期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
BOUNDARY STABILIZATION OF NONUNIFORM TIMOSHENKO BEAM
1
作者 Si Shoukui 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 1999年第4期467-474,共8页
In this paper,the boundary stabilization of the Timoshenko equation of a nonuniform beam,with clamped boundary condition at one end and with bending moment and shear force controls at the other end, is considered.It i... In this paper,the boundary stabilization of the Timoshenko equation of a nonuniform beam,with clamped boundary condition at one end and with bending moment and shear force controls at the other end, is considered.It is proved that the system is exponentially stabilizable when the bending moment and shear force controls are simultaneously applied.The frequency domain method and the multiplier technique are used. 展开更多
关键词 Boundarystabilization nonuniformbeam Timoshenkoequation C0-SEMIGROUP exponentialdecay MULTIPLIER
在线阅读 下载PDF
Energy Decay of Solution to a Nonlinear Wave Equation of Kirchhoff Type
2
作者 SONG Zhi-hua 《Chinese Quarterly Journal of Mathematics》 CSCD 2013年第4期485-491,共7页
The paper studies the asymptotic behavior of solution to the initial boundary value problem for a nonlinear hyperbolic equation of Kirchhoff type It proves the global existence of solution by constructing a stable se... The paper studies the asymptotic behavior of solution to the initial boundary value problem for a nonlinear hyperbolic equation of Kirchhoff type It proves the global existence of solution by constructing a stable set and the energy exponential decayestimate by applying a lemma of V Komornik. 展开更多
关键词 wave equation of Kirchhoff type initial boundary value problem exponentialdecay estimate
在线阅读 下载PDF
带宽有限随机过程从过采样点的指数阶逼近
3
作者 陈文健 张海樟 《中国科学:数学》 CSCD 北大核心 2015年第2期167-182,共16页
带宽有限的宽平稳随机过程的Shannon采样定理在1957年被建立起来.从那以后,关于它在其他随机过程的推广有广泛的研究.然而,直接截断Shannon级数收敛较慢.特别地,我们知道利用在Nyquist采样率下得到的n个采样点的截断级数的均方逼近误差... 带宽有限的宽平稳随机过程的Shannon采样定理在1957年被建立起来.从那以后,关于它在其他随机过程的推广有广泛的研究.然而,直接截断Shannon级数收敛较慢.特别地,我们知道利用在Nyquist采样率下得到的n个采样点的截断级数的均方逼近误差的收敛速率是O(1/n^(1/2)).本文我们n考虑用有限的过采样点来重构带宽有限宽平稳随机过程,其中过采样点是指连续两个采样点之间的距离小于Nyquist采样率.我们研究了最优的线性重构算法和与其相关的本性逼近误差阶.通过过采样,我们发现线性重构算法可以达到指数阶衰减逼近,并且我们还证明线性重构算法不可能有快于指数阶的衰减速率.另外,我们还构造了两个具体的指数阶衰减的重构算法. 展开更多
关键词 带宽有限随机过程 过采样 本性逼近误差 指数衰减 可再生核
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部