Apolipoprotein A-I (apoA-I), the principal apolipoprotein of high density lipoprotein (HDL) particle, has been the subject of intense investigation because of its
Olfactory receptors are crucial for detecting odors and play a vital role in our sense of smell,influencing behaviors from food choices to emotional memories.These receptors also contribute to our perception of flavor...Olfactory receptors are crucial for detecting odors and play a vital role in our sense of smell,influencing behaviors from food choices to emotional memories.These receptors also contribute to our perception of flavor and have potential applications in medical diagnostics and environmental monitoring.The ability of the olfactory system to regenerate its sensory neurons provides a unique model to study neural regeneration,a phenomenon largely absent in the central nervous system.Insights gained from how olfactory neurons continuously replace themselves and reestablish functional connections can provide strategies to promote similar regenerative processes in the central nervous system,where damage often results in permanent deficits.Understanding the molecular and cellular mechanisms underpinning olfactory neuron regeneration could pave the way for developing therapeutic approaches to treat spinal co rd injuries and neurodegenerative diseases like Alzheimer's disease.Olfa ctory receptors are found in almost any cell of eve ry orga n/tissue of the mammalian body.This ectopic expression provides insights into the chemical structures that can activate olfactory receptors.In addition to odors,olfactory receptors in ectopic expression may respond to endogenous compounds and molecules produced by mucosal colonizing microbiota.The analysis of the function of olfactory receptors in ectopic expression provides valuable information on the signaling pathway engaged upon receptor activation and the receptor's role in proliferation and cell differentiation mechanisms.This review explo res the ectopic expression of olfa ctory receptors and the role they may play in neural regeneration within the central nervous system,with particular attention to compounds that can activate these receptors to initiate regenerative processes.Evidence suggests that olfactory receptors could serve as potential therapeutic targets for enhancing neural repair and recovery following central nervous system injuries.展开更多
Background:How AMP activated protein kinase(AMPK)signaling regulates mito-chondrial functions and mitophagy in human trophoblast cells remains unclear.This study was designed to investigate potential players mediating...Background:How AMP activated protein kinase(AMPK)signaling regulates mito-chondrial functions and mitophagy in human trophoblast cells remains unclear.This study was designed to investigate potential players mediating the regulation of AMPK on mitochondrial functions and mitophagy by next generation RNA-seq.Methods:We compared ATP production in protein kinase AMP-activated catalytic subunit alpha 1/2(PRKAA1/2)knockdown(AKD)and control BeWo cells using the Seahorse real-time ATP rate test,then analyzed gene expression profiling by RNA-seq.Differentially expressed genes(DEG)were examined by Gene Ontology(GO)analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment.Then protein-protein interactions(PPI)among mitochondria related genes were fur-ther analyzed using Metascape and Ingenuity Pathway Analysis(IPA)software.Results:Both mitochondrial and glycolytic ATP production in AKD cells were lower than in the control BeWo cells(CT),with a greater reduction of mitochondrial ATP production.A total of 1092 DEGs were identified,with 405 upregulated and 687 downregulated.GO analysis identified 60 genes associated with the term‘mitochon-drion’in the cellular component domain.PPI analysis identified three clusters of mito-chondria related genes,including aldo-keto reductase family 1 member B10 and B15(AKR1B10,AKR1B15),alanyl-tRNA synthetase 1(AARS1),mitochondrial ribosomal protein S6(MRPS6),mitochondrial calcium uniporter dominant negative subunit beta(MCUB)and dihydrolipoamide branched chain transacylase E2(DBT).Conclusions:In summary,this study identified multiple mitochondria related genes regulated by AMPK in BeWo cells,and among them,three clusters of genes may po-tentially contribute to altered mitochondrial functions in response to reduced AMPK signaling.展开更多
The SKP1 gene is an important component of the SCF(SKP1-Cullin1-F-box)complex and serves as a bridge connecting the F-box and Cullin1genes(F-box-SKP1-Cullin1).The pattern of S-RNase being ubiquitously labelled by the ...The SKP1 gene is an important component of the SCF(SKP1-Cullin1-F-box)complex and serves as a bridge connecting the F-box and Cullin1genes(F-box-SKP1-Cullin1).The pattern of S-RNase being ubiquitously labelled by the SCF complex and degraded by the 26S protease accounts for the bulk of the available self-incompatibility studies.In this study,15 ClSKP1s from the‘Xiangshui'lemon genome and ubiquitome exist in the same SKP1 conserved domain(CD)as SKP1s in other species.The q PCR results showed that SKP1-6 and SKP1-14 have tissue expression patterns specific for expression in pollen.In addition,SKP1-6 and SKP1-14 in the stigma,style and ovary were significantly upregulated after self-pollination compared to those after cross-pollination.A subcellular location showed that SKP1-6 and SKP1-14 were located in the nucleus.In addition,yeast two-hybrid(Y2H)assays,bimolecular fluorescence complementation(BiFC)and luciferase complementation imaging(LCI)assays showed that SKP1-6 interacted with F-box1,F-box33,F-box34,F-box17,F-box19,Cullin1-2 and 26S proteasome subunit 4 homolog A(26S PS4HA).SKP1-14 interacted with F-box17,F-box19,F-box35,Cullin1-2 and 26S PS4HA.The interaction of Cullin1-2 and the F-box with SKP1 as a bridge was verified by a yeast three-hybrid experiment.The ability of S3-RNase to inhibit pollen and pollen tube growth and development was assessed using in vitro pollen co-culture experiments with recombinant S3-RNase proteins.Overall,this study provides important experimental evidence and theoretical basis for understanding the mechanism of self-incompatibility in plants by revealing the key role of the SCF complex in‘Xiangshui'lemon,which is bridged by ClSKP1-6,in self-incompatibility.The results of this study are of great significance for the future indepth exploration of the molecular mechanism of the SCF complex and its wide application in the self-incompatibility of plants.展开更多
Rice is a poor source of folate,an essential micronutrient for the body.Biofortification offers an effective way to enhance the folate content of rice and alleviate folate deficiencies in humans.In this study,we confi...Rice is a poor source of folate,an essential micronutrient for the body.Biofortification offers an effective way to enhance the folate content of rice and alleviate folate deficiencies in humans.In this study,we confirmed that OsADCS and OsGTPCHI,encoding the initial enzymes necessary for folate synthesis,positively regulate folate accumulation in knockout mutants of both japonica and indica rice backgrounds.The folate content in the low-folate japonica variety was slightly increased by the expression of the indica alleles driven by the endosperm-specific promoter.We further obtained co-expression lines by stacking OsADCS and OsGTPCHI genes;the folate accumulation in brown rice and polished rice reached 5.65μg/g and 2.95μg/g,respectively,representing 37.9-fold and 26.5-fold increases compared with the wild type.Transcriptomic analysis of rice grains from six transgenic lines showed that folate changes affected biological pathways involved in the synthesis and metabolism of rice seed storage substances,while the expression of other folate synthesis genes was weakly regulated.In addition,we identified Aus rice as a high-folate germplasm carrying superior haplotypes of OsADCS and OsGTPCHI through natural variation.This study provides an alternative and effective complementary strategy for rice biofortification,promoting the rational combination of metabolic engineering and conventional breeding to breed high-folate varieties.展开更多
Background:Heat shock protein B8(HSPB8)is implicated in autophagy,and its aberrant expression has been linked to both the ini-tiation and progression of tumors.However,the role and function of HSPB8 in colorectal canc...Background:Heat shock protein B8(HSPB8)is implicated in autophagy,and its aberrant expression has been linked to both the ini-tiation and progression of tumors.However,the role and function of HSPB8 in colorectal cancer(CRC)and across multiple cancer types remain unclear.This study aimed to map the transcriptome of autophagy-related genes in CRC and to conduct a pan-cancer analysis of HSPB8 as both a prognostic and immunological biomarker.Methods:We performed bioinformatics analyses on GSE113513 and GSE74602 to identify differentially expressed genes(DEGs)in CRC.These DEGs were then compared with autophagy-related genes to identify critical overlapping genes.The Kaplan-Meier plotter was used to verify the ex-pression of autophagy-linked DEGs and evaluate its prognostic value.The protein expression of Hub gene in CRC was analyzed using the Human Protein Atlas database.The cBioPortal was used to analyze the type and frequency of Hub gene mutations.The TIMER(Tumor Immune Estimation Resource)database was used to study the correlation between HSPB8 and immune infiltration in CRC.Results:In total,825 DEGs were identified,including 8 autophagy-linked DEGs:ATIC,MYC,HSPB8,TNFSF10,BCL2,TP53INP2,ITPR1,and NKX2-3.Survival analysis showed that increased HSPB8 expression significantly correlates with poor prognosis in patients with CRC(p<0.05).HSPB8 was also found to be differentially expressed in various cancer types,correlating with both prognosis and immune infiltration.Further,changes in HSPB8 methylation and phosphorylation status were observed across several cancers,suggesting potential regulatory mechanisms.Therefore,HSPB8 may serve as a crucial prognostic and immunological biomarker in CRC and other cancers.Conclusions:This study provides new insights into the role of autophagy-related genes in cancer progression and highlights HSPB8 as a potential target for cancer diagnostics and therapy.展开更多
Frequent drought events severely restrict global crop productivity,especially those occurring in the reproductive stages.Moderate drought priming during the earlier growth stages is a promising strategy for allowing p...Frequent drought events severely restrict global crop productivity,especially those occurring in the reproductive stages.Moderate drought priming during the earlier growth stages is a promising strategy for allowing plants to resist recurrent severe drought stress.However,the underlying mechanisms remain unclear.Here,we subjected wheat plants to drought priming during the vegetative growth stage and to severe drought stress at 10 days after anthesis.We then collected leaf samples at the ends of the drought priming and recovery periods,and at the end of drought stress for transcriptome sequencing in combination with phenotypic and physiological analyses.The drought-primed wheat plants maintained a lower plant temperature,with higher stomatal openness and photosynthesis,thereby resulting in much lower 1,000-grain weight and grain yield losses under the later drought stress than the non-primed plants.Interestingly,416 genes,including 27 transcription factors(e.g.,MYB,NAC,HSF),seemed to be closely related to the improved drought tolerance as indicated by the dynamic transcriptome analysis.Moreover,the candidate genes showed six temporal expression patterns and were significantly enriched in several stress response related pathways,such as plant hormone signal transduction,starch and sucrose metabolism,arginine and proline metabolism,inositol phosphate metabolism,and wax synthesis.These findings provide new insights into the physiological and molecular mechanisms of the long-term effects of early drought priming that can effectively improve drought tolerance in wheat,and may provide potential approaches for addressing the challenges of increasing abiotic stresses and securing food safety under global warming scenarios.展开更多
Bone metastasis is the primary cause of mortality in breast cancer(BC)patients.The present study elucidates the functional role of the differentiated embryonic chondrocyte-expressed gene 1(DEC1)in promoting BC-related...Bone metastasis is the primary cause of mortality in breast cancer(BC)patients.The present study elucidates the functional role of the differentiated embryonic chondrocyte-expressed gene 1(DEC1)in promoting BC-related bone metastasis.Analysis of patient-derived samples and public databases revealed a significant upregulation of DEC1 and CXCR4 in breast tumors compared with adjacent normal tissues,with elevated levels correlating with increased metastatic potential,suggesting their synergistic involvement in BC progression.Intracardiac injection experiments demonstrated that Dec1-WT 4T1 cells induced more severe osteolysis and larger metastatic lesions than Dec1-KD 4T1 cells.In MDA-MB-231 cells,DEC1 overexpression(OE)upregulated CXCR4 and proliferation/migration-related genes,whereas DEC1 knockdown reversed these effects.Notably,AMD3100,a specific CXCR4 antagonist,partially reversed the DEC1-OE-induced upregulation of CXCR4 and associated pro-metastatic genes.Mechanistically,DEC1 bound to the CXCR4 promoter region(-230 to-326)and activated its transcription,corroborated by ChIP-seq data.Furthermore,pharmacological inhibition of AKT(LY294002)or JAK2(AZD1480),but not ERK(PD98059),attenuated DEC1-mediated CXCR4 upregulation,although all three inhibitors mitigated DEC1-driven migration-related gene expression.Additionally,DEC1 enhanced CXCL12 secretion from mesenchymal stromal cells and osteoblasts,amplifying the CXCR4/CXCL12 axis within the bone microenvironment.Collectively,our findings demonstrate that DEC1 promotes BC bone metastasis by directly transactivating CXCR4 expression,providing a molecular basis for targeting DEC1 to prevent and treat BC bone metastasis.展开更多
Mature oligodendrocytes form myelin sheaths that are crucial for the insulation of axons and efficient signal transmission in the central nervous system.Recent evidence has challenged the classical view of the functio...Mature oligodendrocytes form myelin sheaths that are crucial for the insulation of axons and efficient signal transmission in the central nervous system.Recent evidence has challenged the classical view of the functionally static mature oligodendrocyte and revealed a gamut of dynamic functions such as the ability to modulate neuronal circuitry and provide metabolic support to axons.Despite the recognition of potential heterogeneity in mature oligodendrocyte function,a comprehensive summary of mature oligodendrocyte diversity is lacking.We delve into early 20th-century studies by Robertson and Río-Hortega that laid the foundation for the modern identification of regional and morphological heterogeneity in mature oligodendrocytes.Indeed,recent morphologic and functional studies call into question the long-assumed homogeneity of mature oligodendrocyte function through the identification of distinct subtypes with varying myelination preferences.Furthermore,modern molecular investigations,employing techniques such as single cell/nucleus RNA sequencing,consistently unveil at least six mature oligodendrocyte subpopulations in the human central nervous system that are highly transcriptomically diverse and vary with central nervous system region.Age and disease related mature oligodendrocyte variation denotes the impact of pathological conditions such as multiple sclerosis,Alzheimer's disease,and psychiatric disorders.Nevertheless,caution is warranted when subclassifying mature oligodendrocytes because of the simplification needed to make conclusions about cell identity from temporally confined investigations.Future studies leveraging advanced techniques like spatial transcriptomics and single-cell proteomics promise a more nuanced understanding of mature oligodendrocyte heterogeneity.Such research avenues that precisely evaluate mature oligodendrocyte heterogeneity with care to understand the mitigating influence of species,sex,central nervous system region,age,and disease,hold promise for the development of therapeutic interventions targeting varied central nervous system pathology.展开更多
BACKGROUND Pancreatic ductal adenocarcinoma(PDAC)is an aggressive lethal malignancy with limited options for treatment and a 5-year survival rate of 11%in the United States.As for other types of tumors,such as colorec...BACKGROUND Pancreatic ductal adenocarcinoma(PDAC)is an aggressive lethal malignancy with limited options for treatment and a 5-year survival rate of 11%in the United States.As for other types of tumors,such as colorectal cancer,aberrant de novo lipid synthesis and reprogrammed lipid metabolism have been suggested to be associated with PDAC development and progression.AIM To identify the possible involvement of lipid metabolism in PDAC by analyzing in tumoral and non-tumoral tissues the expression level of the most relevant genes involved in the long-chain fatty acid(FA)import into cell.METHODS A gene expression analysis of FASN,CD36,SLC27A1,SLC27A2,SLC27A3,SLC27A4,SLC27A5,ACSL1,and ACSL3 was performed by qRT-PCR in 24 tumoral PDAC tissues and 11 samples from non-tumoral pancreatic tissues obtained via fine needle aspiration or via surgical resection.The genes were considered significantly dysregulated between the groups when the p value was<0.05 and the fold change(FC)was≤0.5 and≥2.RESULTS We found that three FA transporters and two long-chain acyl-CoA synthetases genes were significantly upregulated in the PDAC tissue compared to the non-tumoral tissue:SLC27A2(FC=5.66;P=0.033),SLC27A3(FC=2.68;P=0.040),SLC27A4(FC=3.13;P=0.033),ACSL1(FC=4.10;P<0.001),and ACSL3(FC=2.67;P=0.012).We further investigated any possible association between the levels of the analyzed mRNAs and the specific characteristics of the tumors,including the anatomic location,the lymph node involvement,and the presence of metastasis.A significant difference in the expression of SLC27A3(FC=3.28;P=0.040)was found comparing patients with and without lymph nodes involvement with an overexpression of this transcript in 17 patients presenting tumoral cells in the lymph nodes.CONCLUSION Despite the low number of patients analyzed,these preliminary results seem to be promising.Addressing lipid metabolism through a broad strategy could be a beneficial way to treat this malignancy.Future in vitro and in vivo studies on these genes may offer important insights into the mechanisms linking PDAC with the long-chain FA import pathway.展开更多
Neuronal activity,synaptic transmission,and molecular changes in the basolateral amygdala play critical roles in fear memory.Cylindromatosis(CYLD)is a deubiquitinase that negatively regulates the nuclear factor kappa-...Neuronal activity,synaptic transmission,and molecular changes in the basolateral amygdala play critical roles in fear memory.Cylindromatosis(CYLD)is a deubiquitinase that negatively regulates the nuclear factor kappa-B pathway.CYLD is well studied in non-neuronal cells,yet underinvestigated in the brain,where it is highly expressed.Emerging studies have shown involvement of CYLD in the remodeling of glutamatergic synapses,neuroinflammation,fear memory,and anxiety-and autism-like behaviors.However,the precise role of CYLD in glutamatergic neurons is largely unknown.Here,we first proposed involvement of CYLD in cued fear expression.We next constructed transgenic model mice with specific deletion of Cyld from glutamatergic neurons.Our results show that glutamatergic CYLD deficiency exaggerated the expression of cued fear in only male mice.Further,loss of CYLD in glutamatergic neurons resulted in enhanced neuronal activation,impaired excitatory synaptic transmission,and altered levels of glutamate receptors accompanied by over-activation of microglia in the basolateral amygdala of male mice.Altogether,our study suggests a critical role of glutamatergic CYLD in maintaining normal neuronal,synaptic,and microglial activation.This may contribute,at least in part,to cued fear expression.展开更多
Degenerative cervical myelopathy is a common cause of spinal cord injury,with longer symptom duration and higher myelopathy severity indicating a worse prognosis.While numerous studies have investigated serological bi...Degenerative cervical myelopathy is a common cause of spinal cord injury,with longer symptom duration and higher myelopathy severity indicating a worse prognosis.While numerous studies have investigated serological biomarkers for acute spinal cord injury,few studies have explored such biomarkers for diagnosing degenerative cervical myelopathy.This study involved 30 patients with degenerative cervical myelopathy(51.3±7.3 years old,12 women and 18 men),seven healthy controls(25.7±1.7 years old,one woman and six men),and nine patients with cervical spondylotic radiculopathy(51.9±8.6 years old,three women and six men).Analysis of blood samples from the three groups showed clear differences in transcriptomic characteristics.Enrichment analysis identified 128 differentially expressed genes that were enriched in patients with neurological disabilities.Using least absolute shrinkage and selection operator analysis,we constructed a five-gene model(TBCD,TPM2,PNKD,EIF4G2,and AP5Z1)to diagnose degenerative cervical myelopathy with an accuracy of 93.5%.One-gene models(TCAP and SDHA)identified mild and severe degenerative cervical myelopathy with accuracies of 83.3%and 76.7%,respectively.Signatures of two immune cell types(memory B cells and memory-activated CD4^(+)T cells)predicted levels of lesions in degenerative cervical myelopathy with 80%accuracy.Our results suggest that peripheral blood RNA biomarkers could be used to predict lesion severity in degenerative cervical myelopathy.展开更多
Background:This study aims to identify distinct cellular subtypes within brain tissue using single-cell transcriptomic analysis,focusing on specific biomarkers that differentiate cell types and the effects of traditio...Background:This study aims to identify distinct cellular subtypes within brain tissue using single-cell transcriptomic analysis,focusing on specific biomarkers that differentiate cell types and the effects of traditional and exercise therapy.Methods:Four samples were analyzed:older control(OC),older exercise(OE),younger control(YC),and younger exercise(YE).Single-cell RNA sequencing was used to distinguish cellular subtypes through their biomarker profiles.Data visualization included violin and t-SNE plots to illustrate biomarker expression across cell clusters such as oligodendrocytes,microglia,and astrocytes.Additionally,BV2 cells were exposed to amyloid-beta fragments to simulate Alzheimer’s disease,assessing the impact of exercise-induced cellular responses.Results:Distinct cellular subtypes were identified:oligodendrocytes(MBP,St18),microglia(Dock8),and astrocytes(Aqp4,Gpc5).Sample OE was predominantly oligodendrocytes,while YE had more astrocytes,inhibitory neurons,and Canal-Retzius cells.YC showed a significant presence of Olfm3+ganglion neurons.ZEB1 gene knockout revealed changes in SMAD family gene expression,which regulate ferroptosis.Oxidative stress levels were also evaluated.Conclusion:This profiling enhances our understanding of brain cellular functions and interactions,potentially informing targeted therapies in neurological research.Exercise may influence brain cell immune responses and cell death pathways by regulating specific gene expressions,offering new insights for treating neuroinflammation and degeneration.展开更多
This editorial examines a recent study that used radiomics based on computed tomography(CT)to predict the expression of the fibroblast-related gene enhancer of zeste homolog 2(EZH2)and its correlation with the surviva...This editorial examines a recent study that used radiomics based on computed tomography(CT)to predict the expression of the fibroblast-related gene enhancer of zeste homolog 2(EZH2)and its correlation with the survival of patients with hepatocellular carcinoma(HCC).By integrating radiomics with molecular analysis,the study presented a strategy for accurately predicting the expression of EZH2 from CT scans.The findings demonstrated a strong link between the radiomics model,EZH2 expression,and patient prognosis.This noninvasive approach provides valuable insights into the therapeutic management of HCC.展开更多
The study by Cao et al aimed to identify early second-trimester biomarkers that could predict gestational diabetes mellitus(GDM)development using advanced proteomic techniques,such as Isobaric tags for relative and ab...The study by Cao et al aimed to identify early second-trimester biomarkers that could predict gestational diabetes mellitus(GDM)development using advanced proteomic techniques,such as Isobaric tags for relative and absolute quantitation isobaric tags for relative and absolute quantitation and liquid chromatography-mass spectrometry liquid chromatography-mass spectrometry.Their analysis revealed 47 differentially expressed proteins in the GDM group,with retinol-binding protein 4 and angiopoietin-like 8 showing significantly elevated serum levels compared to controls.Although these findings are promising,the study is limited by its small sample size(n=4 per group)and lacks essential details on the reproducibility and reliability of the protein quantification methods used.Furthermore,the absence of experimental validation weakens the interpretation of the protein-protein interaction network identified through bioinformatics analysis.The study's focus on second-trimester biomarkers raises concerns about whether this is a sufficiently early period to implement preventive interventions for GDM.Predicting GDM risk during the first trimester or pre-conceptional period may offer more clinical relevance.Despite its limitations,the study presents valuable insights into potential GDM biomarkers,but larger,well-validated studies are needed to establish their predictive utility and generalizability.展开更多
Intracerebral hemorrhage(ICH)is a common severe emergency in neurosurgery,causing tremendous economic pressure on families and society and devastating effects on patients both physically and psychologically,especially...Intracerebral hemorrhage(ICH)is a common severe emergency in neurosurgery,causing tremendous economic pressure on families and society and devastating effects on patients both physically and psychologically,especially among patients with poor functional outcomes.ICH is often accompanied by decreased consciousness and limb dysfunction.This seriously affects patients’ability to live independently.Although rapid advances in neurosurgery have greatly improved patient survival,there remains insufficient evidence that surgical treatment significantly improves long-term outcomes.With in-depth pathophysiological studies after ICH,increasing evidence has shown that secondary injury after ICH is related to long-term prognosis and that the key to secondary injury is various immune-mediated neuroinflammatory reactions after ICH.In basic and clinical studies of various systemic inflammatory diseases,triggering receptor expressed on myeloid cells 1/2(TREM-1/2),and the TREM receptor family is closely related to the inflammatory response.Various inflammatory diseases can be upregulated and downregulated through receptor intervention.How the TREM receptor functions after ICH,the types of results from intervention,and whether the outcomes can improve secondary brain injury and the long-term prognosis of patients are unknown.An analysis of relevant research results from basic and clinical trials revealed that the inhibition of TREM-1 and the activation of TREM-2 can alleviate the neuroinflammatory immune response,significantly improve the long-term prognosis of neurological function in patients with cerebral hemorrhage,and thus improve the ability of patients to live independently.展开更多
Objective INF2 is a member of the formins family.Abnormal expression and regulation of INF2 have been associated with the progression of various tumors,but the expression and role of INF2 in hepatocellular carcinoma(H...Objective INF2 is a member of the formins family.Abnormal expression and regulation of INF2 have been associated with the progression of various tumors,but the expression and role of INF2 in hepatocellular carcinoma(HCC)remain unclear.HCC is a highly lethal malignant tumor.Given the limitations of traditional treatments,this study explored the expression level,clinical value and potential mechanism of INF2 in HCC in order to seek new therapeutic targets.Methods In this study,we used public databases to analyze the expression of INF2 in pan-cancer and HCC,as well as the impact of INF2 expression levels on HCC prognosis.Quantitative real time polymerase chain reaction(RT-qPCR),Western blot,and immunohistochemistry were used to detect the expression level of INF2 in liver cancer cells and human HCC tissues.The correlation between INF2 expression and clinical pathological features was analyzed using public databases and clinical data of human HCC samples.Subsequently,the effects of INF2 expression on the biological function and Drp1 phosphorylation of liver cancer cells were elucidated through in vitro and in vivo experiments.Finally,the predictive value and potential mechanism of INF2 in HCC were further analyzed through database and immunohistochemical experiments.Results INF2 is aberrantly high expression in HCC samples and the high expression of INF2 is correlated with overall survival,liver cirrhosis and pathological differentiation of HCC patients.The expression level of INF2 has certain diagnostic value in predicting the prognosis and pathological differentiation of HCC.In vivo and in vitro HCC models,upregulated expression of INF2 triggers the proliferation and migration of the HCC cell,while knockdown of INF2 could counteract this effect.INF2 in liver cancer cells may affect mitochondrial division by inducing Drp1 phosphorylation and mediate immune escape by up-regulating PD-L1 expression,thus promoting tumor progression.Conclusion INF2 is highly expressed in HCC and is associated with poor prognosis.High expression of INF2 may promote HCC progression by inducing Drp1 phosphorylation and up-regulation of PD-L1 expression,and targeting INF2 may be beneficial for HCC patients with high expression of INF2.展开更多
The xylitol dehydrogenase(XDH)is a crucial enzyme involved in the xylose utilization in pentose⁃catabolizing yeasts and fungi.In addition to producing xylulose,XDH can also be employed to develop a biosensor for monit...The xylitol dehydrogenase(XDH)is a crucial enzyme involved in the xylose utilization in pentose⁃catabolizing yeasts and fungi.In addition to producing xylulose,XDH can also be employed to develop a biosensor for monitoring xylitol concentration.In this study,the gene encoding the thermophilic fungus Talaromyces emersonii XDH(TeXDH)was heterologously expressed in Escherichia coli BL21(DE3)at 16℃in the soluble form.Recombinant TeXDH with high purity was purified by using a Ni⁃NTA affinity column.Size⁃exclusion chromatography and SDS⁃PAGE analysis demonstrated that the puri⁃fied recombinant TeXDH exists as a native trimer with a molecular mass of approximately 116 kD,and is composed of three identical subunits,each with a molecular weight of around 39 kD.The TeXDH strictly preferred NAD^(+)as a coenzyme to NADP^(+).The optimal temperature and pH of the TeXDH were 40℃and 10.0,respectively.After EDTA treatment,the enzyme activity of TeXDH decreased to 43.26%of the initial enzyme activity,while the divalent metal ions Mg^(2+)or Ca^(2+)could recover the enzyme activity of TeXDH,reaching 103.32%and 110.69%of the initial enzyme activity,respectively,making them the optimal divalent metal ion cofactors for TeXDH enzyme.However,the divalent metal ions of Mn^(2+),Ni^(2+),Cu^(2+),Zn^(2+),Co^(2+),and Cd^(2+)significantly inhibited the activity of TeXDH.ICP⁃MS and molecular doc⁃king studies revealed that 1 mol/L of TeXDH bound 2 mol/L Zn^(2+)ions and 1 mol/L Mg^(2+)ion.Further⁃more,TeXDH exhibited a high specificity for xylitol,laying the foundation for the development of future xylitol biosensors.展开更多
Gestational diabetes mellitus(GDM)is a metabolic disorder,recognised during 24-28 weeks of pregnancy.GDM is linked with adverse newborn outcomes such as macrosomia,premature delivery,metabolic disorder,cardiovascular,...Gestational diabetes mellitus(GDM)is a metabolic disorder,recognised during 24-28 weeks of pregnancy.GDM is linked with adverse newborn outcomes such as macrosomia,premature delivery,metabolic disorder,cardiovascular,and neurological disorders.Recent investigations have focused on the correlation of genetic factors such asβ-cell function and insulin secretary genes(transcription factor 7 like 2,potassium voltage-gated channel subfamily q member 1,adipo-nectin etc.)on maternal metabolism during gestation leading to GDM.Epigenetic alterations like DNA methylation,histone modification,and miRNA expression can influence gene expression and play a dominant role in feto-maternal meta-bolic pathways.Interactions between genes and environment,resulting in differ-ential gene expression patterns may lead to GDM.Researchers suggested that GDM women are more susceptible to insulin resistance,which alters intrauterine surroundings,resulting hyperglycemia and hyperinsulinemia.Epigenetic modi-fications in genes affecting neuroendocrine activities,and metabolism,increase the risk of obesity and type 2 diabetes in offspring.There is currently no treatment or effective preventive method for GDM,since the molecular processes of insulin resistance are not well understood.The present review was undertaken to un-derstand the pathophysiology of GDM and its effects on adverse neonatal out-comes.In addition,the study of genetic and epigenetic alterations will provide lead to researchers in the search for predictive molecular biomarkers.展开更多
文摘Apolipoprotein A-I (apoA-I), the principal apolipoprotein of high density lipoprotein (HDL) particle, has been the subject of intense investigation because of its
文摘Olfactory receptors are crucial for detecting odors and play a vital role in our sense of smell,influencing behaviors from food choices to emotional memories.These receptors also contribute to our perception of flavor and have potential applications in medical diagnostics and environmental monitoring.The ability of the olfactory system to regenerate its sensory neurons provides a unique model to study neural regeneration,a phenomenon largely absent in the central nervous system.Insights gained from how olfactory neurons continuously replace themselves and reestablish functional connections can provide strategies to promote similar regenerative processes in the central nervous system,where damage often results in permanent deficits.Understanding the molecular and cellular mechanisms underpinning olfactory neuron regeneration could pave the way for developing therapeutic approaches to treat spinal co rd injuries and neurodegenerative diseases like Alzheimer's disease.Olfa ctory receptors are found in almost any cell of eve ry orga n/tissue of the mammalian body.This ectopic expression provides insights into the chemical structures that can activate olfactory receptors.In addition to odors,olfactory receptors in ectopic expression may respond to endogenous compounds and molecules produced by mucosal colonizing microbiota.The analysis of the function of olfactory receptors in ectopic expression provides valuable information on the signaling pathway engaged upon receptor activation and the receptor's role in proliferation and cell differentiation mechanisms.This review explo res the ectopic expression of olfa ctory receptors and the role they may play in neural regeneration within the central nervous system,with particular attention to compounds that can activate these receptors to initiate regenerative processes.Evidence suggests that olfactory receptors could serve as potential therapeutic targets for enhancing neural repair and recovery following central nervous system injuries.
基金Dean's Office Howard University College of Medicine,Grant/Award Number:Bridge Fund/Pilot Study AwardNational Center on Minority Health and Health Disparities,Grant/Award Number:RCMI/IDC Award U54MD007597National Institute of Child Health and Human Development,Grant/Award Number:R03HD095417 and R16HD116702。
文摘Background:How AMP activated protein kinase(AMPK)signaling regulates mito-chondrial functions and mitophagy in human trophoblast cells remains unclear.This study was designed to investigate potential players mediating the regulation of AMPK on mitochondrial functions and mitophagy by next generation RNA-seq.Methods:We compared ATP production in protein kinase AMP-activated catalytic subunit alpha 1/2(PRKAA1/2)knockdown(AKD)and control BeWo cells using the Seahorse real-time ATP rate test,then analyzed gene expression profiling by RNA-seq.Differentially expressed genes(DEG)were examined by Gene Ontology(GO)analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment.Then protein-protein interactions(PPI)among mitochondria related genes were fur-ther analyzed using Metascape and Ingenuity Pathway Analysis(IPA)software.Results:Both mitochondrial and glycolytic ATP production in AKD cells were lower than in the control BeWo cells(CT),with a greater reduction of mitochondrial ATP production.A total of 1092 DEGs were identified,with 405 upregulated and 687 downregulated.GO analysis identified 60 genes associated with the term‘mitochon-drion’in the cellular component domain.PPI analysis identified three clusters of mito-chondria related genes,including aldo-keto reductase family 1 member B10 and B15(AKR1B10,AKR1B15),alanyl-tRNA synthetase 1(AARS1),mitochondrial ribosomal protein S6(MRPS6),mitochondrial calcium uniporter dominant negative subunit beta(MCUB)and dihydrolipoamide branched chain transacylase E2(DBT).Conclusions:In summary,this study identified multiple mitochondria related genes regulated by AMPK in BeWo cells,and among them,three clusters of genes may po-tentially contribute to altered mitochondrial functions in response to reduced AMPK signaling.
基金supported by grants from the National Natural Science Foundation of China(Grant No.31960585)Science and Technology Major Project of Guangxi(Grant No.Guike AA22068092)+1 种基金Guangxi Science and Technology Vanguard Special Action Project(Grant No.202204)State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources(Grant Nos.SKLCUSA-a201906,SKLCU-SA-c201901)。
文摘The SKP1 gene is an important component of the SCF(SKP1-Cullin1-F-box)complex and serves as a bridge connecting the F-box and Cullin1genes(F-box-SKP1-Cullin1).The pattern of S-RNase being ubiquitously labelled by the SCF complex and degraded by the 26S protease accounts for the bulk of the available self-incompatibility studies.In this study,15 ClSKP1s from the‘Xiangshui'lemon genome and ubiquitome exist in the same SKP1 conserved domain(CD)as SKP1s in other species.The q PCR results showed that SKP1-6 and SKP1-14 have tissue expression patterns specific for expression in pollen.In addition,SKP1-6 and SKP1-14 in the stigma,style and ovary were significantly upregulated after self-pollination compared to those after cross-pollination.A subcellular location showed that SKP1-6 and SKP1-14 were located in the nucleus.In addition,yeast two-hybrid(Y2H)assays,bimolecular fluorescence complementation(BiFC)and luciferase complementation imaging(LCI)assays showed that SKP1-6 interacted with F-box1,F-box33,F-box34,F-box17,F-box19,Cullin1-2 and 26S proteasome subunit 4 homolog A(26S PS4HA).SKP1-14 interacted with F-box17,F-box19,F-box35,Cullin1-2 and 26S PS4HA.The interaction of Cullin1-2 and the F-box with SKP1 as a bridge was verified by a yeast three-hybrid experiment.The ability of S3-RNase to inhibit pollen and pollen tube growth and development was assessed using in vitro pollen co-culture experiments with recombinant S3-RNase proteins.Overall,this study provides important experimental evidence and theoretical basis for understanding the mechanism of self-incompatibility in plants by revealing the key role of the SCF complex in‘Xiangshui'lemon,which is bridged by ClSKP1-6,in self-incompatibility.The results of this study are of great significance for the future indepth exploration of the molecular mechanism of the SCF complex and its wide application in the self-incompatibility of plants.
基金supported by the Central Public-Interest Scientific Institution Basal Research Fund,China(Grant No.CPSIBRF-CNRRI-202403)。
文摘Rice is a poor source of folate,an essential micronutrient for the body.Biofortification offers an effective way to enhance the folate content of rice and alleviate folate deficiencies in humans.In this study,we confirmed that OsADCS and OsGTPCHI,encoding the initial enzymes necessary for folate synthesis,positively regulate folate accumulation in knockout mutants of both japonica and indica rice backgrounds.The folate content in the low-folate japonica variety was slightly increased by the expression of the indica alleles driven by the endosperm-specific promoter.We further obtained co-expression lines by stacking OsADCS and OsGTPCHI genes;the folate accumulation in brown rice and polished rice reached 5.65μg/g and 2.95μg/g,respectively,representing 37.9-fold and 26.5-fold increases compared with the wild type.Transcriptomic analysis of rice grains from six transgenic lines showed that folate changes affected biological pathways involved in the synthesis and metabolism of rice seed storage substances,while the expression of other folate synthesis genes was weakly regulated.In addition,we identified Aus rice as a high-folate germplasm carrying superior haplotypes of OsADCS and OsGTPCHI through natural variation.This study provides an alternative and effective complementary strategy for rice biofortification,promoting the rational combination of metabolic engineering and conventional breeding to breed high-folate varieties.
基金supported by the NationalNatural Science Foundation of China(no.32360888)the Jiangxi Students’Platform for Innovation and Entrepreneurship Training Program(no.202411843023).
文摘Background:Heat shock protein B8(HSPB8)is implicated in autophagy,and its aberrant expression has been linked to both the ini-tiation and progression of tumors.However,the role and function of HSPB8 in colorectal cancer(CRC)and across multiple cancer types remain unclear.This study aimed to map the transcriptome of autophagy-related genes in CRC and to conduct a pan-cancer analysis of HSPB8 as both a prognostic and immunological biomarker.Methods:We performed bioinformatics analyses on GSE113513 and GSE74602 to identify differentially expressed genes(DEGs)in CRC.These DEGs were then compared with autophagy-related genes to identify critical overlapping genes.The Kaplan-Meier plotter was used to verify the ex-pression of autophagy-linked DEGs and evaluate its prognostic value.The protein expression of Hub gene in CRC was analyzed using the Human Protein Atlas database.The cBioPortal was used to analyze the type and frequency of Hub gene mutations.The TIMER(Tumor Immune Estimation Resource)database was used to study the correlation between HSPB8 and immune infiltration in CRC.Results:In total,825 DEGs were identified,including 8 autophagy-linked DEGs:ATIC,MYC,HSPB8,TNFSF10,BCL2,TP53INP2,ITPR1,and NKX2-3.Survival analysis showed that increased HSPB8 expression significantly correlates with poor prognosis in patients with CRC(p<0.05).HSPB8 was also found to be differentially expressed in various cancer types,correlating with both prognosis and immune infiltration.Further,changes in HSPB8 methylation and phosphorylation status were observed across several cancers,suggesting potential regulatory mechanisms.Therefore,HSPB8 may serve as a crucial prognostic and immunological biomarker in CRC and other cancers.Conclusions:This study provides new insights into the role of autophagy-related genes in cancer progression and highlights HSPB8 as a potential target for cancer diagnostics and therapy.
基金supported by the projects of the National Key Research and Development Program of China(2023YFD2300202)the Natural Science Foundation of Jiangsu Province,China(BK20241543)+5 种基金the National Natural Science Foundation of China(32272213,32030076,U1803235,and 32021004)the Fundamental Research Funds for the Central Universities,China(XUEKEN2023013)the Jiangsu Innovation Support Program for International Science and Technology Cooperation Project,China(BZ2023049)the Jiangsu Agriculture Science and Technology Innovation Fund,China(CX(22)1006)the China Agriculture Research System(CARS-03)the Jiangsu Collaborative Innovation Center for Modern Crop Production,China(JCIC-MCP)。
文摘Frequent drought events severely restrict global crop productivity,especially those occurring in the reproductive stages.Moderate drought priming during the earlier growth stages is a promising strategy for allowing plants to resist recurrent severe drought stress.However,the underlying mechanisms remain unclear.Here,we subjected wheat plants to drought priming during the vegetative growth stage and to severe drought stress at 10 days after anthesis.We then collected leaf samples at the ends of the drought priming and recovery periods,and at the end of drought stress for transcriptome sequencing in combination with phenotypic and physiological analyses.The drought-primed wheat plants maintained a lower plant temperature,with higher stomatal openness and photosynthesis,thereby resulting in much lower 1,000-grain weight and grain yield losses under the later drought stress than the non-primed plants.Interestingly,416 genes,including 27 transcription factors(e.g.,MYB,NAC,HSF),seemed to be closely related to the improved drought tolerance as indicated by the dynamic transcriptome analysis.Moreover,the candidate genes showed six temporal expression patterns and were significantly enriched in several stress response related pathways,such as plant hormone signal transduction,starch and sucrose metabolism,arginine and proline metabolism,inositol phosphate metabolism,and wax synthesis.These findings provide new insights into the physiological and molecular mechanisms of the long-term effects of early drought priming that can effectively improve drought tolerance in wheat,and may provide potential approaches for addressing the challenges of increasing abiotic stresses and securing food safety under global warming scenarios.
基金supported by the Natural Science Foundation of China(Grant Nos.82073934,81872937)Office of Jiangsu Provincial Academic Degrees Committee(Grant No.JX10114120).
文摘Bone metastasis is the primary cause of mortality in breast cancer(BC)patients.The present study elucidates the functional role of the differentiated embryonic chondrocyte-expressed gene 1(DEC1)in promoting BC-related bone metastasis.Analysis of patient-derived samples and public databases revealed a significant upregulation of DEC1 and CXCR4 in breast tumors compared with adjacent normal tissues,with elevated levels correlating with increased metastatic potential,suggesting their synergistic involvement in BC progression.Intracardiac injection experiments demonstrated that Dec1-WT 4T1 cells induced more severe osteolysis and larger metastatic lesions than Dec1-KD 4T1 cells.In MDA-MB-231 cells,DEC1 overexpression(OE)upregulated CXCR4 and proliferation/migration-related genes,whereas DEC1 knockdown reversed these effects.Notably,AMD3100,a specific CXCR4 antagonist,partially reversed the DEC1-OE-induced upregulation of CXCR4 and associated pro-metastatic genes.Mechanistically,DEC1 bound to the CXCR4 promoter region(-230 to-326)and activated its transcription,corroborated by ChIP-seq data.Furthermore,pharmacological inhibition of AKT(LY294002)or JAK2(AZD1480),but not ERK(PD98059),attenuated DEC1-mediated CXCR4 upregulation,although all three inhibitors mitigated DEC1-driven migration-related gene expression.Additionally,DEC1 enhanced CXCL12 secretion from mesenchymal stromal cells and osteoblasts,amplifying the CXCR4/CXCL12 axis within the bone microenvironment.Collectively,our findings demonstrate that DEC1 promotes BC bone metastasis by directly transactivating CXCR4 expression,providing a molecular basis for targeting DEC1 to prevent and treat BC bone metastasis.
基金supported by a grant from the Progressive MS Alliance(BRAVE in MS)Le Grand Portage Fund。
文摘Mature oligodendrocytes form myelin sheaths that are crucial for the insulation of axons and efficient signal transmission in the central nervous system.Recent evidence has challenged the classical view of the functionally static mature oligodendrocyte and revealed a gamut of dynamic functions such as the ability to modulate neuronal circuitry and provide metabolic support to axons.Despite the recognition of potential heterogeneity in mature oligodendrocyte function,a comprehensive summary of mature oligodendrocyte diversity is lacking.We delve into early 20th-century studies by Robertson and Río-Hortega that laid the foundation for the modern identification of regional and morphological heterogeneity in mature oligodendrocytes.Indeed,recent morphologic and functional studies call into question the long-assumed homogeneity of mature oligodendrocyte function through the identification of distinct subtypes with varying myelination preferences.Furthermore,modern molecular investigations,employing techniques such as single cell/nucleus RNA sequencing,consistently unveil at least six mature oligodendrocyte subpopulations in the human central nervous system that are highly transcriptomically diverse and vary with central nervous system region.Age and disease related mature oligodendrocyte variation denotes the impact of pathological conditions such as multiple sclerosis,Alzheimer's disease,and psychiatric disorders.Nevertheless,caution is warranted when subclassifying mature oligodendrocytes because of the simplification needed to make conclusions about cell identity from temporally confined investigations.Future studies leveraging advanced techniques like spatial transcriptomics and single-cell proteomics promise a more nuanced understanding of mature oligodendrocyte heterogeneity.Such research avenues that precisely evaluate mature oligodendrocyte heterogeneity with care to understand the mitigating influence of species,sex,central nervous system region,age,and disease,hold promise for the development of therapeutic interventions targeting varied central nervous system pathology.
基金Supported by Romanian Ministry of Research,Innovation and Digitization,No.PN23.16.02.04 and No.31PFE/30.12.2021.
文摘BACKGROUND Pancreatic ductal adenocarcinoma(PDAC)is an aggressive lethal malignancy with limited options for treatment and a 5-year survival rate of 11%in the United States.As for other types of tumors,such as colorectal cancer,aberrant de novo lipid synthesis and reprogrammed lipid metabolism have been suggested to be associated with PDAC development and progression.AIM To identify the possible involvement of lipid metabolism in PDAC by analyzing in tumoral and non-tumoral tissues the expression level of the most relevant genes involved in the long-chain fatty acid(FA)import into cell.METHODS A gene expression analysis of FASN,CD36,SLC27A1,SLC27A2,SLC27A3,SLC27A4,SLC27A5,ACSL1,and ACSL3 was performed by qRT-PCR in 24 tumoral PDAC tissues and 11 samples from non-tumoral pancreatic tissues obtained via fine needle aspiration or via surgical resection.The genes were considered significantly dysregulated between the groups when the p value was<0.05 and the fold change(FC)was≤0.5 and≥2.RESULTS We found that three FA transporters and two long-chain acyl-CoA synthetases genes were significantly upregulated in the PDAC tissue compared to the non-tumoral tissue:SLC27A2(FC=5.66;P=0.033),SLC27A3(FC=2.68;P=0.040),SLC27A4(FC=3.13;P=0.033),ACSL1(FC=4.10;P<0.001),and ACSL3(FC=2.67;P=0.012).We further investigated any possible association between the levels of the analyzed mRNAs and the specific characteristics of the tumors,including the anatomic location,the lymph node involvement,and the presence of metastasis.A significant difference in the expression of SLC27A3(FC=3.28;P=0.040)was found comparing patients with and without lymph nodes involvement with an overexpression of this transcript in 17 patients presenting tumoral cells in the lymph nodes.CONCLUSION Despite the low number of patients analyzed,these preliminary results seem to be promising.Addressing lipid metabolism through a broad strategy could be a beneficial way to treat this malignancy.Future in vitro and in vivo studies on these genes may offer important insights into the mechanisms linking PDAC with the long-chain FA import pathway.
基金supported by the National Natural Science Foundation of China,Nos.32371065(to CL)and 32170950(to LY)the Natural Science Foundation of the Guangdong Province,No.2023A1515010899(to CL)the Science and Technology Projects in Guangzhou,Nos.2023A4J0578 and 2024A03J0180(to CW)。
文摘Neuronal activity,synaptic transmission,and molecular changes in the basolateral amygdala play critical roles in fear memory.Cylindromatosis(CYLD)is a deubiquitinase that negatively regulates the nuclear factor kappa-B pathway.CYLD is well studied in non-neuronal cells,yet underinvestigated in the brain,where it is highly expressed.Emerging studies have shown involvement of CYLD in the remodeling of glutamatergic synapses,neuroinflammation,fear memory,and anxiety-and autism-like behaviors.However,the precise role of CYLD in glutamatergic neurons is largely unknown.Here,we first proposed involvement of CYLD in cued fear expression.We next constructed transgenic model mice with specific deletion of Cyld from glutamatergic neurons.Our results show that glutamatergic CYLD deficiency exaggerated the expression of cued fear in only male mice.Further,loss of CYLD in glutamatergic neurons resulted in enhanced neuronal activation,impaired excitatory synaptic transmission,and altered levels of glutamate receptors accompanied by over-activation of microglia in the basolateral amygdala of male mice.Altogether,our study suggests a critical role of glutamatergic CYLD in maintaining normal neuronal,synaptic,and microglial activation.This may contribute,at least in part,to cued fear expression.
基金supported by Hunan Provincial Key Research and Development Program,No.2021SK2002(to BW)the Natural Science Foundation of Hunan Province of China(General Program),No.2021JJ30938(to YL)。
文摘Degenerative cervical myelopathy is a common cause of spinal cord injury,with longer symptom duration and higher myelopathy severity indicating a worse prognosis.While numerous studies have investigated serological biomarkers for acute spinal cord injury,few studies have explored such biomarkers for diagnosing degenerative cervical myelopathy.This study involved 30 patients with degenerative cervical myelopathy(51.3±7.3 years old,12 women and 18 men),seven healthy controls(25.7±1.7 years old,one woman and six men),and nine patients with cervical spondylotic radiculopathy(51.9±8.6 years old,three women and six men).Analysis of blood samples from the three groups showed clear differences in transcriptomic characteristics.Enrichment analysis identified 128 differentially expressed genes that were enriched in patients with neurological disabilities.Using least absolute shrinkage and selection operator analysis,we constructed a five-gene model(TBCD,TPM2,PNKD,EIF4G2,and AP5Z1)to diagnose degenerative cervical myelopathy with an accuracy of 93.5%.One-gene models(TCAP and SDHA)identified mild and severe degenerative cervical myelopathy with accuracies of 83.3%and 76.7%,respectively.Signatures of two immune cell types(memory B cells and memory-activated CD4^(+)T cells)predicted levels of lesions in degenerative cervical myelopathy with 80%accuracy.Our results suggest that peripheral blood RNA biomarkers could be used to predict lesion severity in degenerative cervical myelopathy.
文摘Background:This study aims to identify distinct cellular subtypes within brain tissue using single-cell transcriptomic analysis,focusing on specific biomarkers that differentiate cell types and the effects of traditional and exercise therapy.Methods:Four samples were analyzed:older control(OC),older exercise(OE),younger control(YC),and younger exercise(YE).Single-cell RNA sequencing was used to distinguish cellular subtypes through their biomarker profiles.Data visualization included violin and t-SNE plots to illustrate biomarker expression across cell clusters such as oligodendrocytes,microglia,and astrocytes.Additionally,BV2 cells were exposed to amyloid-beta fragments to simulate Alzheimer’s disease,assessing the impact of exercise-induced cellular responses.Results:Distinct cellular subtypes were identified:oligodendrocytes(MBP,St18),microglia(Dock8),and astrocytes(Aqp4,Gpc5).Sample OE was predominantly oligodendrocytes,while YE had more astrocytes,inhibitory neurons,and Canal-Retzius cells.YC showed a significant presence of Olfm3+ganglion neurons.ZEB1 gene knockout revealed changes in SMAD family gene expression,which regulate ferroptosis.Oxidative stress levels were also evaluated.Conclusion:This profiling enhances our understanding of brain cellular functions and interactions,potentially informing targeted therapies in neurological research.Exercise may influence brain cell immune responses and cell death pathways by regulating specific gene expressions,offering new insights for treating neuroinflammation and degeneration.
文摘This editorial examines a recent study that used radiomics based on computed tomography(CT)to predict the expression of the fibroblast-related gene enhancer of zeste homolog 2(EZH2)and its correlation with the survival of patients with hepatocellular carcinoma(HCC).By integrating radiomics with molecular analysis,the study presented a strategy for accurately predicting the expression of EZH2 from CT scans.The findings demonstrated a strong link between the radiomics model,EZH2 expression,and patient prognosis.This noninvasive approach provides valuable insights into the therapeutic management of HCC.
文摘The study by Cao et al aimed to identify early second-trimester biomarkers that could predict gestational diabetes mellitus(GDM)development using advanced proteomic techniques,such as Isobaric tags for relative and absolute quantitation isobaric tags for relative and absolute quantitation and liquid chromatography-mass spectrometry liquid chromatography-mass spectrometry.Their analysis revealed 47 differentially expressed proteins in the GDM group,with retinol-binding protein 4 and angiopoietin-like 8 showing significantly elevated serum levels compared to controls.Although these findings are promising,the study is limited by its small sample size(n=4 per group)and lacks essential details on the reproducibility and reliability of the protein quantification methods used.Furthermore,the absence of experimental validation weakens the interpretation of the protein-protein interaction network identified through bioinformatics analysis.The study's focus on second-trimester biomarkers raises concerns about whether this is a sufficiently early period to implement preventive interventions for GDM.Predicting GDM risk during the first trimester or pre-conceptional period may offer more clinical relevance.Despite its limitations,the study presents valuable insights into potential GDM biomarkers,but larger,well-validated studies are needed to establish their predictive utility and generalizability.
基金Supported by Shanxi Provincial Key Research and Development Plan Project,No.2020ZDLSF01-02Doctor Foundation of the Second Affiliated Hospital of Xi’an Medical University,No.X2Y-R11.
文摘Intracerebral hemorrhage(ICH)is a common severe emergency in neurosurgery,causing tremendous economic pressure on families and society and devastating effects on patients both physically and psychologically,especially among patients with poor functional outcomes.ICH is often accompanied by decreased consciousness and limb dysfunction.This seriously affects patients’ability to live independently.Although rapid advances in neurosurgery have greatly improved patient survival,there remains insufficient evidence that surgical treatment significantly improves long-term outcomes.With in-depth pathophysiological studies after ICH,increasing evidence has shown that secondary injury after ICH is related to long-term prognosis and that the key to secondary injury is various immune-mediated neuroinflammatory reactions after ICH.In basic and clinical studies of various systemic inflammatory diseases,triggering receptor expressed on myeloid cells 1/2(TREM-1/2),and the TREM receptor family is closely related to the inflammatory response.Various inflammatory diseases can be upregulated and downregulated through receptor intervention.How the TREM receptor functions after ICH,the types of results from intervention,and whether the outcomes can improve secondary brain injury and the long-term prognosis of patients are unknown.An analysis of relevant research results from basic and clinical trials revealed that the inhibition of TREM-1 and the activation of TREM-2 can alleviate the neuroinflammatory immune response,significantly improve the long-term prognosis of neurological function in patients with cerebral hemorrhage,and thus improve the ability of patients to live independently.
文摘Objective INF2 is a member of the formins family.Abnormal expression and regulation of INF2 have been associated with the progression of various tumors,but the expression and role of INF2 in hepatocellular carcinoma(HCC)remain unclear.HCC is a highly lethal malignant tumor.Given the limitations of traditional treatments,this study explored the expression level,clinical value and potential mechanism of INF2 in HCC in order to seek new therapeutic targets.Methods In this study,we used public databases to analyze the expression of INF2 in pan-cancer and HCC,as well as the impact of INF2 expression levels on HCC prognosis.Quantitative real time polymerase chain reaction(RT-qPCR),Western blot,and immunohistochemistry were used to detect the expression level of INF2 in liver cancer cells and human HCC tissues.The correlation between INF2 expression and clinical pathological features was analyzed using public databases and clinical data of human HCC samples.Subsequently,the effects of INF2 expression on the biological function and Drp1 phosphorylation of liver cancer cells were elucidated through in vitro and in vivo experiments.Finally,the predictive value and potential mechanism of INF2 in HCC were further analyzed through database and immunohistochemical experiments.Results INF2 is aberrantly high expression in HCC samples and the high expression of INF2 is correlated with overall survival,liver cirrhosis and pathological differentiation of HCC patients.The expression level of INF2 has certain diagnostic value in predicting the prognosis and pathological differentiation of HCC.In vivo and in vitro HCC models,upregulated expression of INF2 triggers the proliferation and migration of the HCC cell,while knockdown of INF2 could counteract this effect.INF2 in liver cancer cells may affect mitochondrial division by inducing Drp1 phosphorylation and mediate immune escape by up-regulating PD-L1 expression,thus promoting tumor progression.Conclusion INF2 is highly expressed in HCC and is associated with poor prognosis.High expression of INF2 may promote HCC progression by inducing Drp1 phosphorylation and up-regulation of PD-L1 expression,and targeting INF2 may be beneficial for HCC patients with high expression of INF2.
基金湖南省教育厅基金优秀青年项目(No.22B0482)湖南科技大学博士启动基金(No.E51992 and E51993)资助。
文摘The xylitol dehydrogenase(XDH)is a crucial enzyme involved in the xylose utilization in pentose⁃catabolizing yeasts and fungi.In addition to producing xylulose,XDH can also be employed to develop a biosensor for monitoring xylitol concentration.In this study,the gene encoding the thermophilic fungus Talaromyces emersonii XDH(TeXDH)was heterologously expressed in Escherichia coli BL21(DE3)at 16℃in the soluble form.Recombinant TeXDH with high purity was purified by using a Ni⁃NTA affinity column.Size⁃exclusion chromatography and SDS⁃PAGE analysis demonstrated that the puri⁃fied recombinant TeXDH exists as a native trimer with a molecular mass of approximately 116 kD,and is composed of three identical subunits,each with a molecular weight of around 39 kD.The TeXDH strictly preferred NAD^(+)as a coenzyme to NADP^(+).The optimal temperature and pH of the TeXDH were 40℃and 10.0,respectively.After EDTA treatment,the enzyme activity of TeXDH decreased to 43.26%of the initial enzyme activity,while the divalent metal ions Mg^(2+)or Ca^(2+)could recover the enzyme activity of TeXDH,reaching 103.32%and 110.69%of the initial enzyme activity,respectively,making them the optimal divalent metal ion cofactors for TeXDH enzyme.However,the divalent metal ions of Mn^(2+),Ni^(2+),Cu^(2+),Zn^(2+),Co^(2+),and Cd^(2+)significantly inhibited the activity of TeXDH.ICP⁃MS and molecular doc⁃king studies revealed that 1 mol/L of TeXDH bound 2 mol/L Zn^(2+)ions and 1 mol/L Mg^(2+)ion.Further⁃more,TeXDH exhibited a high specificity for xylitol,laying the foundation for the development of future xylitol biosensors.
基金Supported by Maulana Azad National Fellowship,University Grants Commission,New Delhi,and Department of Biotechnology,New Delhi,No.AS[82-27/2019(SA III)]DBT-BUILDER-University of Lucknow Interdisciplinary Life Science Programme for Advance Research and Education(Level II),No.TG(BT/INF/22/SP47623/2022).
文摘Gestational diabetes mellitus(GDM)is a metabolic disorder,recognised during 24-28 weeks of pregnancy.GDM is linked with adverse newborn outcomes such as macrosomia,premature delivery,metabolic disorder,cardiovascular,and neurological disorders.Recent investigations have focused on the correlation of genetic factors such asβ-cell function and insulin secretary genes(transcription factor 7 like 2,potassium voltage-gated channel subfamily q member 1,adipo-nectin etc.)on maternal metabolism during gestation leading to GDM.Epigenetic alterations like DNA methylation,histone modification,and miRNA expression can influence gene expression and play a dominant role in feto-maternal meta-bolic pathways.Interactions between genes and environment,resulting in differ-ential gene expression patterns may lead to GDM.Researchers suggested that GDM women are more susceptible to insulin resistance,which alters intrauterine surroundings,resulting hyperglycemia and hyperinsulinemia.Epigenetic modi-fications in genes affecting neuroendocrine activities,and metabolism,increase the risk of obesity and type 2 diabetes in offspring.There is currently no treatment or effective preventive method for GDM,since the molecular processes of insulin resistance are not well understood.The present review was undertaken to un-derstand the pathophysiology of GDM and its effects on adverse neonatal out-comes.In addition,the study of genetic and epigenetic alterations will provide lead to researchers in the search for predictive molecular biomarkers.