)during cardiac development.Methods:Gene datasets from the Gene Expression Omnibus(GEO)database were used to analyze the correlation between cardiac PEDF expression and heart disease.Western blotting,immunohistochemistry,histological staining and echocardiography were used to assess the expression patterns and functions of PEDF during cardiac development.Results:Analysis of GEO data sets indicated that the expression of cardiac PEDF correlated with the occurrence and development of various heart diseases.Western blotting of various tissues in mice at 30 postnatal days of age indicated higher PEDF expression in the heart and aorta than the liver.Immunohistochemical results demonstrated that the ex-pression of cardiac PEDF significantly decreased after birth,mainly because of a significant decrease in PEDF expres-sion in the cytoplasm.Histological staining and echocardiography indicated that PEDF deficiency had no significant effects on cardiac structure,cardiac function and vascular hemodynamics in 8-week-old mice.Conclusion:Cardiac PEDF shows high expression and dynamic changes during cardiac development,but has no effects on cardiac structure,function and vascular hemodynamics.展开更多
NAC domain proteins are plant-specific transcription factors known to play diverse roles in various plant developmental processes. In the present study, we performed the first comprehensive study of the NAC gene famil...NAC domain proteins are plant-specific transcription factors known to play diverse roles in various plant developmental processes. In the present study, we performed the first comprehensive study of the NAC gene family in Gossypium raimondii Ulbr., incorporating phylogenetic, chromosomal location, gene structure, conserved motif, and expression profiling analyses. We identified 145 NAC transcription factor (NAC-TF) genes that were phylogenetically clustered into 18 distinct subfamilies. Of these, 127 NAC-TF genes were distributed across the 13 chromosomes, 80 (55%) were preferentially retained duplicates located in both duplicated regions and six were located in triplicated chromosomal regions. The majority of NAC-TF genes showed temporal-, spatial-, and tissue-specific expression patterns based on tran- scriptomic and qRT-PCR analyses. However, the expression patterns of several duplicate genes were partially redundant, suggesting the occurrence of sub-functionalization during their evolution. Based on their genomic organization, we concluded that genomic duplications contributed significantly to the expansion of the NAC-TF gene family in G. raimondii. Comprehensive analysis of their expression profiles could provide novel insights into the functional divergence among members of the NAC gene family in G. raimondii.展开更多
bHLH transcription factors,widely exist in various plants,and are vital for the growth and development of these plants.Among them,many have been implicated in anthocyanin biosynthesis across various plants.In the pres...bHLH transcription factors,widely exist in various plants,and are vital for the growth and development of these plants.Among them,many have been implicated in anthocyanin biosynthesis across various plants.In the present study,a PdbHLH57 gene,belonging to the bHLH IIIf group,was characterized,which was isolated and cloned from the colored-leaf poplar‘Zhongshancaiyun’(ZSCY).The cDNA sequence of PdbHLH57 was 1887 base pairs,and the protein encoded by PdbHLH57 had 628 amino acids,the isoelectric point and molecular weight of which were 6.26 and 69.75 kDa,respectively.Through bioinformatics analysis,PdbHLH57 has been classified into the IIIf bHLH subgroup,with many members of this subgroup known to participate in anthocyanin biosynthesis.The subcellular localization analysis conducted in the leaf protoplasts of‘ZSCY’revealed that the PdbHLH57 protein is specifically localized in the nucleus.The transcription activation analysis was also conducted,and the results showed that the PdbHLH57 protein had self-transcription activation.To better explore the functions of the PdbHLH57 protein,two parts of this protein(PdbHLH57-1,PdbHLH57-2)were split to detect their transcriptional activation activity.The results indicated that PdbHLH57-1(1-433aa)had self-transcription activation,and PdbHLH57-2(433-628aa)had no transcription activation.The expression of PdbHLH57 peaked in June during different developmental stages in‘ZSCY’,and it was most highly expressed in the phloem among various tissues.These findings offer a basis for understanding the role of PdbHLH57 in colored-leaf poplar.展开更多
It has recently become evident that the de novo emergence of genes is widespread and documented for a variety of organisms.De novo genes frequently emerge in proximity to existing genes,forming gene overlaps.Here,we p...It has recently become evident that the de novo emergence of genes is widespread and documented for a variety of organisms.De novo genes frequently emerge in proximity to existing genes,forming gene overlaps.Here,we present an analysis of the evolutionary history of a putative de novo gene,lawc,which overlaps with the conserved Trf2 gene,which encodes a general transcription factor in Drosophila melanogaster.We demonstrate that lawc emerged approximately 68 million years ago in the 5'-untranslated region(UTR)of Trf2 and displays an extensive spatiotemporal expression pattern.One of the most remarkable features of the lawc evolutionary history is that its emergence was facilitated by the engagement of Drosophilidae-specific short,highly conserved regions located in Trf2 introns.This represents a unique example of putative de novo gene birth involving conserved DNA regions localized in introns of conserved genes.The observed lawc expression pattern may be due to the overlap of lawc with the 5'-UTR of Trf2.This study not only enriches our understanding of gene evolution but also highlights the complex interplay between genetic conservation and innovation.展开更多
Glutathione-S-transferase(GST,EC2.5.1.18)multifunctional protease is important for detoxification,defense against biotic and abiotic stresses,and secondary metabolic material transport for plant growth and development...Glutathione-S-transferase(GST,EC2.5.1.18)multifunctional protease is important for detoxification,defense against biotic and abiotic stresses,and secondary metabolic material transport for plant growth and development.In this study,71 members of the BpGST family were identified from the entire Betula platyphylla Suk.genome.Most of the members encode proteins with amino acid lengths ranging from 101 to 875 and were localized to the cytoplasm by a prediction.BpGSTs can be divided into seven subfamilies,with a majority of birch U and F subfamily members according to gene structure,conserved motifs and evolutionary analysis.GST family genes showed collinearity with 22 genes in Oryza sativa L.,and three genes in Arabidopsis thaliana;promoter cis-acting elements predicted that the GST gene family is functional in growth,hormone regulation,and abiotic stress response.Most members of the F subfamily of GST(BpGSTFs)were expressed in roots,stems,leaves,and petioles,with the most expression observed in leaves.On the basis of the expression profiles of F subfamily genes(BpGSTF1 to BpGSTF13)during salt,mannitol and ABA stress,BpGSTF proteins seem to have multiple functions depending on the type of abiotic stress;for instance,BpGSTs may function at different times during abiotic stress.This study enhances understanding of the GST gene family and provides a basis for further exploration of their function in birch.展开更多
Kinesins are a superfamily of proteins widely present in eukaryotes,playing crucial roles in plant cell wall assembly,cell elongation regulation,gravity sensing,and fertility control.In this study,bioinformatics analy...Kinesins are a superfamily of proteins widely present in eukaryotes,playing crucial roles in plant cell wall assembly,cell elongation regulation,gravity sensing,and fertility control.In this study,bioinformatics analysis of the OsKMP2 gene(LOC_Os02g28850)was performed using online tools such as ExPASy-ProtParam,ProtScale,CD-search,and DNAMAN software.Additionally,qRT-PCR was employed to analyze the tissue expression pattern of OsKMP2.The results showed that the molecular weight of the OsKMP2 is 118.39728 kDa,and it is a hydrophilic and unstable acidic protein.Secondary structure prediction revealed that it primarily consists ofα-helices(69.45%),random coils(25.19%),and extended strands(5.36%).The gene was expressed in various rice tissues,with the highest expression level observed in leaves.These results indicate that the OsKMP2 gene exhibits high evolutionary conservation and functional diversity in rice.展开更多
To understand the regulation system of nitrogen X-starvation in higher plants, a cDNA library from N-starved rice (Oryza sativa L.) seedlings was constructed using rapid subtraction hybridization (RaSH) procedure. Thr...To understand the regulation system of nitrogen X-starvation in higher plants, a cDNA library from N-starved rice (Oryza sativa L.) seedlings was constructed using rapid subtraction hybridization (RaSH) procedure. Through reverse Northern analysis and Northern blotting, 18 unique known genes and two unique unknown genes were identified, which were up-regulated by N-starvation in rice. The known genes are involved in several metabolisms including carbon metabolism, secondary metabolite synthesis, ubiquitylation and protein degradation, phytohormone metabolism, signal transduction, growth regulator and transcription factors. Different induced expression patterns based on spatial and temporal express ions were found for these genes. The results indicate the cross-talks between N-starvation response and various metabolisms in plants.展开更多
Spatial and temporal expression patterns of Sbel and Sbe2 that encode starch branching enzyme (SBE) Ⅰ and Ⅱ, respectively, in sweet potato (Ipomoea batatas L.) were analyzed. Expression of both genes in Escheric...Spatial and temporal expression patterns of Sbel and Sbe2 that encode starch branching enzyme (SBE) Ⅰ and Ⅱ, respectively, in sweet potato (Ipomoea batatas L.) were analyzed. Expression of both genes in Escherichia coli indicate that both genes encoded active SBE. Analysis with real-time quantitative polymerase chain reaction technique indicates that IbSbel mRNA was expressed at very low levels in leaves but was the predominant isoform in tuberous root while the reverse case was found for lbSbe2. The expression pattern of IbSbel, closely resembles that of AGPase S, a gene coding for one of the subunits ofADP-glucose pyrophosphorylase, which is the key regulatory enzyme in the starch biosynthetic pathway. Western analysis detected at least two isoforms of SBE I in tuberous roots, those two isoforms showed adverse expression patterns with the development of the tuberous roots. Expression of the two IbSbe genes exhibited a diurnal rhythm during a 12-h cycle when fed a continuous solution of sucrose. Abscisic acid (ABA) was aother potent inducer of IbSbe expression, but bypassed the semidian oscillator.展开更多
Background:Heterosis is an important biological phenomenon that has been extensively utilized in agricultural breeding.However,negative heterosis is also pervasively observed in nature,which can cause unfavorable impa...Background:Heterosis is an important biological phenomenon that has been extensively utilized in agricultural breeding.However,negative heterosis is also pervasively observed in nature,which can cause unfavorable impacts on production performance.Compared with systematic studies of positive heterosis,the phenomenon of negative heterosis has been largely ignored in genetic studies and breeding programs,and the genetic mechanism of this phenomenon has not been thoroughly elucidated to date.Here,we used chickens,the most common agricultural animals worldwide,to determine the genetic and molecular mechanisms of negative heterosis.Results:We performed reciprocal crossing experiments with two distinct chicken lines and found that the body weight presented widely negative heterosis in the early growth of chickens.Negative heterosis of carcass traits was more common than positive heterosis,especially breast muscle mass,which was over−40%in reciprocal progenies.Genome-wide gene expression pattern analyses of breast muscle tissues revealed that nonadditivity,including dominance and overdominace,was the major gene inheritance pattern.Nonadditive genes,including a substantial number of genes encoding ATPase and NADH dehydrogenase,accounted for more than 68%of differentially expressed genes in reciprocal crosses(4257 of 5587 and 3617 of 5243,respectively).Moreover,nonadditive genes were significantly associated with the biological process of oxidative phosphorylation,which is the major metabolic pathway for energy release and animal growth and development.The detection of ATP content and ATPase activity for purebred and crossbred progenies further confirmed that chickens with lower muscle yield had lower ATP concentrations but higher hydrolysis activity,which supported the important role of oxidative phosphorylation in negative heterosis for growth traits in chickens.Conclusions:These findings revealed that nonadditive genes and their related oxidative phosphorylation were the major genetic and molecular factors in the negative heterosis of growth in chickens,which would be beneficial to future breeding strategies.展开更多
Background: The SWEET (Sugars will eventually be exported transporters) gene family plays multiple roles in plant physiological activities and development process. It participates in reproductive development and in...Background: The SWEET (Sugars will eventually be exported transporters) gene family plays multiple roles in plant physiological activities and development process. It participates in reproductive development and in the process of sugar transport and absorption, plant senescence and stress responses and plant-pathogen interaction. However, thecomprehensive analysis of SWEET genes has not been reported in cotton. Results: In this study, we identified 22, 31, 55 and 60 SWEETgenes from the sequenced genomes of Gossypium orboreum, G. rairnondii, G. hirsutum and G. borbadense, respectively. Phylogenetic tree analysis showed that the SWEET genes could be divided into four groups, which were further classified into 14 sub-clades. Further analysis of chromosomal location, synteny analysis and gene duplication suggested that the orthologs showed a good collinearity and segmental duplication events played a crucial role in the expansion of the family in cotton. Specific MtN3_slv domains were highly conserved between Arabidopsis and cotton by exon-intron organization and motif analysis. In addition, the expression pattern in different tissues indicated that the duplicated genes in cotton might have acquired new functions as a result of sub-functionalization or neo-functionalization. The expression pattern of SWEET genes showed that the different genes were induced by diverse stresses. The identification and functional analysis of SWEET genes in cotton may provide more candidate genes for genetic modification. Conclusion: SWEET genes were classified into four clades in cotton. The expression patterns suggested that the duplicated genes might have experienced a functional divergence. This work provides insights into the evolution of SWEETgenes and more candidates for specific genetic modification, which will be useful in future research.展开更多
基金the National Natural Science Foundation of China (No. 30371029 and 30571007) the National High Science and Technology Foundation of China (No. 2007AA10Z168) the Natural Science Foundation Creative Team Projects of Hubei Province (No. 2006ABC008).
文摘It has been reported that the muscle-specific isoform (type M, PGAM2) of phosphoglycerate mutase (PGAM) is a housekeeping enzyme; it catalyzes the conversion of 3-phosphoglycerate into 2-phosphoglycerate in the glycolysis process to release energy. It is encoded by the Pgam2 gene. In this study, the cDNA of the porcine Pgam2 was cloned. This gene contains an open reading frame of 765 bp encoding a protein of 253 residues, and the predicted protein sequences share high similarity with other mammalians, 96% identity with humans, and 94% identity with mouse and rats. Pgam2 was mapped to SSC18q13-q21 by the RH panel. In this region, there are several QTLs, such as fat ratio, lean percentage, and diameter of muslce fiber, which affect meat production and quality. The reverse transcriptase-polymerase chain reaction revealed that the porcine Pgam2 gene was mainly expressed in the muscle tissue (skeletal muscle and cardiac muscle), and was expressed highly at skeletal muscle development stages (embryonic periods: 33, 65, and 90 days post-conception (dpo); postnatal pigs: 4 days and adult). This indicates that the Pgam2 gene plays an important role in muscle growth and development. In addition, it was demonstrated that PGAM2 locates both in cytoplasm and nuclei, and takes part in the glycometabolism process of cytoplasm and nuclei.
基金financially supported by the grant from the National Plant Transgenic Program(No.2013ZX08003-003)from Ministry of Agriculture of the People’s Republic of China
文摘Auxin plays important roles in various aspects of plant growth and development (Zhao, 2010). In Arabidopsis, a number of YUCCA (YUC) genes, which are involved in auxin biosyn- thesis, have been identified (Zhao et al., 2001; Woodward et al., 2005; Cheng et al., 2006, 2007; Kim et al., 2007; Chen et al., 2014). YUC genes encode flavin monooxygenases (FMOs) that convert indole-3-pyruvate (IPA) to indole-3-acetic acid (IAA) (Zhao, 2012). The Arabidopsis YUC family is comprised of 11 members (Zhao et al., 2001;
基金supported by the National Natural Science Foundation of China(No.81170497)
文摘The cytokines of acute leukemia (AL) patients have certain expression patterns, forming a complex network involved in diagnosis, progression, and prognosis. We collected the serum of different AL patients before and after complete remission (CR) for detection of cytokines by using an antibody chip. The expression patterns of cytokines were determined by using bioinformatics computational analysis. The results showed that there were significant differences in the cytokine expression patterns between AL patients and normal controls, as well as between acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). In confirmatory test, ELISA revealed the expression of uPAR in AL. Moreover, the bioinformatic analysis showed that the differentially expressed cytokines among the AL groups were involved in different biological behaviors and were closely related with the development of the disease. It was concluded that the cytokine expression pattern of AL patients is significantly different from that of healthy volunteers. Also, differences of cytokine expression patterns exist between AML and ALL, and between before and after CR in the same subtype of AL, which holds important clinical significance for revealing disease progression.
基金This project was supported by the National Science and Technology Major Project(2018ZX08020003-001-001)the National Natural Science Foundation of China(Grant No.31700595)+1 种基金the Fundamental Research Funds for the Central Universities(2572019BA13)Heilongjiang Touyan Innovation Team Program.
文摘The NAC transcription factor family is plant-specific with various biological functions.However,there are few studies on the NAC gene involving coniferous species.Bioinformatics research and expression analysis of NAC genes in Larix olgensis can be used to analyse the function of the NAC gene in the future.Screening of excellent genetic materials and molecular breeding have been utilized to cultivate high-quality,stress-resistant larches.According to the transcriptome data for L.olgensis,the genes Uni-gene81490 and Unigene70699 with complete ORFs(open reading frames)were obtained by conserved domain analy-sis and named LoNAC1 and LoNAC2,respectively.The cDNAs of LoNAC1 and LoNAC2 were 1971 bp and 1095 bp in length,encoding 656 and 364 amino acids,respectively.The molecular weights of the proteins encoded by the two genes were predicted to be 72.61 kDa and 41.13 kDa,and subcellular localization analysis indicated that the proteins were concentrated in the nucleus.The results of real-time quantitative PCR analysis showed that at different growth stages and in different tissues of L.olgensis,the relative expression levels of the two NAC genes were highest in the stem,and the expression differences were more obvious in non-lignified tissues.After drought,salt and alkali stress and hormone treatment,expression was induced to different degrees.The expression levels of LoNAC1 and LoNAC2 in semi-lignified L.olgensis were higher than in the other two periods(non-lignified and lignified),and expression levels significantly increased under drought and salt stress.Relative expression levels changed under hormone treatment.It is speculated that these two genes may not only be related to drought and salt stress and secondary growth but may also be induced by hormones such as abscisic acid.Overall,LoNAC1 and LoNAC2 are genetic materials that can be used for molecular breeding of larch.
文摘We describe the temporal and spatial expression pattern of Sox 1 gene during Xenopus laevis early development and compare the expression patterns of Sox 1-3 in the developing eye and brain. Alignment of Sox 1-3 amino acid sequences shows a high conservation within the HMG-box DNA binding domains. RT-PCR analysis indicates that Sox 1 is expressed throughout development from the unfertilized egg to at least the tadpole stage, although at different expression levels. The transcripts of XSox 1 are detected in the animal pole at cleavage and blastrula stages and mainly in the central nervous system (CNS) and the developing eye at neurula stages. The study of the developmental expression of XSox 1 will aid in the elucidation of the function of SoxB 1 subgroup genes in vertebrate neurogenesis.
基金supported by Grants from the National Natural Science Foundation of China(31430032,31830033,81971080,and 81671356)the Program for Changjiang Scholars and Innovative Research Teams in University(IRT_16R37)+1 种基金the Science and Technology Program of Guangdong(20188030334001)the Guangzhou Science and Technology Project(201707020027,201704020116)。
文摘Astrocytes are the most abundant cell type in the central nervous system(CNS).They provide trophic support for neurons,modulate synaptic transmission and plasticity,and contribute to neuronal dysfunction.Many transgenic mouse lines have been generated to obtain astrocyte-specific expression of inducible Cre recombinase for functional studies;however,the expression patterns of inducible Cre recombinase in these lines have not been systematically characterized.We generated a new astrocyte-specific Aldh1 l1-CreER^(T2)knock-in mouse line and compared the expression pattern of Cre recombinase between this and five widely-used transgenic lines(hGfap-CreER^(T2)from The Jackson Laboratory and The Mutant Mouse Resource and Research Center,Glast-CreER^(T2),Cx30-CreER^(T2),and Fgfr3-iCreER^(T2))by crossing with Ai14 mice,which express tdTomato fluorescence following Cre-mediated recombination.In adult Aldh1 l1-CreER^(T2):Ai 14 transgenic mice,tdTomato was detected throughout the CNS,and five novel morphologicallydefined types of astrocyte were described.Among the six evaluated lines,the specificity of Cre-mediated recombination was highest when driven by Aldh1 l1 and lowest when driven by hGfap;in the latter mice,co-staining between tdTomato and NeuN was observed in the hippocampus and cortex.Notably,evident leakage was noted in Fgfr3-iCreER^(T2)mice,and the expression level of tdTomato was low in the thalamus when Cre recombinase expression was driven by Glast and in the capsular part of the central amygdaloid nucleus when driven by Cx30.Furthermore,tdTomato was clearly expressed in peripheral organs in four of the lines.Our results emphasize that the astrocyte-specific CreER^(T2)transgenic lines used in functional studies should be carefully selected.
基金the National Natural Science Foundation of China(32060614 and 32272514)the Guizhou Provincial Science and Technology Project,China([2022]091)the China Postdoctoral Science Foundation(2022MD713740).
文摘The jasmonate ZIM domain(JAZ)protein belongs to the TIFY((TIF[F/Y]XG)domain protein)family,which is composed of several plant-specific proteins that play important roles in plant growth,development,and defense responses.However,the mechanism of the sorghum JAZ family in response to abiotic stress remains unclear.In the present study,a total of 17 JAZ genes were identified in sorghum using a Hidden Markov Model search.In addition,real-time quantification polymerase chain reaction(RT-qPCR)was used to analyze the gene expression patterns under abiotic stress.Based on phylogenetic tree analysis,the sorghum JAZ proteins were mainly divided into nine subfamilies.A promoter analysis revealed that the SbJAZ family contains diverse types of promoter cis-acting elements,indicating that JAZ proteins function in multiple pathways upon stress stimulation in plants.According to RT-qPCR,SbJAZ gene expression is tissuespecific.Additionally,under cold,hot,polyethylene glycol,jasmonic acid,abscisic acid,and gibberellin treatments,the expression patterns of SbJAZ genes were distinctly different,indicating that the expression of SbJAZ genes may be coordinated with different stresses.Furthermore,the overexpression of SbJAZ1 in Escherichia coli was found to promote the growth of recombinant cells under abiotic stresses,such as PEG 6000,NaCl,and 40℃ treatments.Altogether,our findings help us to better understand the potential molecular mechanisms of the SbJAZ family in sorghum in response to abiotic stresses.
基金supported by the Genetically Modified Organisms Breeding Major Projects, Ministry of Agriculture, China (2008ZX0810-001)
文摘The transcription factors, including OCT4, NANOG, and SOX2, played crucial roles in the maintenance of self-renewal and pluripotency in embryonic stem cells (ESCs). They expressed in preimplantation mammalian development with spa- tio-temporal pattern and took part in regulation of development. However, their expression and roles in goat had not been reported. In the present study, the expression of OCT4, NANOG, and SOX2 in goat preimplantation embryos both in vivo and in vitro were detected by real-time RCR and immunofluorescence. For in vivo fertilized embryos, the transcripts of OCT4, NANOG, and SOX2 could be detected from oocytes to blastocyst stage, their expression in morula and blastocyst stages was much higher than other stage. OCT4 protein was detected from oocyte to blastocyst, but the fluorescence was more located-intensive with nuclei from 8-cell stage, its expression present in both inner cell mass (ICM) and trophoblast cells (TE) at blastocyse stage. NANOG protein was similar to OCT4, the signaling of fluorescence completely focused on cell nuclei, while the SOX2 firstly showed nuclei location in morula. Comparing to in vivo fertilized embryo, the mRNA of these three transcription factors could be detected at 8-cell stage in parthenogenetic embryos (in vitro). Thereafter, the expressional level rose gradually along with embryo development. The locations of OCT4 and NANOG proteins were similar to in vivo fertilized embryos, and they located in cell nuclei from morula to blastocyst stage, while SOX2 protein firstly could be detected in cell nuclei at 8-cell stage. These differences suggested that OCT4, NANOG, and SOX2 played different function in regulating development of goat preimplantation embryos. These results may provide a novel insight to goat embryo development and be useful for goat ESCs isolation.
基金supported by the Public Welfare Research Project for Environmental Protection (No. 201109048)the National High Technology Research and Development Program (863) of China (No. 2012AA06A302)the National Natural Science Foundation of China (No. 21077125)
文摘Considering some advantages of Rana nigromaculata as an experimental species, we propose that this species, like Xenopus laevis, could be used to assay thyroid hormone(TH) signaling disrupting actions. To validate the utilizability of R. nigromaculata, we investigated the responsiveness of R. nigromaculata to a TH receptor(TR) agonist(T3) and antagonist(amiodarone) by analyzing expression, based on characterizing TR cDNA and developmental expression patterns. With high levels of identity with the corresponding genes in X. laevis, both TRα and TRβ in R. nigromaculata exhibited roughly similar developmental expression patterns to those of X. laevis, in spite of some species-specific differences. Both TRα and TRβ expression had greater changes in the liver and intestine than in the tail and brain during metamorphosis. T3 exposure for 2 days induced more dramatic increases of TRβ expression in stage 27 than in stage34 tadpoles but not in stage 42 tadpoles, showing that the responsiveness of R. nigromaculata to TH decreased with development and disappeared at the onset of metamorphic climax.Corresponding to greater changes of TRβ expression in the liver and intestine than in the tail and brain during metamorphosis, the liver and intestine had higher responsiveness to exogenous T3 than the tail and brain. Amiodarone inhibited T3-induced TRβ expression. Our results show that R. nigromaculata can be used as a model species for assaying TH signaling disrupting actions by analyzing TRβ expression, and intestine tissues at stage 27 are ideal test materials due to high responsiveness and easy accessibility.
基金supported by National Natural Science Foundation of China(Grant No.31801693)National Natural Fund Cultivation Project of Shanxi Academy of Agricultural Sciences(Grant No.YGJPY1902).
文摘Lysin motif(LysM)-containing proteins(LYPs)are important pattern recognition receptors in plants.However,the evolutionary history and characteristics of LYP genes remain largely unclear in wheat.In this study,62 LYPs were identified at genome wide in wheat.Based on phylogenetic and domain analysis,wheat LYPs were classified into 6 subgroups(group LysMe,LysMn,LYP,LYK,LysMFbox).Syntenic analysis showed the evolution of LYP genes in wheat.RNA-seq data showed that 22 genes were not expressed at any tissue or stress stimulation period.Some LYP and LYK genes were tissue-or stage-specific.The majority of TaLYK5s,TaLYK6s,TaLYP2s and TaLysMns genes were induced under chitin,flg22 and fungal treatment.qRT-PCR analysis showed that 4 genes were upregulated during Puccinia triticina infection with a peak at 18 h post inoculation.Our findings suggested that wheat LYPs may have specific roles in response to fungal infection and provided insights into the function and characteristics of wheat LYP genes.
基金This research was funded by the National Key Research and Development Program of China(2019YFA0801403)National Natural Science Foundation of China(grant numbers 81670256,81970219,82170261,82000250 and 81741117)+2 种基金Guangdong Basic and Applied Basic Research Foundation(grant numbers 2021A1515011005 and 2021B1212040006)China Postdoctoral Science Foundation(grant number 2020 M672976)the Fundamental Research Funds for the Central University,Sun Yat-sen University(grant number 22qntd4808).
文摘Objective:This study describes the expression profiles and roles of cardiac pigment epithelium-derived factor(PEDF)during cardiac development.Methods:Gene datasets from the Gene Expression Omnibus(GEO)database were used to analyze the correlation between cardiac PEDF expression and heart disease.Western blotting,immunohistochemistry,histological staining and echocardiography were used to assess the expression patterns and functions of PEDF during cardiac development.Results:Analysis of GEO data sets indicated that the expression of cardiac PEDF correlated with the occurrence and development of various heart diseases.Western blotting of various tissues in mice at 30 postnatal days of age indicated higher PEDF expression in the heart and aorta than the liver.Immunohistochemical results demonstrated that the ex-pression of cardiac PEDF significantly decreased after birth,mainly because of a significant decrease in PEDF expres-sion in the cytoplasm.Histological staining and echocardiography indicated that PEDF deficiency had no significant effects on cardiac structure,cardiac function and vascular hemodynamics in 8-week-old mice.Conclusion:Cardiac PEDF shows high expression and dynamic changes during cardiac development,but has no effects on cardiac structure,function and vascular hemodynamics.
基金supported by the National Natural Science Foundation of China(31000732)the National High Technology Research and Development Program of China (2013AA210100)
文摘NAC domain proteins are plant-specific transcription factors known to play diverse roles in various plant developmental processes. In the present study, we performed the first comprehensive study of the NAC gene family in Gossypium raimondii Ulbr., incorporating phylogenetic, chromosomal location, gene structure, conserved motif, and expression profiling analyses. We identified 145 NAC transcription factor (NAC-TF) genes that were phylogenetically clustered into 18 distinct subfamilies. Of these, 127 NAC-TF genes were distributed across the 13 chromosomes, 80 (55%) were preferentially retained duplicates located in both duplicated regions and six were located in triplicated chromosomal regions. The majority of NAC-TF genes showed temporal-, spatial-, and tissue-specific expression patterns based on tran- scriptomic and qRT-PCR analyses. However, the expression patterns of several duplicate genes were partially redundant, suggesting the occurrence of sub-functionalization during their evolution. Based on their genomic organization, we concluded that genomic duplications contributed significantly to the expansion of the NAC-TF gene family in G. raimondii. Comprehensive analysis of their expression profiles could provide novel insights into the functional divergence among members of the NAC gene family in G. raimondii.
基金supported by the Natural Science Foundation of Jiangsu Province,China(BK20242007)the Natural Science Foundation of China(32271916)the Jiangsu Agricultural Science and Technology Innovation Fund[CX(24)3048].
文摘bHLH transcription factors,widely exist in various plants,and are vital for the growth and development of these plants.Among them,many have been implicated in anthocyanin biosynthesis across various plants.In the present study,a PdbHLH57 gene,belonging to the bHLH IIIf group,was characterized,which was isolated and cloned from the colored-leaf poplar‘Zhongshancaiyun’(ZSCY).The cDNA sequence of PdbHLH57 was 1887 base pairs,and the protein encoded by PdbHLH57 had 628 amino acids,the isoelectric point and molecular weight of which were 6.26 and 69.75 kDa,respectively.Through bioinformatics analysis,PdbHLH57 has been classified into the IIIf bHLH subgroup,with many members of this subgroup known to participate in anthocyanin biosynthesis.The subcellular localization analysis conducted in the leaf protoplasts of‘ZSCY’revealed that the PdbHLH57 protein is specifically localized in the nucleus.The transcription activation analysis was also conducted,and the results showed that the PdbHLH57 protein had self-transcription activation.To better explore the functions of the PdbHLH57 protein,two parts of this protein(PdbHLH57-1,PdbHLH57-2)were split to detect their transcriptional activation activity.The results indicated that PdbHLH57-1(1-433aa)had self-transcription activation,and PdbHLH57-2(433-628aa)had no transcription activation.The expression of PdbHLH57 peaked in June during different developmental stages in‘ZSCY’,and it was most highly expressed in the phloem among various tissues.These findings offer a basis for understanding the role of PdbHLH57 in colored-leaf poplar.
基金funded by a grant from the Russian Science Foundation № 24-24-00354
文摘It has recently become evident that the de novo emergence of genes is widespread and documented for a variety of organisms.De novo genes frequently emerge in proximity to existing genes,forming gene overlaps.Here,we present an analysis of the evolutionary history of a putative de novo gene,lawc,which overlaps with the conserved Trf2 gene,which encodes a general transcription factor in Drosophila melanogaster.We demonstrate that lawc emerged approximately 68 million years ago in the 5'-untranslated region(UTR)of Trf2 and displays an extensive spatiotemporal expression pattern.One of the most remarkable features of the lawc evolutionary history is that its emergence was facilitated by the engagement of Drosophilidae-specific short,highly conserved regions located in Trf2 introns.This represents a unique example of putative de novo gene birth involving conserved DNA regions localized in introns of conserved genes.The observed lawc expression pattern may be due to the overlap of lawc with the 5'-UTR of Trf2.This study not only enriches our understanding of gene evolution but also highlights the complex interplay between genetic conservation and innovation.
基金supported by the National Key Research and Development Program of China(No.2021YFD2200304)FundamentalResearch Funds for the Central Universities(2572022DQ08)the National Natural Science Foundation of China(No32171738).
文摘Glutathione-S-transferase(GST,EC2.5.1.18)multifunctional protease is important for detoxification,defense against biotic and abiotic stresses,and secondary metabolic material transport for plant growth and development.In this study,71 members of the BpGST family were identified from the entire Betula platyphylla Suk.genome.Most of the members encode proteins with amino acid lengths ranging from 101 to 875 and were localized to the cytoplasm by a prediction.BpGSTs can be divided into seven subfamilies,with a majority of birch U and F subfamily members according to gene structure,conserved motifs and evolutionary analysis.GST family genes showed collinearity with 22 genes in Oryza sativa L.,and three genes in Arabidopsis thaliana;promoter cis-acting elements predicted that the GST gene family is functional in growth,hormone regulation,and abiotic stress response.Most members of the F subfamily of GST(BpGSTFs)were expressed in roots,stems,leaves,and petioles,with the most expression observed in leaves.On the basis of the expression profiles of F subfamily genes(BpGSTF1 to BpGSTF13)during salt,mannitol and ABA stress,BpGSTF proteins seem to have multiple functions depending on the type of abiotic stress;for instance,BpGSTs may function at different times during abiotic stress.This study enhances understanding of the GST gene family and provides a basis for further exploration of their function in birch.
基金Supported by College Student Innovation and Entrepreneurship Training Program(S202210553003)Hunan Provincial Education Department Outstanding Youth Research Project(23B0820).
文摘Kinesins are a superfamily of proteins widely present in eukaryotes,playing crucial roles in plant cell wall assembly,cell elongation regulation,gravity sensing,and fertility control.In this study,bioinformatics analysis of the OsKMP2 gene(LOC_Os02g28850)was performed using online tools such as ExPASy-ProtParam,ProtScale,CD-search,and DNAMAN software.Additionally,qRT-PCR was employed to analyze the tissue expression pattern of OsKMP2.The results showed that the molecular weight of the OsKMP2 is 118.39728 kDa,and it is a hydrophilic and unstable acidic protein.Secondary structure prediction revealed that it primarily consists ofα-helices(69.45%),random coils(25.19%),and extended strands(5.36%).The gene was expressed in various rice tissues,with the highest expression level observed in leaves.These results indicate that the OsKMP2 gene exhibits high evolutionary conservation and functional diversity in rice.
文摘To understand the regulation system of nitrogen X-starvation in higher plants, a cDNA library from N-starved rice (Oryza sativa L.) seedlings was constructed using rapid subtraction hybridization (RaSH) procedure. Through reverse Northern analysis and Northern blotting, 18 unique known genes and two unique unknown genes were identified, which were up-regulated by N-starvation in rice. The known genes are involved in several metabolisms including carbon metabolism, secondary metabolite synthesis, ubiquitylation and protein degradation, phytohormone metabolism, signal transduction, growth regulator and transcription factors. Different induced expression patterns based on spatial and temporal express ions were found for these genes. The results indicate the cross-talks between N-starvation response and various metabolisms in plants.
基金supported by funds from the National Science & Technology Pillar Program of China(2007BAD78B03)the 11th Five-Year Plan Key Project of Sichuan Province, China (07SG111-003-1)
文摘Spatial and temporal expression patterns of Sbel and Sbe2 that encode starch branching enzyme (SBE) Ⅰ and Ⅱ, respectively, in sweet potato (Ipomoea batatas L.) were analyzed. Expression of both genes in Escherichia coli indicate that both genes encoded active SBE. Analysis with real-time quantitative polymerase chain reaction technique indicates that IbSbel mRNA was expressed at very low levels in leaves but was the predominant isoform in tuberous root while the reverse case was found for lbSbe2. The expression pattern of IbSbel, closely resembles that of AGPase S, a gene coding for one of the subunits ofADP-glucose pyrophosphorylase, which is the key regulatory enzyme in the starch biosynthetic pathway. Western analysis detected at least two isoforms of SBE I in tuberous roots, those two isoforms showed adverse expression patterns with the development of the tuberous roots. Expression of the two IbSbe genes exhibited a diurnal rhythm during a 12-h cycle when fed a continuous solution of sucrose. Abscisic acid (ABA) was aother potent inducer of IbSbe expression, but bypassed the semidian oscillator.
基金supported by the National Natural Science Foundation of China(No.31930105)China Agriculture Research Systems(CARS-40)China Postdoctoral Science Foundation(No.2020 M680028).
文摘Background:Heterosis is an important biological phenomenon that has been extensively utilized in agricultural breeding.However,negative heterosis is also pervasively observed in nature,which can cause unfavorable impacts on production performance.Compared with systematic studies of positive heterosis,the phenomenon of negative heterosis has been largely ignored in genetic studies and breeding programs,and the genetic mechanism of this phenomenon has not been thoroughly elucidated to date.Here,we used chickens,the most common agricultural animals worldwide,to determine the genetic and molecular mechanisms of negative heterosis.Results:We performed reciprocal crossing experiments with two distinct chicken lines and found that the body weight presented widely negative heterosis in the early growth of chickens.Negative heterosis of carcass traits was more common than positive heterosis,especially breast muscle mass,which was over−40%in reciprocal progenies.Genome-wide gene expression pattern analyses of breast muscle tissues revealed that nonadditivity,including dominance and overdominace,was the major gene inheritance pattern.Nonadditive genes,including a substantial number of genes encoding ATPase and NADH dehydrogenase,accounted for more than 68%of differentially expressed genes in reciprocal crosses(4257 of 5587 and 3617 of 5243,respectively).Moreover,nonadditive genes were significantly associated with the biological process of oxidative phosphorylation,which is the major metabolic pathway for energy release and animal growth and development.The detection of ATP content and ATPase activity for purebred and crossbred progenies further confirmed that chickens with lower muscle yield had lower ATP concentrations but higher hydrolysis activity,which supported the important role of oxidative phosphorylation in negative heterosis for growth traits in chickens.Conclusions:These findings revealed that nonadditive genes and their related oxidative phosphorylation were the major genetic and molecular factors in the negative heterosis of growth in chickens,which would be beneficial to future breeding strategies.
基金supported by the The National Key ResearchDevelopment Program of China(2016YFD0101400,2017YFD0101600)
文摘Background: The SWEET (Sugars will eventually be exported transporters) gene family plays multiple roles in plant physiological activities and development process. It participates in reproductive development and in the process of sugar transport and absorption, plant senescence and stress responses and plant-pathogen interaction. However, thecomprehensive analysis of SWEET genes has not been reported in cotton. Results: In this study, we identified 22, 31, 55 and 60 SWEETgenes from the sequenced genomes of Gossypium orboreum, G. rairnondii, G. hirsutum and G. borbadense, respectively. Phylogenetic tree analysis showed that the SWEET genes could be divided into four groups, which were further classified into 14 sub-clades. Further analysis of chromosomal location, synteny analysis and gene duplication suggested that the orthologs showed a good collinearity and segmental duplication events played a crucial role in the expansion of the family in cotton. Specific MtN3_slv domains were highly conserved between Arabidopsis and cotton by exon-intron organization and motif analysis. In addition, the expression pattern in different tissues indicated that the duplicated genes in cotton might have acquired new functions as a result of sub-functionalization or neo-functionalization. The expression pattern of SWEET genes showed that the different genes were induced by diverse stresses. The identification and functional analysis of SWEET genes in cotton may provide more candidate genes for genetic modification. Conclusion: SWEET genes were classified into four clades in cotton. The expression patterns suggested that the duplicated genes might have experienced a functional divergence. This work provides insights into the evolution of SWEETgenes and more candidates for specific genetic modification, which will be useful in future research.