In recent years,there has been a growing demand for more efficient and robust control strategies in cooperative multi-robot systems.This paper introduces the cascade explicit tube model predictive controller(CET-MPC),...In recent years,there has been a growing demand for more efficient and robust control strategies in cooperative multi-robot systems.This paper introduces the cascade explicit tube model predictive controller(CET-MPC),a control architecture designed specifically for distributed aerial robot systems.By integrating an explicit model predictive controller(MPC)with a tube MPC,our approach significantly reduces online computational demands while enhancing robustness against disturbances such as wind and measurement noise,as well as uncertainties in inertia parameters.Further,we incorporate a cascade controller to minimize steady-state errors and improve system performance dynamically.The results of this assessment provide valuable insights into the effectiveness and reliability of the CET-MPC approach under realistic operating conditions.The simulation results of flight scenarios for multi-agent quadrotors demonstrate the controller’s stability and accurate tracking of the desired path.By addressing the complexities of quadrotors’six degrees of freedom,this controller serves as a versatile solution applicable to a wide range of multi-robot systems with varying degrees of freedom,demonstrating its adaptability and scalability beyond the quadrotor domain.展开更多
The existing research on the path following of the autonomous electric vehicle(AEV)mainly focuses on the path planning and the kinematic control.However,the dynamic control with the state observation and the communica...The existing research on the path following of the autonomous electric vehicle(AEV)mainly focuses on the path planning and the kinematic control.However,the dynamic control with the state observation and the communication delay is usually ignored,so the path following performance of the AEV cannot be ensured.This article studies the observer-based path following control strategy for the AEV with the communication delay via a robust explicit model predictive control approach.Firstly,a projected interval unscented Kalman filter is proposed to observe the vehicle sideslip angle and yaw rate.The observer considers the state constraints during the observation process,and the robustness of the observer is also considered.Secondly,an explicit model predictive control is designed to reduce the computational complexity.Thirdly,considering the efficiency of the information transmission,the influence of the communication delay is considered when designing the observer-based path following control strategy.Finally,the numerical simulation and the hardware-in-the-loop test are conducted to examine the effectiveness and practicability of the proposed strategy.展开更多
This work is to develop a blending-based multiple model adaptive explicit predictive control scheme for nonlinear MiMo systems that can handle parametric uncertainties.Here,for each identification model,an explicit no...This work is to develop a blending-based multiple model adaptive explicit predictive control scheme for nonlinear MiMo systems that can handle parametric uncertainties.Here,for each identification model,an explicit nonlinear model predictive control(ENMPC)law is computed in advance for the corresponding model.The generated control inputs from the set of ENMPC controllers are being blended online using a weighting vector that is continuously updated by the proposed adaptive identification schemes.The proposed control scheme is used to govern the tracking of a highly nonlinear helicopter model known as the twin rotor MIMO system(TRMS).Here,an extended Kalman filter(EKF)is used to estimate the unavailable states of the TRMS.Finally,simulation and experimental results are presented to prove that the proposed controller gives better performance than some reported works in the literature.The effectiveness of the proposed controller is demonstrated by experimental studies of the TRMS model.展开更多
Purpose–The purpose of this paper is to simplify the Explicit Nonlinear Model Predictive Controller(ENMPC)by linearizing the trajectory with Quantum-behaved Pigeon-Inspired Optimization(QPIO).Design/methodology/appro...Purpose–The purpose of this paper is to simplify the Explicit Nonlinear Model Predictive Controller(ENMPC)by linearizing the trajectory with Quantum-behaved Pigeon-Inspired Optimization(QPIO).Design/methodology/approach–The paper deduces the nonlinear model of the quadrotor and uses the ENMPC to track the trajectory.Since the ENMPC has high demand for the state equation,the trajectory needed to be differentiated many times.When the trajectory is complicate or discontinuous,QPIO is proposed to linearize the trajectory.Then the linearized trajectory will be used in the ENMPC.Findings–Applying the QPIO algorithm allows the unequal distance sample points to be acquired to linearize the trajectory.Comparing with the equidistant linear interpolation,the linear interpolation error will be smaller.Practical implications–Small-sized quadrotors were adopted in this research to simplify the model.The model is supposed to be accurate and differentiable to meet the requirements of ENMPC.Originality/value–Traditionally,the quadrotor model was usually linearized in the research.In this paper,the quadrotormodel waskept nonlinear and the trajectorywill be linearizedinstead.Unequaldistance sample points were utilized to linearize the trajectory.In this way,the authors can get a smaller interpolation error.This method can also be applied to discrete systems to construct the interpolation for trajectory tracking.展开更多
文摘In recent years,there has been a growing demand for more efficient and robust control strategies in cooperative multi-robot systems.This paper introduces the cascade explicit tube model predictive controller(CET-MPC),a control architecture designed specifically for distributed aerial robot systems.By integrating an explicit model predictive controller(MPC)with a tube MPC,our approach significantly reduces online computational demands while enhancing robustness against disturbances such as wind and measurement noise,as well as uncertainties in inertia parameters.Further,we incorporate a cascade controller to minimize steady-state errors and improve system performance dynamically.The results of this assessment provide valuable insights into the effectiveness and reliability of the CET-MPC approach under realistic operating conditions.The simulation results of flight scenarios for multi-agent quadrotors demonstrate the controller’s stability and accurate tracking of the desired path.By addressing the complexities of quadrotors’six degrees of freedom,this controller serves as a versatile solution applicable to a wide range of multi-robot systems with varying degrees of freedom,demonstrating its adaptability and scalability beyond the quadrotor domain.
基金Supported by the National Key Research and Development Program of China(Grant No.2023YFE0204700)the National Natural Science Foundation of China(Grant Nos.52472402 and 52302469)+7 种基金the Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2023A1515012327 and 2024A1515010449)the research grant of the University of Macao(Grant No.MYRG GRG2023-00235-FST-UMDF)Shandong Provincial Natural Science Foundation(Grant No.ZR2023ME133)the Fundamental Research Funds for the Central Universities(Grant No.N2403012)the Science and Technology Development Fund of Macao SAR(Grant No.0091/2023/AMJ)the China Postdoctoral Science Foundation(Grant Nos.2023M740538 and AM2024003)the Zhuhai Science and Technology Innovation Bureau(Grant No.2220004003107)the Yunfu Science and Technology Project(Grant No.2024090202).
文摘The existing research on the path following of the autonomous electric vehicle(AEV)mainly focuses on the path planning and the kinematic control.However,the dynamic control with the state observation and the communication delay is usually ignored,so the path following performance of the AEV cannot be ensured.This article studies the observer-based path following control strategy for the AEV with the communication delay via a robust explicit model predictive control approach.Firstly,a projected interval unscented Kalman filter is proposed to observe the vehicle sideslip angle and yaw rate.The observer considers the state constraints during the observation process,and the robustness of the observer is also considered.Secondly,an explicit model predictive control is designed to reduce the computational complexity.Thirdly,considering the efficiency of the information transmission,the influence of the communication delay is considered when designing the observer-based path following control strategy.Finally,the numerical simulation and the hardware-in-the-loop test are conducted to examine the effectiveness and practicability of the proposed strategy.
文摘This work is to develop a blending-based multiple model adaptive explicit predictive control scheme for nonlinear MiMo systems that can handle parametric uncertainties.Here,for each identification model,an explicit nonlinear model predictive control(ENMPC)law is computed in advance for the corresponding model.The generated control inputs from the set of ENMPC controllers are being blended online using a weighting vector that is continuously updated by the proposed adaptive identification schemes.The proposed control scheme is used to govern the tracking of a highly nonlinear helicopter model known as the twin rotor MIMO system(TRMS).Here,an extended Kalman filter(EKF)is used to estimate the unavailable states of the TRMS.Finally,simulation and experimental results are presented to prove that the proposed controller gives better performance than some reported works in the literature.The effectiveness of the proposed controller is demonstrated by experimental studies of the TRMS model.
文摘Purpose–The purpose of this paper is to simplify the Explicit Nonlinear Model Predictive Controller(ENMPC)by linearizing the trajectory with Quantum-behaved Pigeon-Inspired Optimization(QPIO).Design/methodology/approach–The paper deduces the nonlinear model of the quadrotor and uses the ENMPC to track the trajectory.Since the ENMPC has high demand for the state equation,the trajectory needed to be differentiated many times.When the trajectory is complicate or discontinuous,QPIO is proposed to linearize the trajectory.Then the linearized trajectory will be used in the ENMPC.Findings–Applying the QPIO algorithm allows the unequal distance sample points to be acquired to linearize the trajectory.Comparing with the equidistant linear interpolation,the linear interpolation error will be smaller.Practical implications–Small-sized quadrotors were adopted in this research to simplify the model.The model is supposed to be accurate and differentiable to meet the requirements of ENMPC.Originality/value–Traditionally,the quadrotor model was usually linearized in the research.In this paper,the quadrotormodel waskept nonlinear and the trajectorywill be linearizedinstead.Unequaldistance sample points were utilized to linearize the trajectory.In this way,the authors can get a smaller interpolation error.This method can also be applied to discrete systems to construct the interpolation for trajectory tracking.