Quantum algorithms have demonstrated provable speedups over classical counterparts,yet establishing a comprehensive theoretical framework to understand the quantum advantage remains a core challenge.In this work,we de...Quantum algorithms have demonstrated provable speedups over classical counterparts,yet establishing a comprehensive theoretical framework to understand the quantum advantage remains a core challenge.In this work,we decode the quantum search advantage by investigating the critical role of quantum state properties in random-walk-based algorithms.We propose three distinct variants of quantum random-walk search algorithms and derive exact analytical expressions for their success probabilities.These probabilities are fundamentally determined by specific initial state properties:the coherence fraction governs the first algorithm’s performance,while entanglement and coherence dominate the outcomes of the second and third algorithms,respectively.We show that increased coherence fraction enhances success probability,but greater entanglement and coherence reduce it in the latter two cases.These findings reveal fundamental insights into harnessing quantum properties for advantage and guide algorithm design.Our searches achieve Grover-like speedups and show significant potential for quantum-enhanced machine learning.展开更多
OBJECTIVE: To explore the possibility of expression of exogenous gene in transduced bone marrow derived stromal cells (BMSCs). METHODS: The marker gene, pbLacZ, was transferred into cultured BMSCs and the expression o...OBJECTIVE: To explore the possibility of expression of exogenous gene in transduced bone marrow derived stromal cells (BMSCs). METHODS: The marker gene, pbLacZ, was transferred into cultured BMSCs and the expression of transduced gene by X-gal staining was examined. Then plasmid pcDNA3-rhBMP7 was delivered to cultured BMSCs. Through immunohistochemical staining and RT-PCR assay, the expression of rhBMP7 gene was detected. RESULTS: The exogenous gene could be expressed efficiently in transduced BMSCs. CONCLUSION: The present study provided a theoretical basis to gene therapy on the problems of bone and cartilage tissue.展开更多
Background:Hepatocellular carcinoma(HCC)is one of the most prevalent human cancers with high mortality.Long non-coding RNA heart and neural crest derivatives expressed 2 anti-sense 1(HAND2-AS1)is down-regulated in sev...Background:Hepatocellular carcinoma(HCC)is one of the most prevalent human cancers with high mortality.Long non-coding RNA heart and neural crest derivatives expressed 2 anti-sense 1(HAND2-AS1)is down-regulated in several cancers including HCC,yet the precise mechanisms how HAND2-AS1 regulates cell survival in HCC remains poorly understood.Methods:The expression levels of HAND2-AS1 and miR-300 were measured using quantitative real-time PCR.The protein levels of suppressor of cytokine signaling 5(SOCS5),Bcl-2,Bax and cleaved caspase-3 were determined by Western blot.Cell viability and cell proliferation were assessed using cell counting kit-8 and clone formation assay,respectively.Cell apoptosis was detected using flow cytometry.The interactions between HAND2-AS1 and miR-300,miR-300 and SOCS5 were validated using luciferase reporter assay.Results:HAND2-AS1 was down-regulated in HCC tissues and cell lines,and the expression level of HAND2-AS1 was positively correlated to patient survival.HAND2-AS1 over-expression reduced viability and proliferation in HCC cells.Elevated HAND2-AS1 level induced apoptosis in HCC cells,accompanied with increased Bax and cleaved caspase-3 levels and decreased Bcl-2 level.We also validated that HAND2-AS1 acted as a sponge of miR-300,and there was a negative correlation between expression levels of HAND2-AS1 and miR-300 in HCC tissues.Furthermore,we found that SOCS5 was a downstream target of miR-300.In addition,miR-300 mimics abolished HAND2-AS1-mediated inhibition of cell viability and proliferation.miR-300 mimics also reversed the HAND2-AS1-induced apoptosis in HCC cells.Conclusion:lncRNA HAND2-AS1 inhibits proliferation in HCC through regulating miR-300/SOCS5 axis.展开更多
Background Folic acid is very important for embryonic development and dihydrofolate reductase is one of the key enzymes in the process of fotic acid performing its biological function. Therefore, the dysfunction of di...Background Folic acid is very important for embryonic development and dihydrofolate reductase is one of the key enzymes in the process of fotic acid performing its biological function. Therefore, the dysfunction of dihydrofolate reductase can inhibit the function of folic acid and finally cause the developmental malformations. In this study, we observed the abnormal cardiac phenotypes in dihydrofolate reductase (DHFR) gene knock-down zebrafish embryos, investigated the effect of DHFR on the expression of heart and neural crest derivatives expressed transcript 2 (HAND2) and explored the possible mechanism of DHFR knock-down inducing zebrafish cardiac malformations. Methods Morpholino oligonucleotides were microinjected into fertilized eggs to knock down the functions of DHFR or HAND2. Full length of HAND2 mRNA which was transcribed in vitro was microinjected into fertilized eggs to overexpress HAND2. The cardiac morphologies, the heart rates and the ventricular shortening fraction were observed and recorded under the microscope at 48 hours post fertilization. Whole-mount in situ hybridization and real-time PCR were performed to detect HAND2 expression. Results DHFR or HAND2 knock-down caused the cardiac malformation in zebrafish. The expression of HAND2 was obviously reduced in DHFR knock-down embryos (P〈0.05). Microinjecting HAND2 mRNA into fertilized eggs can induce HAND2 overexpression. HAND2 overexpression rescued the cardiac malformation phenotypes of DHFR knock-down embryos. Conclusions DHFR plays a crucial role in cardiac development. The down-regulation of HAND2 caused by DHFR knock-down is the possible mechanism of DHFR knock-down inducing the cardiac malformation.展开更多
基金supported by the Fundamental Research Funds for the Central Universities,the National Natural Science Foundation of China(Grant Nos.12371132,12075159,12171044,12071179,and 12405006)the specific research fund of the Innovation Platform for Academicians of Hainan Province.
文摘Quantum algorithms have demonstrated provable speedups over classical counterparts,yet establishing a comprehensive theoretical framework to understand the quantum advantage remains a core challenge.In this work,we decode the quantum search advantage by investigating the critical role of quantum state properties in random-walk-based algorithms.We propose three distinct variants of quantum random-walk search algorithms and derive exact analytical expressions for their success probabilities.These probabilities are fundamentally determined by specific initial state properties:the coherence fraction governs the first algorithm’s performance,while entanglement and coherence dominate the outcomes of the second and third algorithms,respectively.We show that increased coherence fraction enhances success probability,but greater entanglement and coherence reduce it in the latter two cases.These findings reveal fundamental insights into harnessing quantum properties for advantage and guide algorithm design.Our searches achieve Grover-like speedups and show significant potential for quantum-enhanced machine learning.
文摘OBJECTIVE: To explore the possibility of expression of exogenous gene in transduced bone marrow derived stromal cells (BMSCs). METHODS: The marker gene, pbLacZ, was transferred into cultured BMSCs and the expression of transduced gene by X-gal staining was examined. Then plasmid pcDNA3-rhBMP7 was delivered to cultured BMSCs. Through immunohistochemical staining and RT-PCR assay, the expression of rhBMP7 gene was detected. RESULTS: The exogenous gene could be expressed efficiently in transduced BMSCs. CONCLUSION: The present study provided a theoretical basis to gene therapy on the problems of bone and cartilage tissue.
文摘Background:Hepatocellular carcinoma(HCC)is one of the most prevalent human cancers with high mortality.Long non-coding RNA heart and neural crest derivatives expressed 2 anti-sense 1(HAND2-AS1)is down-regulated in several cancers including HCC,yet the precise mechanisms how HAND2-AS1 regulates cell survival in HCC remains poorly understood.Methods:The expression levels of HAND2-AS1 and miR-300 were measured using quantitative real-time PCR.The protein levels of suppressor of cytokine signaling 5(SOCS5),Bcl-2,Bax and cleaved caspase-3 were determined by Western blot.Cell viability and cell proliferation were assessed using cell counting kit-8 and clone formation assay,respectively.Cell apoptosis was detected using flow cytometry.The interactions between HAND2-AS1 and miR-300,miR-300 and SOCS5 were validated using luciferase reporter assay.Results:HAND2-AS1 was down-regulated in HCC tissues and cell lines,and the expression level of HAND2-AS1 was positively correlated to patient survival.HAND2-AS1 over-expression reduced viability and proliferation in HCC cells.Elevated HAND2-AS1 level induced apoptosis in HCC cells,accompanied with increased Bax and cleaved caspase-3 levels and decreased Bcl-2 level.We also validated that HAND2-AS1 acted as a sponge of miR-300,and there was a negative correlation between expression levels of HAND2-AS1 and miR-300 in HCC tissues.Furthermore,we found that SOCS5 was a downstream target of miR-300.In addition,miR-300 mimics abolished HAND2-AS1-mediated inhibition of cell viability and proliferation.miR-300 mimics also reversed the HAND2-AS1-induced apoptosis in HCC cells.Conclusion:lncRNA HAND2-AS1 inhibits proliferation in HCC through regulating miR-300/SOCS5 axis.
文摘Background Folic acid is very important for embryonic development and dihydrofolate reductase is one of the key enzymes in the process of fotic acid performing its biological function. Therefore, the dysfunction of dihydrofolate reductase can inhibit the function of folic acid and finally cause the developmental malformations. In this study, we observed the abnormal cardiac phenotypes in dihydrofolate reductase (DHFR) gene knock-down zebrafish embryos, investigated the effect of DHFR on the expression of heart and neural crest derivatives expressed transcript 2 (HAND2) and explored the possible mechanism of DHFR knock-down inducing zebrafish cardiac malformations. Methods Morpholino oligonucleotides were microinjected into fertilized eggs to knock down the functions of DHFR or HAND2. Full length of HAND2 mRNA which was transcribed in vitro was microinjected into fertilized eggs to overexpress HAND2. The cardiac morphologies, the heart rates and the ventricular shortening fraction were observed and recorded under the microscope at 48 hours post fertilization. Whole-mount in situ hybridization and real-time PCR were performed to detect HAND2 expression. Results DHFR or HAND2 knock-down caused the cardiac malformation in zebrafish. The expression of HAND2 was obviously reduced in DHFR knock-down embryos (P〈0.05). Microinjecting HAND2 mRNA into fertilized eggs can induce HAND2 overexpression. HAND2 overexpression rescued the cardiac malformation phenotypes of DHFR knock-down embryos. Conclusions DHFR plays a crucial role in cardiac development. The down-regulation of HAND2 caused by DHFR knock-down is the possible mechanism of DHFR knock-down inducing the cardiac malformation.