In this work,a method is put forward to obtain the dynamic solution efficiently and accurately for a large-scale train-track-substructure(TTS)system.It is called implicit-explicit integration and multi-time-step solut...In this work,a method is put forward to obtain the dynamic solution efficiently and accurately for a large-scale train-track-substructure(TTS)system.It is called implicit-explicit integration and multi-time-step solution method(abbreviated as mI-nE-MTS method).The TTS system is divided into train-track subsystem and substruc-ture subsystem.Considering that the root cause of low effi-ciency of obtaining TTS solution lies in solving the alge-braic equation of the substructures,the high-efficient Zhai method,an explicit integration scheme,can be introduced to avoid matrix inversion process.The train-track system is solved by implicitly Park method.Moreover,it is known that the requirement of time step size differs for different sub-systems,integration methods and structural frequency response characteristics.A multi-time-step solution is pro-posed,in which time step size for the train-track subsystem and the substructure subsystem can be arbitrarily chosen once satisfying stability and precision demand,namely the time spent for m implicit integral steps is equal to n explicit integral steps,i.e.,mI=nE as mentioned above.The numeri-cal examples show the accuracy,efficiency,and engineering practicality of the proposed method.展开更多
Viscoelastic artificial boundaries are widely adopted in numerical simulations of wave propagation problems.When explicit time-domain integration algorithms are used,the stability condition of the boundary domain is s...Viscoelastic artificial boundaries are widely adopted in numerical simulations of wave propagation problems.When explicit time-domain integration algorithms are used,the stability condition of the boundary domain is stricter than that of the internal region due to the influence of the damping and stiffness of an viscoelastic artificial boundary.The lack of a clear and practical stability criterion for this problem,however,affects the reasonable selection of an integral time step when using viscoelastic artificial boundaries.In this study,we investigate the stability conditions of explicit integration algorithms when using three-dimensional(3D)viscoelastic artificial boundaries through an analysis method based on a local subsystem.Several boundary subsystems that can represent localized characteristics of a complete numerical model are established,and their analytical stability conditions are derived from and further compared to one another.The stability of the complete model is controlled by the corner regions,and thus,the global stability criterion for the numerical model with viscoelastic artificial boundaries is obtained.Next,by analyzing the impact of different factors on stability conditions,we recommend a stability coefficient for practically estimating the maximum stable integral time step in the dynamic analysis when using 3D viscoelastic artificial boundaries.展开更多
An explicit unconditionally stable algorithm for hybrid tests,which is developed from the traditional HHT-α algorithm,is proposed.The unconditional stability is first proven by the spectral radius method for a linear...An explicit unconditionally stable algorithm for hybrid tests,which is developed from the traditional HHT-α algorithm,is proposed.The unconditional stability is first proven by the spectral radius method for a linear system.If the value of α is selected within [-0.5,0],then the algorithm is shown to be unconditionally stable.Next,the root locus method for a discrete dynamic system is applied to analyze the stability of a nonlinear system.The results show that the proposed method is conditionally stable for dynamic systems with stiffness hardening.To improve the stability of the proposed method,the structure stiffness is then identified and updated.Both numerical and pseudo-dynamic tests on a structure with the collision effect prove that the stiffness updating method can effectively improve stability.展开更多
Two explicit integration algorithms with unconditional stability for linear elastic systems have been successfully developed for pseudodynamic testing. Their numerical properties in the solution of a linear elastic sy...Two explicit integration algorithms with unconditional stability for linear elastic systems have been successfully developed for pseudodynamic testing. Their numerical properties in the solution of a linear elastic system have been well explored and their applications to the pseudodynamic testing of a nonlinear system have been shown to be feasible. However, their numerical properties in the solution of a nonlinear system are not apparent. Therefore, the performance of both algorithms for use in the solution of a nonlinear system has been analytically evaluated after introducing an instantaneous degree of nonlinearity. The two algorithms have roughly the same accuracy for a small value of the product of the natural frequency and step size. Meanwhile, the first algorithm is unconditionally stable when the instantaneous degree of nonlinearity is less than or equal to 1, and it becomes conditionally stable when it is greater than 1. The second algorithm is conditionally stable as the instantaneous degree of nonlinearity is less than 1/9, and becomes unstable when it is greater than 1. It can have unconditional stability for the range between 1/9 and 1. Based on these evaluations, it was concluded that the first algorithm is superior to the second one. Also, both algorithms were found to require commensurate computational efforts, which are much less than needed for the Newmark explicit method in general structural dynamic problems.展开更多
If a traditional explicit numerical integration algorithm is used to solve motion equation in the finite element simulation of wave motion, the time-step used by numerical integration is the smallest time-step restric...If a traditional explicit numerical integration algorithm is used to solve motion equation in the finite element simulation of wave motion, the time-step used by numerical integration is the smallest time-step restricted by the stability criterion in computational region. However, the excessively small time-step is usually unnecessary for a large portion of computational region. In this paper, a varying time-step explicit numerical integration algorithm is introduced, and its basic idea is to use different time-step restricted by the stability criterion in different computational region. Finally, the feasibility of the algorithm and its effect on calculating precision are verified by numerical test.展开更多
A nonlinear explicit dynamic finite element formulation based on the generalized beam theory(GBT)is proposed and developed to simulate the dynamic responses of prismatic thin-walled steel members under transverse impu...A nonlinear explicit dynamic finite element formulation based on the generalized beam theory(GBT)is proposed and developed to simulate the dynamic responses of prismatic thin-walled steel members under transverse impulsive loads.Considering the rate strengthening and thermal softening effects on member impact behavior,a modified Cowper-Symonds model for constructional steels is utilized.The element displacement field is built upon the superposition of GBT cross-section deformation modes,so arbitrary deformations such as cross-section distortions,local buckling and warping shear can all be involved by the proposed model.The amplitude function of each cross-section deformation mode is approximated by the cubic non-uniform B-spline basis functions.The Kirchhoff s thin-plate assumption is utilized in the construction of the bending related displacements.The Green-Lagrange strain tensor and the second Piola-Kirchhoff(PK2)stress tensor are employed to measure deformations and stresses at any material point,where stresses are assumed to be in plane-stress state.In order to verify the effectiveness of the proposed GBT model,three numerical cases involving impulsive loading of the thin-walled parts are given.The GBT results are compared with those of the Ls-Dyna shell finite element.It is shown that the proposed model and the shell finite element analysis has equivalent accuracy in displacement and stress.Moreover,the proposed model is much more computationally efficient and structurally clearer than the shell finite elements.展开更多
This study presents a structural analysis algorithm called the finite particle method (FPM) for kinematically indeterminate bar assemblies. Different from the traditional analysis method, FPM is based on the combina...This study presents a structural analysis algorithm called the finite particle method (FPM) for kinematically indeterminate bar assemblies. Different from the traditional analysis method, FPM is based on the combination of the vector mechanics and numerical calculations. It models the analyzed domain composed of finite particles. Newton's second law is adopted to describe the motions of all particles. A convected material flame and explicit time integration for the solution procedure is also adopted in this method. By using the FPM, there is no need to solve any nonlinear equations, to calculate the stiffness matrix or equilibrium matrix, which is very helpful in the analysis of kinematically indeterminate structures. The basic formulations for the space bar are derived, following its solution procedures for bar assemblies. Three numerical examples are analyzed using the FPM. Results obtained from both the straight pretension cable and the suspension cable assembly show that the FPM can produce a more accurate analysis result. The motion simulation of the four-bar space assembly demonstrates the capability of this method in the analysis ofkinematically indeterminate structures.展开更多
The determination of initial equilibrium shapes is a common problem in research work and engineering applications related to membrane structures. Using a general structural analysis framework of the finite particle me...The determination of initial equilibrium shapes is a common problem in research work and engineering applications related to membrane structures. Using a general structural analysis framework of the finite particle method (FPM), this paper presents the first application of the FPM and a recently-developed membrane model to the shape analysis of light weight mem- branes. The FPM is rooted in vector mechanics and physical viewpoints. It discretizes the analyzed domain into a group of parti- cles linked by elements, and the motion of the free particles is directly described by Newton's second law while the constrained ones follow the prescribed paths. An efficient physical modeling procedure of handling geometric nonlinearity has been developed to evaluate the particle interaction forces. To achieve the equilibrium shape as fast as possible, an integral-form, explicit time integration scheme has been proposed for solving the equation of motion. The equilibrium shape can be obtained naturally without nonlinear iterative correction and global stiffness matrix integration. Two classical curved surfaces of tension membranes pro- duced under the uniform-stress condition are presented to verify the accuracy and efficiency of the proposed method.展开更多
In this paper,we propose a new relational schema (R-schema) to XML schema translation algorithm, VQT, which analyzes the value cardinality and user query patterns and extracts the implicit referential integrities by u...In this paper,we propose a new relational schema (R-schema) to XML schema translation algorithm, VQT, which analyzes the value cardinality and user query patterns and extracts the implicit referential integrities by using the cardinality property of foreign key constraints between columns and the equi-join characteristic in user queries. The VQT algorithm can apply the extracted implied referential integrity relation information to the R-schema and create an XML schema as the final result. Therefore, the VQT algorithm prevents the R-schema from being incorrectly converted into the XML schema, and it richly and powerfully represents all the information in the R-schema by creating an XML schema as the translation result on behalf of the XML DTD.展开更多
Groundwater flows play a key role in the recharge of aquifers, the transport of solutes through subsurface systems or the control of surface runoff. Predicting these processes requires the use of groundwater models wi...Groundwater flows play a key role in the recharge of aquifers, the transport of solutes through subsurface systems or the control of surface runoff. Predicting these processes requires the use of groundwater models with their applicability directly linked to their accuracy and computational efficiency. In this paper, we present a new method to model water dynamics in variably- saturated porous media. Our model is based on a fully-explicit discontinuous-Galerkin formulation of the 3D Richards equation, which shows a perfect scaling on parallel architectures. We make use of an adapted jump penalty term for the discontinuous-Galerkin scheme and of a slope limiter algorithm to produce oscillation-free exactly conservative solutions. We show that such an approach is particularly well suited to infiltration fronts. The model results are in good agreement with the reference model Hydrus-lD and seem promising for large scale applications involving a coarse representation of saturated soil.展开更多
An efficient and accurate exponential wave integrator Fourier pseudospectral (EWI-FP) method is proposed and analyzed for solving the symmetric regularized-long-wave (SRLW) equation, which is used for modeling the...An efficient and accurate exponential wave integrator Fourier pseudospectral (EWI-FP) method is proposed and analyzed for solving the symmetric regularized-long-wave (SRLW) equation, which is used for modeling the weakly nonlinear ion acoustic and space-charge waves. The numerical method here is based on a Gautschi-type exponential wave integrator for temporal approximation and the Fourier pseudospectral method for spatial discretization. The scheme is fully explicit and efficient due to the fast Fourier transform. Numerical analysis of the proposed EWI-FP method is carried out and rigorous error estimates are established without CFL-type condition by means of the mathematical induction. The error bound shows that EWI-FP has second order accuracy in time and spectral accuracy in space. Numerical results are reported to confirm the theoretical studies and indicate that the error bound here is optimal.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.52008404,U1934217 and 11790283)Science and Technology Research and Development Program Project of China Railway Group Limited(Major Special Project,No.2020-Special-02)the National Natural Science Foundation of Hunan Province(Grant No.2021JJ30850).
文摘In this work,a method is put forward to obtain the dynamic solution efficiently and accurately for a large-scale train-track-substructure(TTS)system.It is called implicit-explicit integration and multi-time-step solution method(abbreviated as mI-nE-MTS method).The TTS system is divided into train-track subsystem and substruc-ture subsystem.Considering that the root cause of low effi-ciency of obtaining TTS solution lies in solving the alge-braic equation of the substructures,the high-efficient Zhai method,an explicit integration scheme,can be introduced to avoid matrix inversion process.The train-track system is solved by implicitly Park method.Moreover,it is known that the requirement of time step size differs for different sub-systems,integration methods and structural frequency response characteristics.A multi-time-step solution is pro-posed,in which time step size for the train-track subsystem and the substructure subsystem can be arbitrarily chosen once satisfying stability and precision demand,namely the time spent for m implicit integral steps is equal to n explicit integral steps,i.e.,mI=nE as mentioned above.The numeri-cal examples show the accuracy,efficiency,and engineering practicality of the proposed method.
基金National Natural Science Foundation of China under Grant Nos.52108458 and U1839201China National Postdoctoral Program of Innovative Talents under Grant No.BX20200192+1 种基金Shuimu Tsinghua Scholar Program under Grant No.2020SM005National Key Research and Development Program of China under Grant No.2018YFC1504305。
文摘Viscoelastic artificial boundaries are widely adopted in numerical simulations of wave propagation problems.When explicit time-domain integration algorithms are used,the stability condition of the boundary domain is stricter than that of the internal region due to the influence of the damping and stiffness of an viscoelastic artificial boundary.The lack of a clear and practical stability criterion for this problem,however,affects the reasonable selection of an integral time step when using viscoelastic artificial boundaries.In this study,we investigate the stability conditions of explicit integration algorithms when using three-dimensional(3D)viscoelastic artificial boundaries through an analysis method based on a local subsystem.Several boundary subsystems that can represent localized characteristics of a complete numerical model are established,and their analytical stability conditions are derived from and further compared to one another.The stability of the complete model is controlled by the corner regions,and thus,the global stability criterion for the numerical model with viscoelastic artificial boundaries is obtained.Next,by analyzing the impact of different factors on stability conditions,we recommend a stability coefficient for practically estimating the maximum stable integral time step in the dynamic analysis when using 3D viscoelastic artificial boundaries.
基金Scientific Research Fund of the Institute of Engineering Mechanics,CEA under Grant Nos.2017A02,2016B09 and 2016A06the National Science-technology Support Plan Projects under Grant No.2015BAK17B02the National Natural Science Foundation of China under Grant Nos.51378478,51408565,51678538 and 51161120360
文摘An explicit unconditionally stable algorithm for hybrid tests,which is developed from the traditional HHT-α algorithm,is proposed.The unconditional stability is first proven by the spectral radius method for a linear system.If the value of α is selected within [-0.5,0],then the algorithm is shown to be unconditionally stable.Next,the root locus method for a discrete dynamic system is applied to analyze the stability of a nonlinear system.The results show that the proposed method is conditionally stable for dynamic systems with stiffness hardening.To improve the stability of the proposed method,the structure stiffness is then identified and updated.Both numerical and pseudo-dynamic tests on a structure with the collision effect prove that the stiffness updating method can effectively improve stability.
基金Science Council,Chinese Taipei,Under Grant No. NSC-96-2211-E-027-030
文摘Two explicit integration algorithms with unconditional stability for linear elastic systems have been successfully developed for pseudodynamic testing. Their numerical properties in the solution of a linear elastic system have been well explored and their applications to the pseudodynamic testing of a nonlinear system have been shown to be feasible. However, their numerical properties in the solution of a nonlinear system are not apparent. Therefore, the performance of both algorithms for use in the solution of a nonlinear system has been analytically evaluated after introducing an instantaneous degree of nonlinearity. The two algorithms have roughly the same accuracy for a small value of the product of the natural frequency and step size. Meanwhile, the first algorithm is unconditionally stable when the instantaneous degree of nonlinearity is less than or equal to 1, and it becomes conditionally stable when it is greater than 1. The second algorithm is conditionally stable as the instantaneous degree of nonlinearity is less than 1/9, and becomes unstable when it is greater than 1. It can have unconditional stability for the range between 1/9 and 1. Based on these evaluations, it was concluded that the first algorithm is superior to the second one. Also, both algorithms were found to require commensurate computational efforts, which are much less than needed for the Newmark explicit method in general structural dynamic problems.
基金National Natural Science Foundation of China (50178065), 973 Program (2002CB412706), National Social Com-monweal Research Foundation (2002DIB30076) and Joint Seismological Science Foundation (101066).
文摘If a traditional explicit numerical integration algorithm is used to solve motion equation in the finite element simulation of wave motion, the time-step used by numerical integration is the smallest time-step restricted by the stability criterion in computational region. However, the excessively small time-step is usually unnecessary for a large portion of computational region. In this paper, a varying time-step explicit numerical integration algorithm is introduced, and its basic idea is to use different time-step restricted by the stability criterion in different computational region. Finally, the feasibility of the algorithm and its effect on calculating precision are verified by numerical test.
基金The National Natural Science Foundation of China(No.51078229)the Specialized Research Fund for the Doctoral Program of Higher Education(o.20100073110008)
文摘A nonlinear explicit dynamic finite element formulation based on the generalized beam theory(GBT)is proposed and developed to simulate the dynamic responses of prismatic thin-walled steel members under transverse impulsive loads.Considering the rate strengthening and thermal softening effects on member impact behavior,a modified Cowper-Symonds model for constructional steels is utilized.The element displacement field is built upon the superposition of GBT cross-section deformation modes,so arbitrary deformations such as cross-section distortions,local buckling and warping shear can all be involved by the proposed model.The amplitude function of each cross-section deformation mode is approximated by the cubic non-uniform B-spline basis functions.The Kirchhoff s thin-plate assumption is utilized in the construction of the bending related displacements.The Green-Lagrange strain tensor and the second Piola-Kirchhoff(PK2)stress tensor are employed to measure deformations and stresses at any material point,where stresses are assumed to be in plane-stress state.In order to verify the effectiveness of the proposed GBT model,three numerical cases involving impulsive loading of the thin-walled parts are given.The GBT results are compared with those of the Ls-Dyna shell finite element.It is shown that the proposed model and the shell finite element analysis has equivalent accuracy in displacement and stress.Moreover,the proposed model is much more computationally efficient and structurally clearer than the shell finite elements.
基金supported by the National Natural Science Foundation of China (No. 50638050)the National High-Tech R&D (863) Program (No. 2007AA04Z441), China
文摘This study presents a structural analysis algorithm called the finite particle method (FPM) for kinematically indeterminate bar assemblies. Different from the traditional analysis method, FPM is based on the combination of the vector mechanics and numerical calculations. It models the analyzed domain composed of finite particles. Newton's second law is adopted to describe the motions of all particles. A convected material flame and explicit time integration for the solution procedure is also adopted in this method. By using the FPM, there is no need to solve any nonlinear equations, to calculate the stiffness matrix or equilibrium matrix, which is very helpful in the analysis of kinematically indeterminate structures. The basic formulations for the space bar are derived, following its solution procedures for bar assemblies. Three numerical examples are analyzed using the FPM. Results obtained from both the straight pretension cable and the suspension cable assembly show that the FPM can produce a more accurate analysis result. The motion simulation of the four-bar space assembly demonstrates the capability of this method in the analysis ofkinematically indeterminate structures.
基金Project supported by the National Natural Science Foundation of China (Nos. 51025858 and 51178415)
文摘The determination of initial equilibrium shapes is a common problem in research work and engineering applications related to membrane structures. Using a general structural analysis framework of the finite particle method (FPM), this paper presents the first application of the FPM and a recently-developed membrane model to the shape analysis of light weight mem- branes. The FPM is rooted in vector mechanics and physical viewpoints. It discretizes the analyzed domain into a group of parti- cles linked by elements, and the motion of the free particles is directly described by Newton's second law while the constrained ones follow the prescribed paths. An efficient physical modeling procedure of handling geometric nonlinearity has been developed to evaluate the particle interaction forces. To achieve the equilibrium shape as fast as possible, an integral-form, explicit time integration scheme has been proposed for solving the equation of motion. The equilibrium shape can be obtained naturally without nonlinear iterative correction and global stiffness matrix integration. Two classical curved surfaces of tension membranes pro- duced under the uniform-stress condition are presented to verify the accuracy and efficiency of the proposed method.
基金Project supported by the 2nd Brain Korea Project
文摘In this paper,we propose a new relational schema (R-schema) to XML schema translation algorithm, VQT, which analyzes the value cardinality and user query patterns and extracts the implicit referential integrities by using the cardinality property of foreign key constraints between columns and the equi-join characteristic in user queries. The VQT algorithm can apply the extracted implied referential integrity relation information to the R-schema and create an XML schema as the final result. Therefore, the VQT algorithm prevents the R-schema from being incorrectly converted into the XML schema, and it richly and powerfully represents all the information in the R-schema by creating an XML schema as the translation result on behalf of the XML DTD.
基金funded by the Fond de la Recherche Scientifique de Belgique (FRSFNRS)
文摘Groundwater flows play a key role in the recharge of aquifers, the transport of solutes through subsurface systems or the control of surface runoff. Predicting these processes requires the use of groundwater models with their applicability directly linked to their accuracy and computational efficiency. In this paper, we present a new method to model water dynamics in variably- saturated porous media. Our model is based on a fully-explicit discontinuous-Galerkin formulation of the 3D Richards equation, which shows a perfect scaling on parallel architectures. We make use of an adapted jump penalty term for the discontinuous-Galerkin scheme and of a slope limiter algorithm to produce oscillation-free exactly conservative solutions. We show that such an approach is particularly well suited to infiltration fronts. The model results are in good agreement with the reference model Hydrus-lD and seem promising for large scale applications involving a coarse representation of saturated soil.
文摘An efficient and accurate exponential wave integrator Fourier pseudospectral (EWI-FP) method is proposed and analyzed for solving the symmetric regularized-long-wave (SRLW) equation, which is used for modeling the weakly nonlinear ion acoustic and space-charge waves. The numerical method here is based on a Gautschi-type exponential wave integrator for temporal approximation and the Fourier pseudospectral method for spatial discretization. The scheme is fully explicit and efficient due to the fast Fourier transform. Numerical analysis of the proposed EWI-FP method is carried out and rigorous error estimates are established without CFL-type condition by means of the mathematical induction. The error bound shows that EWI-FP has second order accuracy in time and spectral accuracy in space. Numerical results are reported to confirm the theoretical studies and indicate that the error bound here is optimal.