Based on analyzing the necessity of reforming the course of Landscape Engineering,the course reform has been conducted by enriching and perfecting the teaching contents,reforming the teaching methods,enhancing the pra...Based on analyzing the necessity of reforming the course of Landscape Engineering,the course reform has been conducted by enriching and perfecting the teaching contents,reforming the teaching methods,enhancing the practice teaching,realizing the united simulation experiment of many courses and strengthening the teachers' training.And the teaching quality has been improved greatly.展开更多
In 1984, under the guideline laid down by the Communist Party of China, "economic construction must rely on science and technology, and science and technology must be geared to serve economic construction", ...In 1984, under the guideline laid down by the Communist Party of China, "economic construction must rely on science and technology, and science and technology must be geared to serve economic construction", the CAS began to encourage enthusiastically its scientific and technical personnel to run high-and new tech enterprises.At present,there are more than 500 S&T enterprises at the Academy,including five (group)corporations directly under the jurisdiction of the Academy, 21 co-operation enterprises,40 or so展开更多
By means of producing and using TV teaching materials on chemical teaching,the authors have been exploring thecomprehensive reform in the curriculum system,the teaching content and the teaching methods of the subject ...By means of producing and using TV teaching materials on chemical teaching,the authors have been exploring thecomprehensive reform in the curriculum system,the teaching content and the teaching methods of the subject ofchemical education at higher normal universities.This paper takes the production of TV-teaching展开更多
Developing deep fragmented soft coalbed methane(CBM)can significantly enhance domestic natural gas supplies,reduce reliance on imported energy,and bolster national energy security.This manuscript provides a comprehens...Developing deep fragmented soft coalbed methane(CBM)can significantly enhance domestic natural gas supplies,reduce reliance on imported energy,and bolster national energy security.This manuscript provides a comprehensive review of commonly employed coalbed methane extraction technologies.It then delves into several critical issues in the current stage of CBM exploration and development in China,including the compatibility of existing technologies with CBM reservoirs,the characteristics and occurrence states of CBM reservoirs,critical desorption pressure,and gas generation mechanisms.Our research indicates that current CBM exploration and development technologies in China have reached an internationally advanced level,yet the industry is facing unprecedented challenges.Despite progress in low-permeability,high-value coal seams,significant breakthroughs have not been achieved in exploring other types of coal seams.For different coal reservoirs,integrated extraction technologies have been developed,such as surface pre-depressurisation and segmented hydraulic fracturing of coal seam roof strata.Additionally,techniques like large-scale volume fracturing in horizontal wells have been established,significantly enhancing reservoir stimulation effects and coalbed methane recovery rates.However,all of these technologies are fundamentally based on permeation.These technologies lack direct methods aimed at enhancing the diffusion rate of CBM,thereby failing to fully reflect the unique characteristics of CBM.Current CBM exploration and development theories and technologies are not universally applicable to all coal seams.They do not adequately account for the predominantly adsorbed state of CBM,and the complex and variable gas generation mechanisms further constrain CBM development in China.Finally,continuous exploration of new deep CBM exploration technologies is necessary.Integrating more effective reservoir stimulation technologies is essential to enhance technical adaptability concerning CBM reservoir characteristics,gas occurrence states,and gas generation mechanisms,ultimately achieving efficient CBM development.We conclude that while China possesses a substantial foundation of deep fractured CBM resources,industry development is constrained and requires continuous exploration of new CBM exploration and development technologies to utilize these resources effectively.展开更多
Embodied visual exploration is critical for building intelligent visual agents. This paper presents the neural exploration with feature-based visual odometry and tracking-failure-reduction policy(Ne OR), a framework f...Embodied visual exploration is critical for building intelligent visual agents. This paper presents the neural exploration with feature-based visual odometry and tracking-failure-reduction policy(Ne OR), a framework for embodied visual exploration that possesses the efficient exploration capabilities of deep reinforcement learning(DRL)-based exploration policies and leverages feature-based visual odometry(VO) for more accurate mapping and positioning results. An improved local policy is also proposed to reduce tracking failures of feature-based VO in weakly textured scenes through a refined multi-discrete action space, keyframe fusion, and an auxiliary task. The experimental results demonstrate that Ne OR has better mapping and positioning accuracy compared to other entirely learning-based exploration frameworks and improves the robustness of feature-based VO by significantly reducing tracking failures in weakly textured scenes.展开更多
This research optimized the structure of lithium extraction solar ponds to enhance the crystallization rate and yield of Li_(2)CO_(3).Using the response surface methodology in Design-Expert 10.0.3,the authors conducte...This research optimized the structure of lithium extraction solar ponds to enhance the crystallization rate and yield of Li_(2)CO_(3).Using the response surface methodology in Design-Expert 10.0.3,the authors conducted experiments to investigate the influence of four factors related to solar pond structure on the crystallization of Li_(2)CO_(3) and their pairwise interactions.Computational Fluid Dynamics(CFD)simulations of the flow field within the solar pond were performed using COMSOL Multiphysics software to compare temperature distributions before and after optimization.The results indicate that the optimal structure for lithium extraction from the Zabuye Salt Lake solar ponds includes UCZ(Upper Convective Zone)thickness of 53.63 cm,an LCZ(Lower Convective Zone)direct heating temperature of 57.39℃,a CO32−concentration of 32.21 g/L,and an added soda ash concentration of 6.52 g/L.Following this optimized pathway,the Li_(2)CO_(3) precipitation increased by 7.34% compared to the initial solar pond process,with a 33.33% improvement in lithium carbonate crystallization rate.This study demonstrates the feasibility of optimizing lithium extraction solar pond structures,offering a new approach for constructing such ponds in salt lakes.It provides valuable guidance for the efficient extraction of lithium resources from carbonate-type salt lake brines.展开更多
Based on the analysis of surface geological survey,exploratory well,gravity-magnetic-electric and seismic data,and through mapping the sedimentary basin and its peripheral orogenic belts together,this paper explores s...Based on the analysis of surface geological survey,exploratory well,gravity-magnetic-electric and seismic data,and through mapping the sedimentary basin and its peripheral orogenic belts together,this paper explores systematically the boundary,distribution,geological structure,and tectonic attributes of the Ordos prototype basin in the geological historical periods.The results show that the Ordos block is bounded to the west by the Engorwusu Fault Zone,to the east by the Taihangshan Mountain Piedmont Fault Zone,to the north by the Solonker-Xilamuron Suture Zone,and to the south by the Shangnan-Danfeng Suture Zone.The Ordos Basin boundary was the plate tectonic boundary during the Middle Proterozoic to Paleozoic,and the intra-continental deformation boundary in the Meso-Cenozoic.The basin survived as a marine cratonic basin covering the entire Ordos block during the Middle Proterozoic to Ordovician,a marine-continental transitional depression basin enclosed by an island arc uplift belt at the plate margin during the Carboniferous to Permian,a unified intra-continental lacustrine depression basin in the Triassic,and an intra-continental cratonic basin circled by a rift system in the Cenozoic.The basin scope has been decreasing till the present.The large,widespread prototype basin controlled the exploration area far beyond the present-day sedimentary basin boundary,with multiple target plays vertically.The Ordos Basin has the characteristics of a whole petroleum(or deposition)system.The Middle Proterozoic wide-rift system as a typical basin under the overlying Phanerozoic basin and the Cambrian-Ordovician passive margin basin and intra-cratonic depression in the deep-sited basin will be the important successions for oil and gas exploration in the coming years.展开更多
The Zijinshan ore field located in southwestern Fujian Province,China,is a representative porphyry-epithermal ore system hosting diverse mineralization types(Mao et al.,2013).The ore field comprises of the Zijinshan h...The Zijinshan ore field located in southwestern Fujian Province,China,is a representative porphyry-epithermal ore system hosting diverse mineralization types(Mao et al.,2013).The ore field comprises of the Zijinshan highsulfidation Cu-Au deposit,the Luoboling porphyry Cu-Mo deposit,the transitional style Cu deposit(Longjiangting and Wuziqilong)and the Yueyang low-sulfidation Agpolymetallic deposit(Zhang,2013;Zhang et al.,2003)展开更多
The Ordos Basin(OB)in the western part of the North China Craton(NCC),was located at the jointed area of multi-plates and has recorded the Mesozoic tectonic characteristics.Its tectonic evolution in the Mesozoic is si...The Ordos Basin(OB)in the western part of the North China Craton(NCC),was located at the jointed area of multi-plates and has recorded the Mesozoic tectonic characteristics.Its tectonic evolution in the Mesozoic is significant to understand the tectonic transformation of the northern margin of the NCC.In this work,the detrital zircon and apatite(U-Th)/He chronological system were analyzed in the northern part of the OB,and have provided new evidence for the regional tectonic evolution.The(U-Th)/He chronological data states the weighted ages of 240‒235 Ma,141 Ma with the peak distribution of 244 Ma,219 Ma,173 Ma,147‒132 Ma.The thermal evolution,geochronological data,and regional unconformities have proved four stages of regional tectonic evolution for the OB and its surroundings in the Mesozoic:(1)The Late Permian-Early Triassic;(2)the Late Triassic-Early Jurassic;(3)the Late Jurassic-Early Cretaceous;(4)the Late Cretaceous-Early Paleogene.It is indicated that the multi-directional convergence from the surrounding tectonic units has controlled the Mesozoic tectonic evolution of the OB.Four-stage tectonic evolution reflected the activation or end of different plate movements and provided new time constraints for the regional tectonic evolution of the NCC in the Mesozoic.展开更多
The Michelson Interferometer for Global High-resolution Thermospheric Imaging(MIGHTI)onboard the Ionospheric Connection Explorer(ICON)satellite offers the opportunity to investigate the altitude profile of thermospher...The Michelson Interferometer for Global High-resolution Thermospheric Imaging(MIGHTI)onboard the Ionospheric Connection Explorer(ICON)satellite offers the opportunity to investigate the altitude profile of thermospheric winds.In this study,we used the red-line measurements of MIGHTI to compare with the results estimated by Horizontal Wind Model 14(HWM14).The data selected included both the geomagnetic quiet period(December 2019 to August 2022)and the geomagnetic storm on August 26-28,2021.During the geomagnetic quiet period,the estimations of neutral winds from HWM14 showed relatively good agreement with the observations from ICON.According to the ICON observations,near the equator,zonal winds reverse from westward to eastward at around 06:00 local time(LT)at higher altitudes,and the stronger westward winds appear at later LTs at lower altitudes.At around 16:00 LT,eastward winds at 300 km reverse to westward,and vertical gradients of zonal winds similar to those at sunrise hours can be observed.In the middle latitudes,zonal winds reverse about 2-4 h earlier.Meridional winds vary more significantly than zonal winds with seasonal and latitudinal variations.According to the ICON observations,in the northern low latitudes,vertical reversals of meridional winds are found at 08:00-13:00 LT from 300 to 160 km and at around 18:00 LT from 300 to 200 km during the June solstice.Similar reversals of meridional winds are found at 04:00-07:00 LT from 300 to 160 km and at 22:00-02:00 LT from 270 to 200 km during the December solstice.In the southern low latitudes,meridional wind reversals occur at 08:00-11:00 LT from 200 to 160 km and at 21:00-02:00 LT from 300 to 200 km during the June solstice.During the December solstice,reversals of the meridional wind appear at 20:00-01:00 LT below 200 km and at 06:00-11:00 LT from 300 to 160 km.In the northern middle latitudes,the northward winds are dominant at 08:00-14:00 LT at 230 km during the June solstice.Northward winds persist until 16:00 LT at 160 and 300 km.During the December solstice,the northward winds are dominant from 06:00 to 21:00 LT.The vertical variations in neutral winds during the geomagnetic storm on August 26-28 were analyzed in detail.Both meridional and zonal winds during the active geomagnetic period observed by ICON show distinguishable vertical shear structures at different stages of the storm.On the dayside,during the main phase,the peak velocities of westward winds extend from a higher altitude to a lower altitude,whereas during the recovery phase,the peak velocities of the westward winds extend from lower altitudes to higher altitudes.The velocities of the southward winds are stronger at lower altitudes during the storm.These vertical structures of horizontal winds during the storm could not be reproduced by the HWM14 wind estimations,and the overall response to the storm of the horizontal winds in the low and middle latitudes is underestimated by HWM14.The ICON observations provide a good dataset for improving the HWM wind estimations in the middle and upper atmosphere,especially the vertical variations.展开更多
The magnetic fields and dynamical processes in the solar polar regions play a crucial role in the solar magnetic cycle and in supplying mass and energy to the fast solar wind,ultimately being vital in controlling sola...The magnetic fields and dynamical processes in the solar polar regions play a crucial role in the solar magnetic cycle and in supplying mass and energy to the fast solar wind,ultimately being vital in controlling solar activities and driving space weather.Despite numerous efforts to explore these regions,to date no imaging observations of the Sun's poles have been achieved from vantage points out of the ecliptic plane,leaving their behavior and evolution poorly understood.This observation gap has left three top-level scientific questions unanswered:How does the solar dynamo work and drive the solar magnetic cycle?What drives the fast solar wind?How do space weather processes globally originate from the Sun and propagate throughout the solar system?The Solar Polarorbit Observatory(SPO)mission,a solar polar exploration spacecraft,is proposed to address these three unanswered scientific questions by imaging the Sun's poles from high heliolatitudes.In order to achieve its scientific goals,SPO will carry six remote-sensing and four in-situ instruments to measure the vector magnetic fields and Doppler velocity fields in the photosphere,to observe the Sun in the extreme ultraviolet,X-ray,and radio wavelengths,to image the corona and the heliosphere up to 45 R_(s),and to perform in-situ detection of magnetic fields,and low-and high-energy particles in the solar wind.The SPO mission is capable of providing critical vector magnetic fields and Doppler velocities of the polar regions to advance our understanding of the origin of the solar magnetic cycle,providing unprecedented imaging observations of the solar poles alongside in-situ measurements of charged particles and magnetic fields from high heliolatitudes to unveil the mass and energy supply that drive the fast solar wind,and providing observational constraints for improving our ability to model and predict the three-dimensional(3D)structures and propagation of space weather events.展开更多
This paper proposed an efficient method of image overlapping relationship analysis based on spatial index of KD tree fast search for disordered and large-scale asteroid images.In this study,the image data from asteroi...This paper proposed an efficient method of image overlapping relationship analysis based on spatial index of KD tree fast search for disordered and large-scale asteroid images.In this study,the image data from asteroid exploration missions such as Bennu,Vesta,and Ryugu were used for experiments,and the proposed image matching pairs determination algorithm was comprehensively compared with the corresponding modules of USGS ISIS in order to evaluate its performance in terms of efficiency and accuracy.The results show that when processing more than a thousand images,the proposed method greatly improves the efficiency of acquiring image matching pairs while ensuring the correctness of image overlapping relationships and accuracy of bundle adjustment.At the same time,according to the obtained image matching pairs,images that meet the requirements of Stereo Photoclinometry can be quickly selected,effectively improving the quality of 3D reconstruction models of asteroid images.展开更多
Since the beginning of the 21st century,advances in big data and artificial intelligence have driven a paradigm shift in the geosciences,moving the field from qualitative descriptions toward quantitative analysis,from...Since the beginning of the 21st century,advances in big data and artificial intelligence have driven a paradigm shift in the geosciences,moving the field from qualitative descriptions toward quantitative analysis,from observing phenomena to uncovering underlying mechanisms,from regional-scale investigations to global perspectives,and from experience-based inference toward data-and model-enabled intelligent prediction.AlphaEarth Foundations(AEF)is a next-generation geospatial intelligence platform that addresses these changes by introducing a unified 64-dimensional shared embedding space,enabling-for the first time-standardized representation and seamless integration of 12 distinct types of Earth observation data,including optical,radar,and lidar.This framework significantly improves data assimilation efficiency and resolves the persistent problem of“data silos”in geoscience research.AEF is helping redefine research methodologies and fostering breakthroughs,particularly in quantitative Earth system science.This paper systematically examines how AEF’s innovative architecture-featuring multi-source data fusion,high-dimensional feature representation learning,and a scalable computational framework-facilitates intelligent,precise,and realtime data-driven geoscientific research.Using case studies from resource and environmental applications,we demonstrate AEF’s broad potential and identify emerging innovation needs.Our findings show that AEF not only enhances the efficiency of solving traditional geoscientific problems but also stimulates novel research directions and methodological approaches.展开更多
悦读·明其义Discovering the charm of travel发现旅行的魅力Travel is one of the most enjoyable experiences one can have.It not only allows us to explore new places but also helps us understand different cultures and...悦读·明其义Discovering the charm of travel发现旅行的魅力Travel is one of the most enjoyable experiences one can have.It not only allows us to explore new places but also helps us understand different cultures and traditions.Whether you are a backpacker or a tourist who prefers comfort,there is always something special waiting to be discovered.展开更多
In mid-May,good news came from Tajikistan,the country of high mountains.The Tajikistan Bogda Mountain geological exploration and sampling project,which had been dormant for over a decade,achieved a key breakthrough af...In mid-May,good news came from Tajikistan,the country of high mountains.The Tajikistan Bogda Mountain geological exploration and sampling project,which had been dormant for over a decade,achieved a key breakthrough after years of careful research,multi-party collaboration,and optimization of various plans,launching a new round of field exploration and testing work.展开更多
Near-surface geological defects pose a serious threat to human life and infrastructure.Hence,the exploration of geological hazards is essential.Currently,there are various geological hazard exploration methods;however...Near-surface geological defects pose a serious threat to human life and infrastructure.Hence,the exploration of geological hazards is essential.Currently,there are various geological hazard exploration methods;however,those require improvements in terms of economic feasibility,convenience,and lateral resolution.To address this,this study examined an extraction method to determine spatial autocorrelation velocity dispersion curves for application in near-surface exploration.展开更多
Strategic initiative:Entering Oman for a new strategy In 2004,the International Department of CNPC’s BGP took a crucial step in the Middle East market by successfully securing a seismic exploration project for the na...Strategic initiative:Entering Oman for a new strategy In 2004,the International Department of CNPC’s BGP took a crucial step in the Middle East market by successfully securing a seismic exploration project for the national oil company of Oman,Petroleum Development Oman(PDO).展开更多
文摘Based on analyzing the necessity of reforming the course of Landscape Engineering,the course reform has been conducted by enriching and perfecting the teaching contents,reforming the teaching methods,enhancing the practice teaching,realizing the united simulation experiment of many courses and strengthening the teachers' training.And the teaching quality has been improved greatly.
文摘In 1984, under the guideline laid down by the Communist Party of China, "economic construction must rely on science and technology, and science and technology must be geared to serve economic construction", the CAS began to encourage enthusiastically its scientific and technical personnel to run high-and new tech enterprises.At present,there are more than 500 S&T enterprises at the Academy,including five (group)corporations directly under the jurisdiction of the Academy, 21 co-operation enterprises,40 or so
文摘By means of producing and using TV teaching materials on chemical teaching,the authors have been exploring thecomprehensive reform in the curriculum system,the teaching content and the teaching methods of the subject ofchemical education at higher normal universities.This paper takes the production of TV-teaching
基金supported by the National Natural Science Foundation of China(52074045,52274074)the Science Fund for Distinguished Young Scholars of Chongqing(CSTB2022NSCQ-JQX0028).
文摘Developing deep fragmented soft coalbed methane(CBM)can significantly enhance domestic natural gas supplies,reduce reliance on imported energy,and bolster national energy security.This manuscript provides a comprehensive review of commonly employed coalbed methane extraction technologies.It then delves into several critical issues in the current stage of CBM exploration and development in China,including the compatibility of existing technologies with CBM reservoirs,the characteristics and occurrence states of CBM reservoirs,critical desorption pressure,and gas generation mechanisms.Our research indicates that current CBM exploration and development technologies in China have reached an internationally advanced level,yet the industry is facing unprecedented challenges.Despite progress in low-permeability,high-value coal seams,significant breakthroughs have not been achieved in exploring other types of coal seams.For different coal reservoirs,integrated extraction technologies have been developed,such as surface pre-depressurisation and segmented hydraulic fracturing of coal seam roof strata.Additionally,techniques like large-scale volume fracturing in horizontal wells have been established,significantly enhancing reservoir stimulation effects and coalbed methane recovery rates.However,all of these technologies are fundamentally based on permeation.These technologies lack direct methods aimed at enhancing the diffusion rate of CBM,thereby failing to fully reflect the unique characteristics of CBM.Current CBM exploration and development theories and technologies are not universally applicable to all coal seams.They do not adequately account for the predominantly adsorbed state of CBM,and the complex and variable gas generation mechanisms further constrain CBM development in China.Finally,continuous exploration of new deep CBM exploration technologies is necessary.Integrating more effective reservoir stimulation technologies is essential to enhance technical adaptability concerning CBM reservoir characteristics,gas occurrence states,and gas generation mechanisms,ultimately achieving efficient CBM development.We conclude that while China possesses a substantial foundation of deep fractured CBM resources,industry development is constrained and requires continuous exploration of new CBM exploration and development technologies to utilize these resources effectively.
基金supported by the National Natural Science Foundation of China (No.62202137)the China Postdoctoral Science Foundation (No.2023M730599)the Zhejiang Provincial Natural Science Foundation of China (No.LMS25F020009)。
文摘Embodied visual exploration is critical for building intelligent visual agents. This paper presents the neural exploration with feature-based visual odometry and tracking-failure-reduction policy(Ne OR), a framework for embodied visual exploration that possesses the efficient exploration capabilities of deep reinforcement learning(DRL)-based exploration policies and leverages feature-based visual odometry(VO) for more accurate mapping and positioning results. An improved local policy is also proposed to reduce tracking failures of feature-based VO in weakly textured scenes through a refined multi-discrete action space, keyframe fusion, and an auxiliary task. The experimental results demonstrate that Ne OR has better mapping and positioning accuracy compared to other entirely learning-based exploration frameworks and improves the robustness of feature-based VO by significantly reducing tracking failures in weakly textured scenes.
基金This study was supported by the National Natural Science Foundation of China(U20A20148)the Major Science and Technology Projects of the Xizang(Tibet)Autonomous Region(XZ202201ZD0004G and XZ202201ZD0004G01).
文摘This research optimized the structure of lithium extraction solar ponds to enhance the crystallization rate and yield of Li_(2)CO_(3).Using the response surface methodology in Design-Expert 10.0.3,the authors conducted experiments to investigate the influence of four factors related to solar pond structure on the crystallization of Li_(2)CO_(3) and their pairwise interactions.Computational Fluid Dynamics(CFD)simulations of the flow field within the solar pond were performed using COMSOL Multiphysics software to compare temperature distributions before and after optimization.The results indicate that the optimal structure for lithium extraction from the Zabuye Salt Lake solar ponds includes UCZ(Upper Convective Zone)thickness of 53.63 cm,an LCZ(Lower Convective Zone)direct heating temperature of 57.39℃,a CO32−concentration of 32.21 g/L,and an added soda ash concentration of 6.52 g/L.Following this optimized pathway,the Li_(2)CO_(3) precipitation increased by 7.34% compared to the initial solar pond process,with a 33.33% improvement in lithium carbonate crystallization rate.This study demonstrates the feasibility of optimizing lithium extraction solar pond structures,offering a new approach for constructing such ponds in salt lakes.It provides valuable guidance for the efficient extraction of lithium resources from carbonate-type salt lake brines.
基金Supported by the National Natural Science Foundation of China(42330810)Major Science and Technology Project of PetroChina Changqing Oilfield Company(ZDZX2021-01).
文摘Based on the analysis of surface geological survey,exploratory well,gravity-magnetic-electric and seismic data,and through mapping the sedimentary basin and its peripheral orogenic belts together,this paper explores systematically the boundary,distribution,geological structure,and tectonic attributes of the Ordos prototype basin in the geological historical periods.The results show that the Ordos block is bounded to the west by the Engorwusu Fault Zone,to the east by the Taihangshan Mountain Piedmont Fault Zone,to the north by the Solonker-Xilamuron Suture Zone,and to the south by the Shangnan-Danfeng Suture Zone.The Ordos Basin boundary was the plate tectonic boundary during the Middle Proterozoic to Paleozoic,and the intra-continental deformation boundary in the Meso-Cenozoic.The basin survived as a marine cratonic basin covering the entire Ordos block during the Middle Proterozoic to Ordovician,a marine-continental transitional depression basin enclosed by an island arc uplift belt at the plate margin during the Carboniferous to Permian,a unified intra-continental lacustrine depression basin in the Triassic,and an intra-continental cratonic basin circled by a rift system in the Cenozoic.The basin scope has been decreasing till the present.The large,widespread prototype basin controlled the exploration area far beyond the present-day sedimentary basin boundary,with multiple target plays vertically.The Ordos Basin has the characteristics of a whole petroleum(or deposition)system.The Middle Proterozoic wide-rift system as a typical basin under the overlying Phanerozoic basin and the Cambrian-Ordovician passive margin basin and intra-cratonic depression in the deep-sited basin will be the important successions for oil and gas exploration in the coming years.
基金financially supported by Zijin Mining Group(No.01612216)the Ministry of Natural Resources,China(No.ZKKJ202426)。
文摘The Zijinshan ore field located in southwestern Fujian Province,China,is a representative porphyry-epithermal ore system hosting diverse mineralization types(Mao et al.,2013).The ore field comprises of the Zijinshan highsulfidation Cu-Au deposit,the Luoboling porphyry Cu-Mo deposit,the transitional style Cu deposit(Longjiangting and Wuziqilong)and the Yueyang low-sulfidation Agpolymetallic deposit(Zhang,2013;Zhang et al.,2003)
基金This study was jointly supported by the Science&Technology Fundamental Resources Investigation Program(2022FY101800)National Science Foundation(92162212)+1 种基金the project from the Key Laboratory of Tectonics and Petroleum Resources(China University of Geosciences,Wuhan)(TPR-2022-22)the International Geoscience Programme(IGCP-675)。
文摘The Ordos Basin(OB)in the western part of the North China Craton(NCC),was located at the jointed area of multi-plates and has recorded the Mesozoic tectonic characteristics.Its tectonic evolution in the Mesozoic is significant to understand the tectonic transformation of the northern margin of the NCC.In this work,the detrital zircon and apatite(U-Th)/He chronological system were analyzed in the northern part of the OB,and have provided new evidence for the regional tectonic evolution.The(U-Th)/He chronological data states the weighted ages of 240‒235 Ma,141 Ma with the peak distribution of 244 Ma,219 Ma,173 Ma,147‒132 Ma.The thermal evolution,geochronological data,and regional unconformities have proved four stages of regional tectonic evolution for the OB and its surroundings in the Mesozoic:(1)The Late Permian-Early Triassic;(2)the Late Triassic-Early Jurassic;(3)the Late Jurassic-Early Cretaceous;(4)the Late Cretaceous-Early Paleogene.It is indicated that the multi-directional convergence from the surrounding tectonic units has controlled the Mesozoic tectonic evolution of the OB.Four-stage tectonic evolution reflected the activation or end of different plate movements and provided new time constraints for the regional tectonic evolution of the NCC in the Mesozoic.
基金supported by the National Key R&D Program of China (Grant No.2022YFF0503700)the special funds of Hubei Luojia Laboratory (Grant No.220100011)+1 种基金supported by the International Space Science Institute–Beijing(ISSI-BJ) project“The Electromagnetic Data Validation and Scientific Application Research based on CSES Satellite”and ISSI/ISSI-BJ project,“Multi-Scale Magnetosphere–Ionosphere–Thermosphere Interaction.”
文摘The Michelson Interferometer for Global High-resolution Thermospheric Imaging(MIGHTI)onboard the Ionospheric Connection Explorer(ICON)satellite offers the opportunity to investigate the altitude profile of thermospheric winds.In this study,we used the red-line measurements of MIGHTI to compare with the results estimated by Horizontal Wind Model 14(HWM14).The data selected included both the geomagnetic quiet period(December 2019 to August 2022)and the geomagnetic storm on August 26-28,2021.During the geomagnetic quiet period,the estimations of neutral winds from HWM14 showed relatively good agreement with the observations from ICON.According to the ICON observations,near the equator,zonal winds reverse from westward to eastward at around 06:00 local time(LT)at higher altitudes,and the stronger westward winds appear at later LTs at lower altitudes.At around 16:00 LT,eastward winds at 300 km reverse to westward,and vertical gradients of zonal winds similar to those at sunrise hours can be observed.In the middle latitudes,zonal winds reverse about 2-4 h earlier.Meridional winds vary more significantly than zonal winds with seasonal and latitudinal variations.According to the ICON observations,in the northern low latitudes,vertical reversals of meridional winds are found at 08:00-13:00 LT from 300 to 160 km and at around 18:00 LT from 300 to 200 km during the June solstice.Similar reversals of meridional winds are found at 04:00-07:00 LT from 300 to 160 km and at 22:00-02:00 LT from 270 to 200 km during the December solstice.In the southern low latitudes,meridional wind reversals occur at 08:00-11:00 LT from 200 to 160 km and at 21:00-02:00 LT from 300 to 200 km during the June solstice.During the December solstice,reversals of the meridional wind appear at 20:00-01:00 LT below 200 km and at 06:00-11:00 LT from 300 to 160 km.In the northern middle latitudes,the northward winds are dominant at 08:00-14:00 LT at 230 km during the June solstice.Northward winds persist until 16:00 LT at 160 and 300 km.During the December solstice,the northward winds are dominant from 06:00 to 21:00 LT.The vertical variations in neutral winds during the geomagnetic storm on August 26-28 were analyzed in detail.Both meridional and zonal winds during the active geomagnetic period observed by ICON show distinguishable vertical shear structures at different stages of the storm.On the dayside,during the main phase,the peak velocities of westward winds extend from a higher altitude to a lower altitude,whereas during the recovery phase,the peak velocities of the westward winds extend from lower altitudes to higher altitudes.The velocities of the southward winds are stronger at lower altitudes during the storm.These vertical structures of horizontal winds during the storm could not be reproduced by the HWM14 wind estimations,and the overall response to the storm of the horizontal winds in the low and middle latitudes is underestimated by HWM14.The ICON observations provide a good dataset for improving the HWM wind estimations in the middle and upper atmosphere,especially the vertical variations.
文摘The magnetic fields and dynamical processes in the solar polar regions play a crucial role in the solar magnetic cycle and in supplying mass and energy to the fast solar wind,ultimately being vital in controlling solar activities and driving space weather.Despite numerous efforts to explore these regions,to date no imaging observations of the Sun's poles have been achieved from vantage points out of the ecliptic plane,leaving their behavior and evolution poorly understood.This observation gap has left three top-level scientific questions unanswered:How does the solar dynamo work and drive the solar magnetic cycle?What drives the fast solar wind?How do space weather processes globally originate from the Sun and propagate throughout the solar system?The Solar Polarorbit Observatory(SPO)mission,a solar polar exploration spacecraft,is proposed to address these three unanswered scientific questions by imaging the Sun's poles from high heliolatitudes.In order to achieve its scientific goals,SPO will carry six remote-sensing and four in-situ instruments to measure the vector magnetic fields and Doppler velocity fields in the photosphere,to observe the Sun in the extreme ultraviolet,X-ray,and radio wavelengths,to image the corona and the heliosphere up to 45 R_(s),and to perform in-situ detection of magnetic fields,and low-and high-energy particles in the solar wind.The SPO mission is capable of providing critical vector magnetic fields and Doppler velocities of the polar regions to advance our understanding of the origin of the solar magnetic cycle,providing unprecedented imaging observations of the solar poles alongside in-situ measurements of charged particles and magnetic fields from high heliolatitudes to unveil the mass and energy supply that drive the fast solar wind,and providing observational constraints for improving our ability to model and predict the three-dimensional(3D)structures and propagation of space weather events.
基金Space Optoelectronic Measurement and Perception Lab(LabSOMP-2023-07)the National Natural Science Foundation ofChina(42241147)+1 种基金the State Key Laboratory of Geo-Information Engineering(SKLGIE2021-Z-3-1)and the Open Program of Collaborativeinnovation Center of Geo-information(2023C002)。
文摘This paper proposed an efficient method of image overlapping relationship analysis based on spatial index of KD tree fast search for disordered and large-scale asteroid images.In this study,the image data from asteroid exploration missions such as Bennu,Vesta,and Ryugu were used for experiments,and the proposed image matching pairs determination algorithm was comprehensively compared with the corresponding modules of USGS ISIS in order to evaluate its performance in terms of efficiency and accuracy.The results show that when processing more than a thousand images,the proposed method greatly improves the efficiency of acquiring image matching pairs while ensuring the correctness of image overlapping relationships and accuracy of bundle adjustment.At the same time,according to the obtained image matching pairs,images that meet the requirements of Stereo Photoclinometry can be quickly selected,effectively improving the quality of 3D reconstruction models of asteroid images.
基金National Natural Science Foundation of China Key Project(No.42050103)Higher Education Disciplinary Innovation Program(No.B25052)+2 种基金the Guangdong Pearl River Talent Program Innovative and Entrepreneurial Team Project(No.2021ZT09H399)the Ministry of Education’s Frontiers Science Center for Deep-Time Digital Earth(DDE)(No.2652023001)Geological Survey Project of China Geological Survey(DD20240206201)。
文摘Since the beginning of the 21st century,advances in big data and artificial intelligence have driven a paradigm shift in the geosciences,moving the field from qualitative descriptions toward quantitative analysis,from observing phenomena to uncovering underlying mechanisms,from regional-scale investigations to global perspectives,and from experience-based inference toward data-and model-enabled intelligent prediction.AlphaEarth Foundations(AEF)is a next-generation geospatial intelligence platform that addresses these changes by introducing a unified 64-dimensional shared embedding space,enabling-for the first time-standardized representation and seamless integration of 12 distinct types of Earth observation data,including optical,radar,and lidar.This framework significantly improves data assimilation efficiency and resolves the persistent problem of“data silos”in geoscience research.AEF is helping redefine research methodologies and fostering breakthroughs,particularly in quantitative Earth system science.This paper systematically examines how AEF’s innovative architecture-featuring multi-source data fusion,high-dimensional feature representation learning,and a scalable computational framework-facilitates intelligent,precise,and realtime data-driven geoscientific research.Using case studies from resource and environmental applications,we demonstrate AEF’s broad potential and identify emerging innovation needs.Our findings show that AEF not only enhances the efficiency of solving traditional geoscientific problems but also stimulates novel research directions and methodological approaches.
文摘悦读·明其义Discovering the charm of travel发现旅行的魅力Travel is one of the most enjoyable experiences one can have.It not only allows us to explore new places but also helps us understand different cultures and traditions.Whether you are a backpacker or a tourist who prefers comfort,there is always something special waiting to be discovered.
文摘In mid-May,good news came from Tajikistan,the country of high mountains.The Tajikistan Bogda Mountain geological exploration and sampling project,which had been dormant for over a decade,achieved a key breakthrough after years of careful research,multi-party collaboration,and optimization of various plans,launching a new round of field exploration and testing work.
基金supported by the Henan Province science and technology research project(Grant No.242102321031)National Natural Science Foundation of China(grant numbers 42207200).
文摘Near-surface geological defects pose a serious threat to human life and infrastructure.Hence,the exploration of geological hazards is essential.Currently,there are various geological hazard exploration methods;however,those require improvements in terms of economic feasibility,convenience,and lateral resolution.To address this,this study examined an extraction method to determine spatial autocorrelation velocity dispersion curves for application in near-surface exploration.
文摘Strategic initiative:Entering Oman for a new strategy In 2004,the International Department of CNPC’s BGP took a crucial step in the Middle East market by successfully securing a seismic exploration project for the national oil company of Oman,Petroleum Development Oman(PDO).