In this paper, we study the relationship between exponential dichotomy and quadratic Lyapunov function for the linear equation x△=A(t)x on time scales. Moreover, for the nonlinear perturbed equation x△= A(t)x ...In this paper, we study the relationship between exponential dichotomy and quadratic Lyapunov function for the linear equation x△=A(t)x on time scales. Moreover, for the nonlinear perturbed equation x△= A(t)x + f(t, x) we give the instability of the zero solution when f is sufficiently small.展开更多
In this paper, we consider the existence and uniqueness of the solutions which are pseudo almost automorphic in distribution for a class of non-autonomous stochastic differential equations in a Hilbert space. In concl...In this paper, we consider the existence and uniqueness of the solutions which are pseudo almost automorphic in distribution for a class of non-autonomous stochastic differential equations in a Hilbert space. In conclusion, we use the Banach contraction mapping principle and exponential dichotomy property to obtain our main results.展开更多
It is well known that if x' = A(t)x admits an exponential dichotomy and f(t, x) is a bounded function and has a small Lipschitz constant, then system X' = A(x)x + f(t, x) has a unique bounded solution. In this...It is well known that if x' = A(t)x admits an exponential dichotomy and f(t, x) is a bounded function and has a small Lipschitz constant, then system X' = A(x)x + f(t, x) has a unique bounded solution. In this paper, we shall generalize this theorem to the case when f(t, x) is an unbounded function.展开更多
We give sufficient conditions ensuring the existence and uniqueness of an Eberlein-weakly almost periodic solution to the following linear equation dx/dt(t) = A(t)x(t) + f(t) in a Banach space X, where (A(t)) t ∈□ i...We give sufficient conditions ensuring the existence and uniqueness of an Eberlein-weakly almost periodic solution to the following linear equation dx/dt(t) = A(t)x(t) + f(t) in a Banach space X, where (A(t)) t ∈□ is a family of infinitesimal generators such that for all t ∈□, A(t + T) = A(t) for some T > 0, for which the homogeneuous linear equation dx/dt(t) = A(t)x(t) is well posed, stable and has an exponential dichotomy, and f:□ →X is Eberlein-weakly amost periodic.展开更多
In this paper we discuss the recurrent linear system with exponential dichotomy, and prove that the system is topologically equivalent to the standard system where .
In this paper we construct, by using the theory of exponential dichotomies, a Melnikov-type function by which we can detect the existence of homoclinic orbits for the perturbed systems x = g(x) + epsilon h(t, x, epsil...In this paper we construct, by using the theory of exponential dichotomies, a Melnikov-type function by which we can detect the existence of homoclinic orbits for the perturbed systems x = g(x) + epsilon h(t, x, epsilon). Our result of this paper may be complementary to that of K.J.Palmer([3]).展开更多
For time-varying non-regressive linear dynamic equations on a time scale with bounded graininess, we introduce the concept of the associative operator with linear systems on time scales. The purpose of this research i...For time-varying non-regressive linear dynamic equations on a time scale with bounded graininess, we introduce the concept of the associative operator with linear systems on time scales. The purpose of this research is the characterizations of the exponential dichotomy obtained in terms of Fredholm property of that associative operator. Particularly, we use Perron’s method, which was generalized on time scales by J. Zhang, M. Fan, H. Zhu in?[1], to show that if the associative operator is semi-Fredholm then the corresponding linear nonautonomous equation has an exponential dichotomy on both?T?+?and?T-.??Moreover, we also give the converse result that the linear systems have?an exponential dichotomy on both?T?+?andT-??then the associative operator is Fredholm on?T.展开更多
In this paper, we investigate the homoclinic bifurcations from a heteroclinic cycle by using exponential dichotomies. We give a Melnikov—type condition assuring the existence of homoclinic orbits form heteroclinic cy...In this paper, we investigate the homoclinic bifurcations from a heteroclinic cycle by using exponential dichotomies. We give a Melnikov—type condition assuring the existence of homoclinic orbits form heteroclinic cycle. We improve some important results.展开更多
文摘In this paper, we study the relationship between exponential dichotomy and quadratic Lyapunov function for the linear equation x△=A(t)x on time scales. Moreover, for the nonlinear perturbed equation x△= A(t)x + f(t, x) we give the instability of the zero solution when f is sufficiently small.
基金The Undergraduate Research Training Program Grant(J1030101)the NSF(11271151)of China
文摘In this paper, we consider the existence and uniqueness of the solutions which are pseudo almost automorphic in distribution for a class of non-autonomous stochastic differential equations in a Hilbert space. In conclusion, we use the Banach contraction mapping principle and exponential dichotomy property to obtain our main results.
基金supported by NSFC(19671017)and by NSF(A970)of Fujian.
文摘It is well known that if x' = A(t)x admits an exponential dichotomy and f(t, x) is a bounded function and has a small Lipschitz constant, then system X' = A(x)x + f(t, x) has a unique bounded solution. In this paper, we shall generalize this theorem to the case when f(t, x) is an unbounded function.
文摘We give sufficient conditions ensuring the existence and uniqueness of an Eberlein-weakly almost periodic solution to the following linear equation dx/dt(t) = A(t)x(t) + f(t) in a Banach space X, where (A(t)) t ∈□ is a family of infinitesimal generators such that for all t ∈□, A(t + T) = A(t) for some T > 0, for which the homogeneuous linear equation dx/dt(t) = A(t)x(t) is well posed, stable and has an exponential dichotomy, and f:□ →X is Eberlein-weakly amost periodic.
基金This work was supported by Fujian Education Department Science Foundation K20009.
文摘In this paper we discuss the recurrent linear system with exponential dichotomy, and prove that the system is topologically equivalent to the standard system where .
文摘In this paper we construct, by using the theory of exponential dichotomies, a Melnikov-type function by which we can detect the existence of homoclinic orbits for the perturbed systems x = g(x) + epsilon h(t, x, epsilon). Our result of this paper may be complementary to that of K.J.Palmer([3]).
文摘For time-varying non-regressive linear dynamic equations on a time scale with bounded graininess, we introduce the concept of the associative operator with linear systems on time scales. The purpose of this research is the characterizations of the exponential dichotomy obtained in terms of Fredholm property of that associative operator. Particularly, we use Perron’s method, which was generalized on time scales by J. Zhang, M. Fan, H. Zhu in?[1], to show that if the associative operator is semi-Fredholm then the corresponding linear nonautonomous equation has an exponential dichotomy on both?T?+?and?T-.??Moreover, we also give the converse result that the linear systems have?an exponential dichotomy on both?T?+?andT-??then the associative operator is Fredholm on?T.
文摘In this paper, we investigate the homoclinic bifurcations from a heteroclinic cycle by using exponential dichotomies. We give a Melnikov—type condition assuring the existence of homoclinic orbits form heteroclinic cycle. We improve some important results.